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Malaria is a deadly disease which can be spread by the Plasmodium parasites. The existence 

of malaria can be identified by professional microscopists who examine the microscopic 

blood smear images. But it remains a challenge owing to the unavailability of experts, poor 

resolution images, and insufficient diagnostic quality. Therefore, image processing and 

machine learning (ML) models can be employed to detection of malaria parasites using 

blood smear images. With this motivation, this study introduces an optimal machine learning 

based automated malaria parasite detection and classification (OML-AMPDC) model using 

blood smear images. The proposed OML-AMPDC technique primarily undergoes pre-

processing in two stages namely adaptive filtering (AF) based noise removal and contrast 

enhancement using CLAHE technique. Besides, the feature extraction process was 

implemented using Local Derivative Radial Patterns (LDRP). In addition, random forest 

(RF) classifier is applied to allot proper class labels to the blood smear images. Finally, 

particle swarm optimization (PSO) algorithm was utilized for optimally choose two 

parameters of the RF model, named maximum number of levels in every decision tree 

(max_depth) and number of trees in the forest (n_estimators). The design of PSO algorithm 

helps for enhancing the classification performance of the RF method. A wide-ranging 

experimental analysis is performed using benchmark dataset and the results reported the 

betterment of the OML-AMPDC technique over the recent approaches. 
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1. INTRODUCTION

Plasmodium, a protozoan parasite that attacks red blood 

cells, causes malaria (RBC). Malaria is one of the main causes 

of juvenile neuro-disabilities, and it kills more children in 

Africa, where one kid dies from it every minute [1]. Thin and 

thick blood smears are used in a common laboratory procedure 

for illness analysis that is also known as the dipstick technique 

for diagnosis [2]. Deep learning is employed because it excels 

at categorizing vast volumes of data [3]. Thin and thick blood 

smears, which disclose characteristics including texture, 

location, colour, size, and morphology of the parasites from 

the ill patients, are diagnostic aspects of RBC presented in 

blood film. They signify the conventional method of illness 

diagnosis to all hospitals, medical labs, and clinics since it 

denotes a practical method for diagnosing infectious diseases 

like malaria [4]. The employed method conducts deep 

investigation of blood smear through a microscope that 

provides images of patient blood to clinical laboratory 

technologists or doctors for detecting parasites in RBC [5].  

The diagnosis of blood smear images from multiple view 

could play vital support to diagnose the disease with minimal 

cost, time, and effort. In response to decreasing the workloads 

of the pathologist, the blood smear slide is captured effectively 

by using high-resolution smartphones or digital cameras [6]. 

The more direct the images and high its resolution, higher is 

the chance for accurate analysis and better results. ML 

approach uses algorithm based mathematical rules and 

statistical assumptions for learning patterns and produces 

meaningful classification according to the relationship of all 

the variables with the consequence of disease [7]. Researchers 

have been paying attention to deep learning in recent years, 

and its applications have grown exponentially [8]. In the case 

of sample size (n=376) is smaller to decrease meaningful 

classification, and authors decided that a greater number of 

studies will be needed [9]. Despite this, there have been 

challenging surveys on the ML application in different fields 

of malaria investigation [10]. 

This study presents an optimal machine learning based 

automated malaria parasite detection and classification (OML-

AMPDC) model using blood smear images. The proposed 

OML-AMPDC technique involves adaptive filtering (AF) 

based noise removal and contrast enhancement using CLAHE 

technique. Moreover, the feature extraction process was 

implemented using Local Derivative Radial Patterns (LDRP). 

