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Alzheimer's disease (AD) is a serious and progressive neuronal disease that damages brain 

cells, resulting in loss of cognitive function and memory. Early diagnosis is crucial for 

medical intervention to prevent brain damage and preserve daily functioning for longer. In 

this study, a deep learning approach was proposed for early diagnosis of AD from 

electroencephalography (EEG) recordings at resting-state. The dataset contains EEG 

recordings of 24 healthy individuals and 24 Alzheimer's patients. To extract the features 

from the EEG recordings, the power spectral densities of the frequencies between 1-49 Hz 

were calculated using the welch spectral analysis method. Using extracted features, the 

performances of random forest (RF), k-nearest neighbor (kNN), support vector machine 

(SVM), and bidirectional long-short term memory algorithms were compared. In addition, 

under different resting state conditions (open eyes; closed eyes; open eyes and closed eyes), 

the effectiveness of EEG signals was analyzed. As a result of the experiments, the 

bidirectional long-short term memory algorithm had the highest performance. The algorithm 

achieved promising performance with 98.85% accuracy, 0.986 recall, 0.990 precision, 0.990 

specificity, 0.988 f1-score, and 0.977 Matthews correlation coefficient. The combination of 

the welch spectral analysis and the bidirectional long-short term memory deep learning 

approach can be used to accurately and effectively distinguish AD and HC groups from 

resting-state EEG recordings. More accuracy was achieved in this study compared to 

investigations using cutting-edge technology. 
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1. INTRODUCTION

Alzheimer's disease (AD), a neurodegenerative condition 

manifested by cognitive dysfunction and progressive memory 

loss, has serious social, financial, and medical implications. It 

is the most common type of dementia [1]. There are more than 

55 million people with dementia in the world, and according 

to the estimations of the World Health Organization, AD 

contributes to 60-70% of cases [2]. This figure is expected to 

increase to approximately 82 million in 2030 and to 52 million 

in 2050. Besides its prevalence, the economic burden of AD 

management is also quite high. AD patients use significantly 

more medical services each year until their diagnosis [3]. For 

example, the global cost of AD treatment to the healthcare 

system was $305 billion in 2020. Given the growing number 

of people suffering from AD and the costs of care, this 

economic burden is expected to increase by more than $1 

trillion. Moreover, AD is the fifth leading cause of death 

among people over the age of 65 [4]. AD is manifested only 

by simple forgetfulness. As the disease progresses, the patient 

forgets recent events and the disease causes problems in all 

areas of life, including family, educational, social, personal, 

physical and professional [5]. These patients are often 

stigmatized, their human rights are likely to be violated and 

they are likely to be discriminated against. People suffering 

from AD become unable to recognize their family and close 

environment and become in need of care in the last stage. 

Therefore, this disease not only affects people suffering from 

AD, but also has devastating effects for their families, 

caregivers, and society in general [6]. Early detection of AD is 

critical in predicting prognosis, managing disease or 

optimizing medical intervention, and delayed diagnosis can 

cause permanent damage to the body. 

In most cases, it is too late to confirm because it is unclear 

what causes AD. Early diagnosis is at least a better strategy to 

prevent disease or rapid deterioration, even if timely treatment 

won't have much of an impact [7]. The first step in treating 

diseases is to make an accurate diagnosis. Diagnosis of AD is 

based on qualitative interviews and assessment of behavior, 

including psychiatric history and present symptoms. These 

observations can be subjective, imprecise, and incomplete [8, 

9]. In addition, traditional techniques for diagnosing AD are 

costly and tedious [10]. Insidious onset, increasing memory 

impairment, and other cognitive functions are all necessary for 

the diagnosis of AD. However, in the early stages of the 

disease, there aren't any noticeable symptoms. A significant 

challenge for clinicians and researchers is the early diagnosis 

of AD [11]. To overcome these limitations, EEG recordings 

are an effective candidate to support the diagnosis of AD [12]. 

AD-related neurodegeneration causes changes in neural and 

synaptic activity. The information content of the EEG 

recordings can reflect these changes. Therefore, EEG 

recordings offer useful information about changes in 

electrophysiological brain dynamics, and it can be used to 

diagnose AD [13]. Among modern neuroimaging techniques, 

EEG has advantages such as inexpensive, non-invasive, 
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portability, relative simplicity, less recording [1]. Because of 

these advantages, automated methods based on EEG signal 

analysis combined with deep learning and machine learning 

have become an important research topic to support clinicians 

in the difficult process of early AD diagnosis [14]. Reduced 

complexity in EEG signals has been described as a hallmark 

of AD progression. This is thought to be connected to neuronal 

loss and potential connection brought on by the pathological 

aging process [1]. Therefore, it plays an important role in 

medical intervention that aim to lessen brain damage and 

prolong daily functioning. Early diagnosis of AD from EEG 

recordings provides an opportunity for early treatment. 

Therefore, it is particularly promising. 

There are limited studies investigating the connection 

between EEG recordings and AD diagnosis. During the 

resting-state, EEG slowing in general has been noticed in 

various studies. Visually, this slowing can be seen as a 

reduction in the speed of the dominant basic rhythm or as an 

amplification of the spectrally slower rhythms at the expense 

of the faster ones [15]. Bi and Wang [7] proposed a 

multitasking learning framework for the purpose of making an 

early diagnosis of AD. They used Boltzmann Machine with 

hybrid feature maps model. This framework for multi-task 

learning aims to accurately classify an EEG spectral image 

into one of three classes (AD, MCI: mild cognitive impairment, 

and HC: healthy controls). The EEG dataset contains EEG 

spectral images recorded from 4 HC, 4 MCI and 4 AD at 

resting-state with closed eyes. The model, which used Fast 

Fourier Transform (FFT) and Deep Boltzmann Machine 

achieved 95.04% success [7]. Amini et al. used the time-

dependent power spectrum descriptor and CNN approach in 

the task of classifying AD, MCI and HC groups and achieved 

an accuracy of 82.3% [16]. Similarly, Ruiz-Gómez et al. 

classified AD, MCI and HC groups. Spectral analyzes, non-

linear analyzes and Multi-Layer Perceptron approach were 

used and 78.43% accuracy was achieved [17]. Bairagi focused 

on wavelet and spectral features for Alzheimer diagnosis using 

EEG recordings in early stage diagnosis. SVM and kNN 

classifiers were used to distinguish between AD and HC 

groups. In their study, they obtained the highest classification 

performance as 94% by classifying the spectral-based features 

with the SVM algorithm [18]. The limited number of related 

studies reveals that studies on the classification of AD and HC 

groups should be repeated and their results compared. 

Considering that early diagnosis can slow down the 

progression of the disease, an objective, timely, and effective 

diagnosis of AD is critical. Therefore, there is a need to 

develop easy and applicable methods and enhance 

performance.  

In the paper, we proposed a deep learning model for EEG-

based diagnosis of AD. This study was one of the rare attempts 

to compare the effectiveness of EEG signals under different 

resting state conditions (open eyes; closed eyes; open eyes and 

closed eyes). Welch spectral analysis and Bi-LSTM approach 

framework for classification of AD was presented for the first 

time. Reducing the prediction bias by using welch spectral 

analysis, and providing higher performance compared to 

known related studies are the advantages of the proposed deep 

learning model. The main contributions of the study can be 

summarized as follows: 

a) An automatic deep learning model, which efficiently 

combines welch spectral analysis method and the BiLSTM 

deep learning classifier, was used for early diagnosing of AD 

from resting-state EEG recordings.  

b) The welch spectral analysis method reduced the 

prediction bias, because of the average of the periodograms 

reduces the variance of all data compared to a single 

periodogram estimate. In addition, it had advantages such as 

less processing load, smoother spectrum, no assumptions 

about the input data, being applicable to all kinds of signals 

and providing high performance.  

c) The best classification performance was determined by 

comparing the deep learning and machine learning approaches. 

Also, the effectiveness of EEG signals was compared at 

different resting-state conditions. 

d) Early, accurate and effective diagnosis of AD offers 

opportunities for early intervention. 

This paper is organized as follows: Section 2 includes 

material and methods, in which the main theoretical 

background of the proposed method is introduced. The 

experimental results are given and performance evaluations 

discussed in Section 3. Finally, a brief conclusion is presented 

in Section 4. 