Furthermore, random forest (RF) classifier is employed for the 

appropriate class labels to the blood smear images. At last, 

particle swarm optimization (PSO) algorithm was used to an 

optimal parameter selection of the RF model, named 

maximum number of levels in every decision tree (max_depth) 

and number of trees in the forest (n_estimators). A 

comprehensive simulation analysis is carried out against the 

benchmark dataset and the outcomes revealed the enhanced 

performance of OML-AMPDC technique on the recent 

approaches. Our proposed model gives 90.33% of accuracy, 

91.55% of precision, 90.42% recall and 90.28% F-score. 
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2. RELATED WORKS  
 

Rameen et al. [11] proposed a Malaria diagnosis in blood 

smear images through supervised learning method. The 

presented methodology initiates by the pre-processing stage 

where images are converted and resized into grayscale. The 

thresholding approach can be performed to recognize blobs 

segmentation. For feature extraction, GoogLeNet is 

maneuvered, and they achieved 95.8% accuracy. Narayanan et 

al. [12] examined the performances of different ML and DL 

methods for the diagnosis of Plasmodium on cell images from 

digital microscopy and on the testing dataset, their suggested 

approach delivered an overall accuracy of 96.7%. The study 

presents a faster CNN framework for the classifications of cell 

images. An automated sensing methodology with digital in-

line holographic microscopy (DIHM) integrated into ML 

methods was introduced to sensitively diagnose unstained 

malaria-infected RBC (iRBC) [13]. For recognizing the RBC 

features, thirteen descriptors have been removed in 

segmentation hologram of single RBC. Six ML methods were 

employed for efficiently combining the prominent 

characteristics and to significantly enhance the diagnosis 

ability of the presented technique. PCA feature extraction is 

utilized for fetching latent components out of a higher 

dimension malaria vector RNA-seq data set and evaluating its 

classification accuracy by utilizing KNN and DT classification 

approaches and in that case, accuracy was 86.7% and 83.3% 

[14]. 

Bui et al. [15] study the potential of remotely sensed 

information, few ML and GIS classifications, and ensemble 

methods in the study of the nonlinear relationships among 

socio-physical conditions. The accurate calculation has 

defined by ROC curve and pair t-test. Fuhad et al. [16] 

introduce a fully automatic CNN based method for the 

diagnoses of disease under the microscopic blood smear image. 

Different technologies involving data augmentation, 

knowledge distillation, feature extraction, Autoencoder by 

CNN method and categorized by KNN or SVM are 

implemented under three training processes called 

autoencoder training, general training, and distillation training 

to improve and optimize the inference performance and model 

accuracy which was near about 99.23%. Masud et al. [17] 

proposed a DL algorithm to detect a life-threatening disease, 

malaria, for mobile health care solutions of patient builds an 

efficient mobile technique with accuracy 97.03%. The primary 

goal of this study is to demonstrate how DL architectures like 

CNN could be beneficial in real time disease diagnoses 

accurately and effectively in an input image and to decrease 

manual labour with mobile applications. 

In their study, Penas et al. employed a convolutional neural 

network and found that it could detect malaria parasites with 

an accuracy of 92.4% and sensitivity of 95.2% and distinguish 

the two species of Plasmodium falciparum and Plasmodium 

vivax with an accuracy of 87.9% [18]. Pre-processing 

techniques were used by Umer et al. [19] to re-sample and 

normalize the raw microscope images. Stacked CNN was then 

used after being fine-tuned using max-pooling and dropout 

layer. A single stage evaluation of this model's performance 

revealed 99.98% accuracy in the identification of malaria 

parasites [20]. Vijayalakshmi et al. proposed a brand-new deep 

neural network model which was presented for transfer 

learning-based identification of falciparum malaria parasite 

infection. By combining the current Support Vector Machine 

(SVM) and Visual Geometry Group (VGG) networks, the 

suggested transfer learning technique may be accomplished 

(SVM). The performance of the VGG19-SVM was examined 

using digital photographs of malaria, and the results showed a 

classification accuracy of 93.1% in identifying infected 

falciparum malaria [21]. For multi-stage malaria parasite 

identification and classification, Li et al.'s DTGCN, which 

comprises of a CNN-based feature extractor, a source transfer 

graph building component, and an unsupervised GCN, is 

recommended [22]. Modern one-stage and two-stage object 

detection algorithms will be examined by Abdulrahman et al. 

for automated malaria parasite screening from microscopic 

images of thick blood slides. Performance assessments of the 

suggested models are carried out at the object level using mean 

average precision (mAP), precision, recall, F1 score, average 

IOU, and inference time in frames per second (FPS) [23]. To 

improve the precision of malaria diagnosis, Alnussary et al. 

developed a deep convolutional neural network (CNN) using 

patches segmented from microscopic pictures of red blood cell 

smears. Three CNN pre-trained models, including VGG19, 

ResNet50, and MobileNetV2, are used to create the automated 

parasite identification in blood from Giemsa-stained smears. 