 

 

2. MATERIAL AND METHODS 

 

2.1 Proposed model 
 

In this study, a deep learning approach was proposed for 

early diagnosis of AD from EEG recordings at resting-state. 

The implementation steps of the proposed model are given in 

Figure 1: 

 

 
 

Figure 1. Implementation steps of the proposed model 

 

The proposed deep learning model includes the following 

implementation steps: i) In the first stage, the segmentation 

process was performed on the raw EEG recordings. EEG 

recordings were divided into two 4-second segments, ii) In the 

second stage, the power spectral density (PSD) values of the 

frequencies between 1-49 hertz of the EEG recordings were 

calculated using the welch spectral analysis method, and 49 

features were extracted, iii) Then, the EEG dataset was divided 

into test dataset and training dataset to evaluate the 

classification performance using the holdout method, iv) 

Finally, the performances of deep learning and machine 

learning approaches were compared for EEG-based AD 

classification. 

 

2.2 Dataset 
 

The Alzheimer's EEG dataset, which was publicly available 

and newly presented, was used in the study. The dataset 

consists of EEG signals by Florida State University 

researchers from 48 subjects, 24 AD patients and 24 HC. EEG 

recordings were performed in two resting conditions: open 

eyes and closed eyes. EEG signals were recorded in groups A 
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and C with their eyes open, and groups B and D with their eyes 

closed. Groups A and B contain 24 HC subjects, who do not 

have any neurological disorder. Groups C and D each contain 

24 AD patients, diagnosed according to the “National Institute 

of Neurological and Communicative Disorders and Stroke and 

the Alzheimer's Disease and Related Disorders Association”, 

and “Diagnostic and Statistical Manual of Mental Disorders” 

criteria [19]. Dataset characteristics are given in Table 1. 

 

Table 1. Dataset characteristics 

 
Groups Number Resting-state Labels Duration 

A 12 open eyes  HC  8 seconds 

B 12 closed eyes HC 8 seconds 

C 12 open eyes AD 8 seconds 

D 12 closed eyes AD 8 seconds 

 

EEG signals were recorded using 19 electrodes: Fp1, Fp2, 

Fz, F3, F4, F7, F8, Cz, C3, C4, T3, T4, Pz, P3, P4, T5, T6, O1, 

and O2.  EEG recordings were performed in four groups (A, 

B, C, and D) under the resting-state using Biologic Systems 

Brain Atlas III Plus workstation labelled in accordance with 

an international 10–20 system at 128 Hz sampling rate, 8 

seconds duration [19]. Figure 2 shows the 10-20 electrode 

layout. 

 

 
 

Figure 2. Electrodes positioning for the international 10-20 

system 

 

2.3 Signal processing 

 

In the signal processing stage, segmentation and feature 

extraction were performed. The dataset consisted of 8-seconds 

EEG recordings. In the segmentation stage, the EEG signals 

were divided into two 4-second segments to increase the 

number of data. Welch spectral analysis method was used in 

the feature extraction stage.  

Feature extraction is a derived sub-attribute set that fully 

and accurately describes the original dataset [20]. Feature 

extraction effectively reduces the amount of data that needs to 

be processed, facilitates subsequent learning and 

generalization steps, improves classification performance, and 

reduces processing complexity. In this study, the PSD values 

of the EEG signals' frequencies between 1-49 Hz were 

calculated using the welch spectral analysis method. The 

mathematical foundations of the method are presented in 2.3.1. 

 

2.3.1 Estimation of PSD values with the welch method 

Spectral analysis methods are applied to determine the PSD 

values of signals and to interpret their properties. A signal's 

power distribution over a frequency range is described by the 

PSD, of which the periodogram is the most basic form [21]. 

The welch spectral analysis method is an improved version of 

the periodogram. In the welch method, the data is first divided 

into overlapping segments. Then, the specified windows are 

added to each segments. Fast Fourier Transform (FFT) is 

applied to windowed segments and the periodogram of each 

windowed segment is computed. Finally, all periodograms are 

averaged to obtain the PSD values [22]. The average of the 

periodograms reduces the variance of all data relative to a 

single periodogram estimation [23]. It is calculated as in Eq. 