They suggested accuracy of close to 100 percent [24]. To 

identify and categories malaria, Razin et al. presented an 

architecture combining the YOLOv5 algorithm with 

Convolutional Neural Network (CNN) [25]. 

 

 

3. THE PROPOSED MODEL 
 

To our knowledge, we could not find comparable literature 

that perform CLAHE based contrast enhancement with LDRP 

based feature extracting technique with right class labels for 

the blood smear image are assigned using the Random Forest 

(RF) classifier. When choosing the best parameters for the RF 

model, the particle swarm optimization (PSO) approach was 

finally chosen. In this study, the OML-AMPDC technique has 

been presented to detection and classification of malaria 

parasites using blood smear images. Figure 1 demonstrates the 

overall block diagram of proposed OML-AMPDC technique. 

 

 
 

Figure 1. Overall block diagram of OML-AMPDC technique 

 

3.1 Image pre-processing 

 

Primarily, image pre-processing is carried out in two levels 

namely AF based removal of noise existing in the blood smear 

image, and CLAHE technique was utilized for improving the 

contrast level of the images.  
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3.1.1 Adaptive filtering-based noise removal 

Generally Adaptive filter has been utilized in an expansive 

scope of use for few decades. It is a digital linear filter with an 

auto-adjusting characteristics which comprises of transfer 

function by variable parameters and a way to change those 

parameters as per an optimization algorithm. It adjusts 

consequently to changes in its input signals. The defilement of 

a sign of interest by other undesirable signal or noise is an issue 

frequently experienced in numerous applications. Where the 

signal and noise possess fixed and separate frequency bands, 

regular linear filters with fixed coefficients are ordinarily used 

to extricate the signals. 

Figure 2. Schematic of adaptive filter 

In Figure 2 D(k) represents desired signal, X(k) represents 

observation, Y(k) represents estimated D(k) and E(k) is used 

to represents error signal. 

In any case, there are many occasions when it is 

fundamental for the filter attributes to be variable, adjusted to 

changing signal qualities or to be modified astutely. In such 

cases, the coefficients of the filter should change and can't be 

determined ahead of time. Such is the situation where there is 

a phantom cross-over between the signal and noise or on the 

other hand if the band involved by the noise is obscure or 

differs with time. Adaptive filters are utilized in the 

accompanying cases:  

At the point when it is vital for the filter qualities to be 

variable, adjusted to changing circumstances.  

At the point when there is spectral cross-over among signal 

and noise. 

On the off chance that the band involved by the noise is 

obscure or variables with time. 

The utilization of traditional filters in the above cases would 

lead to unsuitable bending of the ideal signal. An unknown 

system mainly recognized by this filter which a common use 

AF like plotting of the frequency response of an unknown 

communication channel. Additionally, channel recognition 

and echo cancellation are major notable uses of this filter. The 

estimated error calculation is defined in  

e(k)  =  d(k)  −  y(k) 

where, e(k) is estimated error. 

The unknown system and the AF both are parallel in Figure 

3. 

Figure 3. System identification using adaptive filter 

which is used for unknown system recognition. The square 

box part is represented here as an adaptive filter system. From 

that the e(k) values decreases that’s why the filter response is 

closer to the unknown system. For system recognition need 

three parameters first one is LMS algorithm, second one is 

alien / unknown system and the third one is required data set 

for adoption process. In Figure 4, In setting of the overall LMS 

model, according to d(k) & x(k) are the expected and input 

signal. 

Figure 4. Noise canceller using adaptive filter 

In this study, AF was utilized as noise canceller. In this 

analysis, the acoustic input signal has utilized, and noise 

created by microphone was lesser and create that AF makes 

substantial outcomes [18]. The attained error amongst output 

as well as predictable output signal was provided in Eq. (1). 