(1) [24]: 

 

𝐼𝑥𝑥
𝑊 (ω) =

1

𝑃
 ∑ 𝐼𝑥𝑥

𝑝 (ω)

𝑝−1

𝑝=0

 (1) 

 

where, P is the total number of windowed segments, 𝐼𝑥𝑥
𝑝 (ω) is 

the calculated periodogram for each windowed segment, and 

𝐼𝑥𝑥
𝑊 (ω) is the average of the periodograms in Eq. (1). Welch 

spectral analysis method is very popular because of the 

advantages of having less variance than other methods, 

bringing less processing load, creating a softer spectrum, 

making no assumptions about the input data, being applicable 

to all kinds of signals and providing high performance. 

 

2.4 Training and test datasets 

 

Using the holdout method, the EEG dataset was split into 

two groups: test dataset and training dataset. The training 

dataset was used to train the suggested model, and the test data 

was used to assess the model's performance. Three different 

experiments were carried out in the study. In all three 

experiments, EEG signals from 19 electrodes were divided 

into two segments at four-second intervals. 

a) In Experiment 1, EEG signals from groups A and C 

recorded at resting-state with open eyes, were used. The total 

number of datasets in Experiment 1 was 912 (24 subject x 19 

channel x 2 segment). 

b) In Experiment 2, EEG signals from groups B and D 

recorded at resting-state with closed eyes, were used. The total 

number of datasets in Experiment 2 was 912 (24 subject x 19 

channel x 2 segment). 

c) In Experiment 3, EEG signals from groups A, B, C and 

D recorded at resting-state with open eyes and at resting-state 

with closed eyes, were used. The total number of datasets in 

Experiment 3 was 1824 (48 subject x 19 channel x 2 segment). 

 

Table 2. The distribution of training and test datasets 

 

Experiments Dataset Labels 
Distribution 

of datasets 

Number 

of datasets 

Experiment 1 

Training 
AD 313 

608 
HC 295 

Test 
AD 154 

304 
HC 150 

Experiment 2 

Training 
AD 302 

608 
HC 306 

Test 
AD 138 

304 
HC 166 

Experiment 3 

Training 
AD 601 

1216 
HC 615 

Test 
AD 301 

608 
HC 307 
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In each experiment, 2/3 of the dataset was allocated as the 

training dataset and 1/3 of the dataset was allocated as the test 

dataset. Table 2 lists the distribution of the training and test 

datasets for each experiment. 

The success of the model was checked by using deep 

learning and machine learning algorithms with 1/3 of the 

dataset. 

 

2.5 Classification algorithms 

 

The performances of BiLSTM, SVM, RF, and kNN 

algorithms were compared by using feature vectors extracted 

with calculating the PSD values. The BiLSTM algorithm 

provided the best performance. Therefore, the BiLSTM 

algorithm was introduced in 2.5.1. 

 

2.5.1 BiLSTM deep learning algorithm 

BiLSTM deep learning networks are extensions of the Long 

Short Term Memory (LSTM) networks [25]. LSTM training 

involves computing the output value of the LSTM unit in 

accordance with forward propagation, the LSTM unit's error 

value in accordance with back propagation, and the weight 

gradient in accordance with the error value. The optimization 

algorithm is used to carry out the gradient descent, and real-

time recursive weight updates are made [26]. However, while 

the LSTM can only learn the information of the one-way 

sequence, the BiLSTM evaluates forward and backward 

computations simultaneously. Therefore, processing 

information in both directions provides an advantage in EEG 

signal processing. 

The LSTM has an input xt which can be the input sequence 

directly. ht-1 and ct-1 are the inputs from the previous time-step 

LSTM. ot is the output of the LSTM for this time-step. The 

LSTM also generates the ct and ht for the consumption of the 

next time-step LSTM. The LSTM cell are calculated as 

follows [27]: 

 

𝑓𝑡 = 𝜎(𝑤𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 (2) 

 

𝑖𝑡 = 𝜎(𝑤𝑖 .  [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖 (3) 

 

𝑜𝑡 = 𝜎(𝑤𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜 (4) 

 

C ̃𝑡 = tanh(𝑤𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (5) 

 

𝐶𝑡 = 𝜎(𝑓𝑡 . 𝐶𝑡−1 + 𝑖𝑡 . C ̃𝑡) (6) 

 

ℎ𝑡 = tanh(𝐶𝑡) . 𝑜𝑡 (7) 

 

𝑦𝑡 = ℎ𝑡 (8) 

 

In the equations, ft is forget gate, it is input gate, ot is output 

gate, ct is cell state, and ht is hidden state. The term b denotes 

the bias vector and the w denotes the self-updating weights of 

the hidden layer. The tanh (.) and σ(.) are hyperbolic tangent 

function and sigmoid respectively. The LSTM block and the 

BiLSTM block are given in Figure 3. 

The BiLSTM architecture consists of forward and backward 

LSTM where data can be processed in forward and reverse 

directions. Therefore, BiLSTM better captures the hidden 

features and pattern of data ignored by LSTM [28]. In 

experiments, the model evaluation criteria were used to 

compare the performances of classification algorithms. 

 
a                                        b 

 

Figure 3. a. LSTM block; b. BiLSTM block 

 

2.6 Evaluating model performance 

 

Model performance evaluation metrics are recall, precision, 

specificity, Matthews correlation coefficient (MCC), f1-score, 

and accuracy. These metrics are calculated with the parameters 

True Positive (TP), True Negative (TN), False Negative (FN), 

and False Positive (FP) in the confusion matrix. The formulas 

of model performance metrics are given below [29, 30]: 
 

Recall=TP (TP+FN)⁄  (9) 
 

Precision=TP (TP+FP)⁄  (10) 

 

Specificity=TN (TN+FP) ⁄  (11) 

 

F1-score =2x Recall x Precision/(Recall+Precision) (12) 
 

MCC=
TP x TN – FN x FP

√(TN + FN) x (FP+TP) x (TN+FP) x (FN+TP)
 (13) 

 

Accuracy=(TP+TN) (TP+FN+TN+FP)⁄  (14) 

 

 

3. RESULTS AND DISCUSSION 

 

This study compared the performances of deep learning and 

machine learning approaches for classifying AD using EEG 

signals, and it was also investigated whether there was a 

significant difference in EEG signals between open eyes and 

closed eyes at resting-state. The raw 4-second EEG signals of 

AD and HC groups from the Fp1 channel at resting-state with 

open eyes and closed eyes are given in Figure 4. 

The raw EEG signals from other channels have similar 

characteristics. When plots of the raw EEG signals were 

examined, EEG signals between HC and AD groups were 

different. The EEG signals of AD group was lower than HC 

group. In addition, EEG signals recorded at resting-states with 

open eyes and closed eyes were also different from each other. 

In the study, three different experiments were conducted: a) 

EEG signals recorded from 48 subjects at resting-state with 

open eyes and closed eyes, were used b) EEG signals recorded 

from 24 subjects at resting-state with their open eyes, were 

used, and c) EEG signals recorded from 24 subjects at resting-

state with their closed eyes were used. In all experiments, the 

k value of the kNN algorithm was chosen as 5 and the 

"KernelFunction" value of the SVM algorithm was chosen as 

"rbf". BiLSTM hyper-parameters were used as "MaxEpochs" 

value 3000, "InitialLearnRate" value 0.001, "MiniBatchSize" 

value 384, "SequenceLength" value1000, 

"GradientThreshold" value 1, and “optimization method” 

value Adam, respectively. The confusion matrix parameters of 

the experiments are given in Table 3. 
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a                                             b 

 

Figure 4. a. Raw EEG signal – open eyes; b. Raw EEG signal – closed eyes 

 

In all experiments, the BiLSTM deep learning algorithm has 

the highest number of correctly classified data. When the 

confusion matrix of the BiLSTM algorithm was examined, the 

total number of correctly classified samples (TP+TN) in 

Experiment 1 was 296, the total number of correctly classified 

samples in Experiment 2 was 293, and the total number of 

correctly classified samples in Experiment 3 was 601. 