𝑒(𝑘) = [𝑠(𝑘) + 𝑥2(𝑘)] − 𝑦(𝑘) (1) 

Vimal et al. [26] discuss different adaptive filtering schemes 

with comparisons between them in their paper. 

3.1.2 CHAHE based contrast enhancement 

CLAHE is a type of Adaptive Histogram Equalization 

(AHE) approach. The majority of contrast enhancement 

techniques are based on global or local histogram 

modifications. By performing local contrast enhancement, the 

Contrast Limited Adaptive Histogram Equalization (CLAHE) 

method can circumvent the limitations of global approaches 

which is discussed by Campos et al. [27]. 

CLAHE resolves the amplification problems of traditional 

AHE by utilizing the several tiles parameter and clip limit. 

CLAHE splits the images into MxN local tiles. For all the tiles, 

histogram is individually computed. For computer histogram, 

evaluate standard amount of pixel for each region as follows 

NA = (NX × NY)/NG (2) 

where, NA represent the standard number of pixels, NX indicates 

the amount of pixels from the X dimensional and NY indicates 

the amount of pixels under the Y dimensional and NG signifies 

the amount of gray levels. Next, determine the clip limit as 

follows 

NCL = NA × NNCL (3) 

Here, NCL indicates the clip limits and NNCL denotes the 

standardized clip limit among zero and one Next, for all the 

tiles, the clip limit was employed to the height of histogram as 

follows. 

𝐻𝑖 = {
𝑁𝐶𝐿 𝑖𝑓 𝑁𝑖 ≥ 𝑁𝐶𝐿

𝑁𝑖 𝑒𝑙𝑠𝑒
 𝑖 = 1,2, … , 1 − 1 (4) 
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in which, Hi signifies the height of histogram of ith tile, Ni  

means the histogram of ith tile and L implies the amount of 

gray levels [19]. The overall amount of clipped pixels is 

evaluated by the following equation  

 

Nc = (NX × NY) − ∑ Hi

L−1

i=0

 (5) 

 

While Nc indicates 4r5 the amount of clipped pixels. 

Afterward evaluating Nc, redistribute the clipped pixels. The 

pixel is redistributed non‐uniformly or uniformly. In order to 

calculate the amount of pixels to be rearranged utilize the 

following equation 

 

𝑁𝑅 = 𝑁𝐶/𝐿 (6) 

 

where, NR denotes the amount of pixels that redistributed. Next, 

the clipped histogram is standardized by the following 

equation 

 

𝐻𝑖 = {
𝑁𝐶𝐿 𝑖𝑓 𝑁𝑖 + 𝑁𝑅 ≥ 𝑁𝐶𝐿

𝑁𝑖 + 𝑁𝑅 𝑒𝑙𝑠𝑒
𝑖 = 1,2, … , 𝑙 − 1 (7) 

 

The amount of undistributed pixels is calculated by Eq. (5) 

and (6). Till each pixel is redistributed, Eq. (7) is iterated. 

Eventually, cumulative histogram of the contextual regions is 

formulated as follows  

 

𝐶𝑖 =
1

(𝑁𝑋 × 𝑁𝑌)
∑ 𝐻𝑗

𝑖

𝑗=0

 (8) 

 

Afterward, the calculation is accomplished, the histogram 

of contextual regions is equivalent with exponential or 

Rayleigh probability, uniform distribution, that offers a 

prefixed visual quality and brightness. Note that, pixel P(x,y) 

with value of s and 4 center point belongs to neighboring tiles 

that are named R1, R2, R3, and R4. The weighted sum is 

calculated through this contextual region. For the output image, 

tile is combined and eliminate the artefacts among the 

independent tiles were made by utilizing the bi-linear 

interpolation, the novel value of s has represented as follows. 