Experiment 3 results, in which EEG signals from 48 subjects 

at resting-state with open eyes and closed eyes were used, had 

the highest number of correctly classified samples. In the 

confusion matrix parameters of Experiment 3, TP was 298, FP 

was 3, FN was 4, and TN was 303. The performance of deep 

learning and machine learning algorithms evaluated using the 

recall, specificity, precision, f1-score, MCC and accuracy 

values. These values were calculated from the confusion 

matrix parameters. The performance results of deep learning 

and machine learning algorithms are given in Table 4. 

When the results of the experiments in Table 4 are examined, 

the BiLSTM algorithm had the highest performance in all 

experiments. The performance of the BiLSTM deep learning 

algorithm was followed by RF (95.39%), kNN (93.09%), and 

SVM (87.50%) algorithms in in all experiments, respectively. 

The accuracy values of the BiLSTM algorithm were 97.37% 

in Experiment 1 (open eyes), 97.70% in Experiment 2 (closed 

eyes) and 98.85% in Experiment 3 (open eyes, closed eyes). In 

the data analysis, deep learning algorithms generally achieve 

higher performance compared to machine learning algorithms. 

Machine learning algorithms (RF, kNN, or SVM etc.) are 

insufficient in the analysis of data in case of a large number of 

data. Therefore, one of the main reasons for the success in 

performance analysis was the use of the BiLSTM deep 

learning algorithm. Experiment 1 and Experiment 2 

performance results showed that on this EEG dataset, EEG 

recordings resting-state with closed eyes were more effective 

than EEG recordings resting-state with open eyes. Among the 

experiments, BiLSTM algorithm had the highest performance 

in Experiment 3, where there was a higher number of subjects. 

Performance analysis results of welch spectral analysis and 

BiLSTM algorithm in Experiment 3 were calculated as 0.986 

recall, 0.990 precision, 0.990 specificity, 0.977 MCC, 0.988 

f1-score, and 98.85% accuracy. If these values of the model 

performance criteria are close to 1, it indicates that there is no 

random success of the model. While evaluating the 

performance of the model, the other model evaluation criteria, 

especially the f1-score should be examined as well as accuracy. 

Accuracy is the number of correctly predicted data divided by 

the total number of data. The f1-score is the harmonic mean of 

precision and sensitivity. If the distribution between groups in 

the data set is not balanced, only the examination of accuracy 

may not give reliable results, f1-score gives accurate results 

even if the distribution between groups is not balanced. 

Therefore, it is more appropriate to examine the f1-measure as 

well as accuracy in the analysis of models. When Table 4 is 

examined, besides the high accuracy of the classification 

algorithms, the f1-scores were close to 1. In Figure 5, the 

accuracy values of the deep learning and machine learning 

algorithms in the experiments are given. 

In all experiments, BiLSTM deep learning algorithm 

achieved higher success than machine learning algorithms. 

The fact that deep learning models achieve higher success than 

machine learning models is an expected result, especially in 

the analysis of non-linear and non-stationary signals such as 

EEG recordings where the number of data is sufficient. 

Comparative analysis of the results of the proposed model and 

related studies in the literature including EEG-based 

Alzheimer's diagnosis are given in Table 5. 
 

Table 3. Confusion matrix parameters 
 

Experiments Labels 
SVM  RF  KNN  BiLSTM  

AD HC TP+TN AD HC TP+TN AD HC TP+TN AD HC TP+TN 

Experiment 1 
AD 150 4 

266 
143 11 

290 
150 4 

283 
149 5 

296 
HC 34 116 3 147 17 133 3 147 

Experiment 2 
AD 88 50 

249 
129 9 

293 
135 3 

271 
136 2 

297 
HC 5 161 2 164 30 136 5 161 

Experiment 3 
AD 294 7 

548 
288 13 

590 
261 40 

561 
298 3 

601 
HC 53 254 5 302 7 300 4 303 
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Table 4. Performance results of machine learning and deep learning algorithms 
 

Experiments Algorithms Labels Recall Precision Specificity F1- score MCC Accuracy 