 

𝑠′ = (1 − 𝑦)((1 − 𝑥) × 𝑅1(𝑠) + 𝑥 × 𝑅2(𝑠)) 

     +𝑦((1 − 𝑥) × 𝑅3(𝑠) + 𝑥 × 𝑅4(𝑠)) 
(9) 

 

Afterward this step, the enhanced images are attained. 

 

3.2 LDRP based feature extraction 

 

During feature extraction stage, the pre-processed blood 

smear images are passed as input to the LDRP model for the 

generation of feature vectors. As described, LTP and LBP is 

considered as general definition of micropattern that is able to 

define the texture without extracting a greater amount of data 

from the relationships among neighboring pixels. At the same 

time, LDP was acquired from LBP in various directions and 

high‐order derivatives. The LVP has presented for the 

redundancy reduction and accuracy improvement of earlier 

studies that extract various 2D spatial structures of the images 

with utilize of CST approach. The abovementioned pattern is 

depending on gray‐level difference among its Neighbors and 

the referenced pixel along with integration of binary coding of 

this difference. Due to binary coding in this pattern, a greater 

number of image data is lost. Mostly, the abovementioned 

methodologies could not define the radial pattern. Therefore, 

we presented LDRP that, different from the aforementioned 

pattern, employs radial pattern and multilevel coding rather 

than binary coding and rotational patterns, correspondingly. 

Now, present a group of features according to the initial‐

order derivative of images. To determine this feature, four 

directions 0°, 45°, 90°, and 135° are considered [28]. The 

position of the nth pixel relation to gc in α direction is 

represented as gα,n. gc is the reference pixel as: 

 

𝑔𝑐 = 𝑔0∘,1 = 𝑔45°,1 = 𝑔90∘,1 = 𝑔135∘,1 (10) 

 

For the I image with k gray‐level, when I(gc) represents the 

gray‐levels of pixel gc, the initial‐order derivatives of gc with 

α direction is determined by: 

 

𝐼𝛼
1(𝑔𝑐) = 𝐼𝛼

1(𝑔𝛼,1) = 𝐼(𝑔𝛼,2) − 𝐼(𝑔𝛼,1) (11) 

 

Consider the abovementioned equations for all the images, 

the four matrices are extracted by: 𝐼0∘
1 , 𝐼

45°
1 , 𝐼

90°
1  and 𝐼

135°
1 . As 

the images have k gray‐level, 2 neighboring pixels takes value 

from 0 to k-1 which results in distinct values for 𝐼𝛼
1 and hence, 

𝐼𝛼
1 might take 2k-1 integer values: 

 

𝐼𝛼
1 ∈ 𝑍, −(𝑘 − 1) ≤ 𝐼𝛼

1 ≤ (𝑘 − 1) (12) 

 

Here, we determine a sequence of features according to the 

derivative which could determine local pattern. Hence, select 

them as LDRP and they are signified as 𝐿𝐷𝑅𝑃𝑃,𝛼
𝑛 . In this 

description, P, and α represents order of derivative, amount of 

neighboring pixels under the pattern, and design direction, 

correspondingly. 

 

3.3 RF based classification 

 

At the time of classification process, the RF model is 

utilized to allot proper class of the input blood smear images. 

The RF is an ensemble classification which has several DTs. 

It can be a group of tree predictor effects that all trees based 

on values of arbitrary vector sampled individually and with 

similar distribution to every tree under the forest. Once a novel 

record acts like input, RF puts it down to all trees under the 

forest. All trees provide a classifier, and the forest select that 

class is ordered by most of the trees [29]. 

The RF algorithm works as follows: 

 

Select T amount of trees for growing. 

Select m amount of variables utilized for splitting all nodes. 

m<<M, where M refers the amount of input variables. 

Grow trees, but growing all trees, do the subsequent:  

Create the instance of size N in N trained cases with 

replacement and growing a tree in this novel instance. 

Once the developing a tree at all nodes, choose m variables 

at arbitrary in M and utilize them for finding optimum splits. 

Develop the tree to higher extents. There is no pruning. 

For classifying point X, gather the vote in all trees under the 

forest also utilize popular voting for deciding on class label. 
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Algorithm 1: Random Forest for Classification 

for n=1;k≤K;k=k+1 do 

Derive the bootstrap instance Z of size M under the 

trained data. 