Experiment 1 

SVM AD 0.815 0.974 0.966 0.887 0.764 87.50% 

RF HC 0.979 0.928 0.930 0.953 0.909 95.39% 

kNN AD 0.898 0.974 0.970 0.934 0.864 93.09% 

BiLSTM HC 0.980 0.967 0.967 0.973 0.947 97.37% 

Experiment 2 

SVM AD 0.946 0.637 0.763 0.761 0.656 81.91% 

RF HC 0.984 0.934 0.948 0.959 0.927 96.38% 

kNN AD 0.818 0.978 0.978 0.891 0.797 87.14% 

BiLSTM HC 0.964 0.985 0.987 0.974 0.953 97.70% 

Experiment 3 

SVM AD 0.847 0.976 0.973 0.907 0.812 90.13% 

RF HC 0.982 0.956 0.958 0.969 0.941 97.04% 

kNN AD 0.973 0.867 0.882 0.917 0.850 92.27% 

BiLSTM HC 0.986 0.990 0.990 0.988 0.977 98.85% 

 

Table 5. A comparison of studies on EEG-based Alzheimer's diagnosis 

 

Researchers Signal Processing Dataset 
Best 

Classifier 
Resting-State Accuracy 

Pirrone et al. [10] SSTL 68 (48 AD, 20 HC) DT closed eyes 97% 

Yu et al. [11] PSI 60 (30 AD, 30 HC) N-TSK 
open eyes 94.78% 

closed eyes 97.3% 

Kulkarni and Bairagi [31] Complexity-based features 
100 (50 AD, 50 

HC) 
SVM closed eyes 96% 

Fiscon et al. [32] WT 72 (49 AD, 23 HC) DT closed eyes 83.3% 

Aslan [33] WT 48 (24 AD, 24 HC) kNN 
closed eyes & 

open eyes 
91.12% 

Gómez et al. [34] Bispectral features 36 (17 AD, 19 HC) LR - 86.11% 

The proposed deep learning 

model 
Welch spectral analysis 

24 (12 AD, 12 HC) 
BiLSTM 

open eyes 97.37% 

closed eyes 97.70% 

48 (24 AD, 24 HC) closed eyes & open eyes 98.85% 
SSTL: Finite response filter, shift-to-the-left; PSI: Phase synchronization index; N-TSK: Network-based Takagi-Sugeno-Kang fuzzy classifier; WT: Wavelet 

Transform; DT: Decision Trees; LR: Logistic regression 
 

 
 

Figure 5. Accuracy performance results of classification 

algorithms 

 

The proposed model is discussed with the studies in the 

relevant literature presented in Table 5, according to signal 

preprocessing methods, dataset, resting-state condition, 

classification methods and accuracy values. In this study, a 

deep learning approach was proposed to automatic diagnosis 

of AD from resting-state EEG recordings using welch spectral 

analysis. In the signal preprocessing stage, the features were 

extracted by welch spectral analysis. When we examined the 

relevant literature, methods such as SSTL [10], PSI [11], 

complexity-based features [31], WT [32, 33] and bispectral 

features [34] were used in the signal preprocessing stage. In 

this study, welch spectral analysis was preferred for feature 

extraction. Because of its advantages such as having less bias, 

less processing load, creating a softer spectrum, not making 

any assumptions about the input data, applicability to all kinds 

of signals and providing high performance compared to other 

methods [23]. When the datasets are examined in the relevant 

literature, the datasets used in the studies are private datasets 

[31-32], except for the Aslan [33] study. The dataset used in 

this study is an accessible and public dataset. The use of the 

public version reduces bias and increases transparency and 

accountability. Public datasets are important in terms of 

producing innovative solutions, creating new models, 

increasing the quality of data and creating a basis for uses in 

the data field. Aslan used the same public dataset and using the 

WT and kNN algorithm, it achieved 91.12% accuracy [33]. 