Develop the RF tree Tk to bootstrapped data, with 

recursively repeated the subsequent steps to all end nodes 

of tree, still the minimal node size mmin has attained. 

i. Choose m variables at arbitrary in the p variables. 

ii. Select the optimum variable/ separate-point amongst 

the m; 

iii. Separate the node as to 2 leaf nodes. 

Result in the ensemble of trees {𝑇𝑘}1
𝐾; 

For making the forecast at novel point x: 

Assume that fk(x) be the class forecast of bth RF tree. Next 

𝑓𝑅𝐹(𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒{𝑓𝑘(𝑥)}1
𝐾. 

 

3.4 PSO based parameter tuning 

 

For optimally adjusting the parameters of the RF model 

(max_depth and n_estimators), the PSO algorithm is utilized 

and thereby boosting the detection efficiency. The PSO is a 

technique dependent upon SI that is initially presented by 

Kenndy and Eberhart in 1995 [30]. Due to their simplicity 

from execution, the PSO technique was effectively utilized 

from ML, adaptive control, signal processing, etc. In the initial 

phase, the population of m particles is established arbitrarily, 

all particles are a potential solution to challenge that requires 

for resolved from the search space. During all iterations, the 

velocity as well as place of all the particles were upgraded 

utilizing 2 values: one is the optimum value (pb) of particle, 

and another is optimum value (gb) of population entire 

previous. Let us m particle from the d dimension search space, 

the velocities as well as places of l^th particle at time of z is 

written as: 

 

𝑣𝑙(𝑧) = [𝑣𝑙1(𝑧), 𝑣𝑙2(𝑧), ⋯ , 𝑣𝑙𝑑(𝑧)]𝑍 

𝑥𝑙(𝑧) = [𝑥𝑙1(𝑧), 𝑥𝑙2(𝑧), ⋯ , 𝑥𝑙𝑑(𝑧)]𝑍 

 

An optimum value of particle and the entire previous 

optimum value of population at round t are. 

 

𝑝𝑏𝑙(𝑧) = [𝑝𝑙1(𝑧), 𝑝𝑙2(𝑧), ⋯ , 𝑝𝑙𝑑(𝑧)]𝑍 

𝑔𝑏(𝑧) = [𝑔1(𝑧), 𝑔2(𝑧), ⋯ , 𝑔𝑑(𝑧)]𝑍 

 

At iteration z+1, the place as well as velocity of particle 

were upgraded as: 

 

𝑣𝑙(𝑧 + 1) = 𝜔𝑣𝑙(𝑧) + 𝑐1𝑟1(𝑝𝑏𝑙(𝑧) − 𝑥𝑙(𝑧))

+ 𝑐2𝑟2(𝑔𝑏(𝑧) − 𝑥𝑙(𝑧)) 
(13) 

 

𝑥𝑙(𝑧 + 1) = 𝑥𝑙(𝑧) + 𝑣𝑙(𝑧 + 1) (14) 

 

where, ω refers the inertia weight coefficients that are trade-

off global search capability against local search capability; c1 

and c2 are learning factors of technique. When c1=0, it can be 

simple to fall as to local optimized and could not jump out; 

once c2=0 it would generate illustrate convergence speed of 

PSO; r1 and r2 represents the arbitrary variables uniformly 

distributed from zero and one. Figure 5 illustrates the 

flowchart of PSO technique. 

During all iterations of PSO technique [31], only the 

optimum particle is transferred from the data to another 

particle. This technique usually is 2 end criteria’s: a maximal 

amount of iterations or appropriately optimum fitness value.  

The procedure of PSO is as follows. 

The PSO method derivative a FF for attaining enhanced 

classification performance. It defines as positive integer for 

representing the optimum efficiency of candidate solutions. 