When different resting-state conditions are examined; The 

effectiveness of EEG recordings recorded in the resting-state 

with closed eyes state is higher than in the resting-state with 

open eyes state [11]. Similarly, in this study, the effectiveness 

of EEG recordings recorded in the resting-state with closed 

eyes condition was higher than in the resting-state with open 

eyes condition. However, the highest success (98.85%) was 

achieved by using both the recordings in the eyes-open resting 

state and the recordings recorded in the eyes-closed resting 

state in this study. In Table 4, the algorithms used in the 

relevant literature were DT [10, 32], N-TSK [11], SVM [31], 

kNN [33], and LR [34]. In this study, the performances of 

BiLSTM algorithm and machine learning algorithms were 

compared. In more recent studies, deep learning approach is 

preferred because deep learning algorithms are more 

successful than machine learning algorithms in classification 

tasks [35]. To the best of our knowledge, this study had the 

most success in diagnosing AD. The main reason for this 

success is the use of deep learning approach and welch spectral 

analysis. Because the proposed model was effective in 
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reducing high variance compared to many machine learning 

algorithms such as RF, SVM or kNN, and also provided 

performance increase by reducing bias. 

This study has some limitations. Firstly, the study was 

focused to classify AD and HC groups from EEG signals. A 

multi-classification study can be investigated to determine 

stages of AD from EEG signals. Secondly, EEG signals were 

recorded from 48 subjects, by Florida State University 

researchers. Therefore, the external validity and 

generalizability of the results of the study is limited to 48 

subjects. Despite these limitations, the proposed deep learning 

model offers significant strengths. The strengths of the deep 

learning models were a) providing high performance 

compared to the known related studies in the task of 

classification of EEG-based AD, using the BiLSTM deep 

learning algorithm, b) comparing the effectiveness of EEG 

signals at different resting-states, and c) reducing the 

prediction bias with the welch spectral analysis method. 

 

 

4. CONCLUSIONS 

 

In conclusion, we proposed a deep learning approach for 

early AD diagnosis from resting-state EEG recordings that 

successfully combines the welch spectral analysis method and 

BiLSTM algorithm. Three different experiments were carried 

out in the study. Experiment 1 was performed using EEG 

recordings at resting-state with open eyes. Experiment 2 was 

performed using EEG recordings at resting-state with closed 

eyes. Experiment 3 was performed using both the recordings 

at resting state with open eyes and the recordings at resting 

state with closed eyes. In all experiments, the performances of 

RF, kNN, SVM, and BiLSTM algorithms were compared 

using welch spectral analysis method. The highest 

performance was achieved using the BiLSTM algorithm in 

Experiment 3. The BiLSTM algorithm achieved promising 

performance with 98.85% accuracy, 0.986 recall, 0.990 

precision, 0.990 specificity, 0.988 f1-score, and 0.977 MCC in 

Experiment 3. However, the performance of Experiment 2 was 

higher than that of Experiment 1. The values of the model 

performance evaluation criteria are quite high. These results 

indicate that the model does not have a random performance 

[36]. The accuracy of the diagnosis is greatly influenced by the 

experience and situation of the experts, so the diagnostic 

process is complex and uncertain, subjective. The proposed 

deep learning model can assist expert in the diagnosis of AD. 

Although there is no definitive cure for AD, early diagnosis of 

the disease can slow down the process and improve the quality 

of life. Therefore, early diagnosis of AD offers important 

opportunities for early intervention. Moreover, these experts 

need long-term training. Deep learning models have a great 

capacity to process data automatically. The practical benefits 

of automated methods based on the analysis of EEG signals 

using deep learning are to support experts and decrease the 

workload, and to clarify the diagnostic process. In the future, 

the authors aim to determine which channels are more 

sensitive in the diagnosis of AD and to use the proposed deep 

learning model with a dataset of different races and countries. 

Moreover, these techniques can be applied to different 

biomedical signals. Also, it may be suggested to investigate 

multiple classification tasks including different 

neurodegenerative diseases, such as spinal muscular atrophy, 

Huntington's disease, and amyotrophic lateral sclerosis. 

Multiple classification studies involving different 

neurodegenerative diseases may provide important 

contributions to the relevant literature. 

 

 

AVAILABILITY OF DATA AND MATERIAL 

 

The EEG recordings are publicly accessible datasets: 

Pineda, A. M., Ramos, F. M., Betting, L. E., Campanharo, A. 

S. (2020). Quantile graphs for EEG-based diagnosis of 

Alzheimer’s disease. Plos One, 15(6): e0231169. Data from: 

“https://osf.io/s74qf/”. 
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