During this analysis, the minimized classifier error rate was 

There are three Figure 5 in the manuscript, which clearly does 

not meet the requirements of the journal. Regarded FF, as 

provided in Eq. (15). The optimum solution is lesser error rate 

and least solution gains a higher error rate. 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑛𝑢𝑚𝑒𝑟𝑏 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠
∗ 100 

(15) 

 

 
 

Figure 5. Flowchart of PSO method 

 

 

4. RESULTS AND DISCUSSION 

 

The experimental result analysis of the proposed technique 

takes place on the benchmark Malaria dataset [32]. The dataset 

includes 27558 images including 13779 parasitized images 

and 13779 uninfected images. Besides, the dataset is split as to 

training/testing data with a ratio of 70:30. The proposed model 

is simulated using Python 3.6.5 tool. The sample visualization 

result analysis of the OML-AMPDC technique is offered in 

Figure 6. 

 

 
 

Figure 6. Sample Images (a) Parasitized (b) Uninfected 

 

The first row depicts the original blood smear image, and 

the respective pre-processed image is depicted in Figure 7. 
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Besides, it is evident that the quality of the blood smear image 

gets considerably improved. Below in Figure 8 demonstrates 

the confusion matrix generated by the OML-AMPDC 

technique on the training dataset. The figure revealed that the 

OML-AMPDC technique has classified 9399 images into 

Uninfected class and 8026 images into Parasitized images. 

 

 
 

Figure 7. Sample results (a) Original Images (b) Pre-

processed Images 

 

 
 

Figure 8. Confusion matrix of OML-AMPDC approach on 

training dataset 

 

 
 

Figure 9. ROC analysis of OML-AMPDC technique on 

training dataset 

 

In the above Figure 9 exhibits the ROC analysis of the 

OML-AMPDC technique on the test training data which 

shown in below. The figure revealed that the OML-AMPDC 

technique has accomplished maximum ROC of 0.90. 

Similarly in the Figure 10 portrays the confusion matrix 

generated by the OML-AMPDC method on the testing dataset. 

The figure depicted that the OML-AMPDC algorithm has 

classified 4176 images into Uninfected class and 3292 images 

into Parasitized images. 

 

 
 

Figure 10. Confusion matrix of OML-AMPDC technique on 

testing dataset 

 

In the Figure 11 defines the ROC analysis of the OML-

AMPDC algorithm on the test testing data. The figure exposed 

that the OML-AMPDC method has accomplished maximal 

ROC of 0.90. 

 

 
 

Figure 11. ROC analysis of OML-AMPDC approach on 

testing dataset 

 

Table 1 and Figure 12 offer a brief result analysis of the 

OML-AMPDC technique on the test training and testing 

dataset. 

On the applied training dataset, the OML-AMPDC 

technique has resulted in accuracy of 90.33%, precision of 

91.39%, recall of 90.42%, and F-score of 90.28%. Similarly, 

on the applied testing dataset, the OML-AMPDC algorithm 

has resulted in accuracy of 90.32%, precision of 91.55%, recall 

of 90.11%, and F-score of 90.21%. 
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Table 1. Result analysis of OML-AMPDC Method with 

training and testing dataset 

 
Measures Training Dataset Testing Dataset 

Accuracy 90.33 90.32 

Precision 91.39 91.55 

Recall 90.42 90.11 

F-score 90.28 90.21 

 

 
 

Figure 12. Result analysis of OML-AMPDC technique with 

different measures 

 

Overall comparative result analysis of the OML-AMPDC 

with recent methods is carried out in Table 2 [25-27]. Figure 

13 illustrates the precision and recall analysis of the OML-

AMPDC with existing techniques. 

The results show that the Faster RCNN, MLA-ASMP, and 

AIP techniques have obtained least performance with the 

minimal values of precision and recall. Next, the SSD 

approach has showcased slightly enhanced outcomes with the 

precision and recall of 0.9100 and 0.8400. However, the OML-

AMPDC technique has outperformed the other methods with 

the precision and recall of 0.9155 and 0.9042. 

 

Table 2. Comparative analysis of OML-AMPDC technique 

with existing approaches 

 
Methods Precision Recall Accuracy F-score 

OML-AMPDC 

(Proposed model) 
0.9155 0.9042 0.9033 0.9028 

Faster R-CNN 0.8865 0.8690 0.8980 0.8971 

SSD Model 0.9100 0.8400 0.8750 0.8700 

AIP Model 0.8643 0.8500 0.7300 0.8512 

MLA-ASMP 0.8712 0.8798 0.8400 0.8685 

 

Figure 14 demonstrates the accuracy and F-measure 

analysis of the OML-AMPDC with recent techniques. The 

outcomes illustrated that the SSD, MLA-ASMP, and AIP 

methodologies have obtained minimum performance with 

lower values of accuracy and F-measure. Followed by, the 

Faster RCNN technique has showcased somewhat improved 

outcomes with accuracy and F-measure of 0.8980 and 0.8971. 

However, the OML-AMPDC algorithm has exhibited the 

other approaches with the accuracy and F-measure of 0.9033 

and 0.9028. 

From the detailed results and discussion, it is obvious that 

the OML-AMPDC technique has accomplished better 

performance over the other techniques. Therefore, the OML-

AMPDC technique can be applied as an effective tool for 

malaria parasite detection. 

 

 
 

Figure 13. Precision and recall analysis of OML-AMPDC 

technique 
 

 
 

Figure 14. Accuracy and F-measure analysis of OML-

AMPDC technique 

 

 

5. CONCLUSIONS 

 

In this study, the OML-AMPDC technique has been 

presented for the detection and classification of malaria 

parasites using blood smear images. The proposed OML-

AMPDC technique encompasses several subprocesses namely 

AF based noise removal, CLAHE based contrast enhancement, 

LDRP based feature extraction, RF based classification, and 

PSO based parameter optimization. The design of the PSO 

algorithm fine tunes the two parameters of the RF model 

(max_depth and n_estimators), and thereby improves the 

detection accuracy. A comprehensive simulation analysis is 

carried out against the benchmark dataset and the outcomes 

revealed the enhanced performance of the OML-AMPDC 

technique over the recent approaches. Therefore, the OML-

AMPDC technique can be utilized as an effective tool for 

malaria parasite diagnosis. As a part of future extension, the 

classification performance of the OML-AMPDC technique 

can be boosted by the use of image segmentation approaches. 
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NOMENCLATURE 

D(k) desired signal 

X(k) observation 

Y(k) 
estimated D(k) and E(k) is used to 

represents error signal 

e(k) estimated error 

d(k) expected signal 

x(k) input signal 

NA standard amount of pixels 

NX amount of pixels from the X dimensional 

NY amount of pixels under the Y dimensional 

NG amount of gray levels 

NNCL standardized clip limit among zero and one 

NCL indicates the clip limits 

Hi height of histogram of ith tile 

Ni histogram of ith tile 

L amount of gray levels 

P(x,y) pixel 

NR amount of pixels that redistributed 

R1, R2, R3, R4 four center points 

gc reference pixel 

I(gc) gray‐levels of pixel gc 

gα,n 𝑛𝑡ℎ pixel relation to gc in α direction 

𝐼𝛼
1(𝑔𝑐) 1st order derivatives of gc with α direction 

𝐿𝐷𝑅𝑃𝑃,𝛼
𝑛 .

P, and α represents order of derivative, 

amount of neighboring pixels under the 

pattern, and design direction, 

correspondingly 

T amount of trees 

m 
amount of variables utilized for splitting all 

nodes 

M amount of input variables 

N trained case 

X classifying point 

Z bootstrap instance 

Tk RF tree 

mmin minimal node size 
{𝑇𝑘}1

𝐾 ensemble of trees 

fk(x) class forecast of bth RF tree 

{𝑓𝑘(𝑥)}1
𝐾 majority vote 

pb optimum value of particle 

gb optimum value of population 

d dimension search space 

m number of particle 

z bootstrap instance 

c1, c2 learning factors 

r1, r2 
arbitrary variables uniformly distributed 

from zero and one 

(xi) fitness or classifier error rate 

Greek symbols 

ω inertia weight 

α direction 
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