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Virtual reality (VR) systems have been used in various industries. Highly effective human-

computer interaction (HCI) and natural HCI experience have become the key indicators for 

evaluating a VR system, where target selection is the key for interaction efficiency and 

experience. In this paper, we propose a moving target selection prediction model, based on 

the probabilistic Fitts's Law and in combination with decision trees, for moving target 

selection in VR systems. Firstly, we verified the feasibility of predicting the user intention 

based on the size and distance of moving targets in VR scenarios through two selection task 

experiments with a sphere as the target. Then, also through two experiments, we proposed 

an improved moving target prediction model by factoring in head posture with target size 

and distance and taking into account the influence of head orientation. Based on the decision 

tree algorithm, we calculated its prediction accuracy and compared it with the distance 

scoring function. The results show that the improved prediction model has significantly 

better accuracy and can accurately predict the user's moving target selection intention in a 

VR system. 
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1. INTRODUCTION

In virtual reality (VR) environments, the user is not 

constrained to sit at a computer. Instead, the user interacts with 

VR environments with 3D input and output, which makes the 

interaction theories of metaphor at 2D graphical user interface 

unable to meet the human-computer interaction (HCI) 

requirements in VR. It requires new HCI methods, input and 

output theoretical models and interaction metaphors. Target 

selection behaviour modelling refers to the experimental 

fitting of existing theoretical models with the help of relevant 

mathematical models, along with HCI and human-computer 

ergonomics data, in order to achieve theoretical modelling of 

user interaction behaviour. 

Target selection tasks are an important modality of HCI in 

VR. One of the main and most common tasks of interactive 

VR systems is target selection for menus, buttons or other 

objects. The most common technique to assist users in target 

selection is ray casting, a virtual pointing technique that allows 

users to select targets beyond their area of reach and requires 

little physical movement. Ray casting has been widely used in 

current mainstream VR systems such as the Oculus Rift and 

the HTC Vive and plays an important role in allowing users to 

perform target selection tasks in VR environments thanks to 

its universal, flexible and effective virtual pointing. 

When building scenarios for target selection in VR 

environments, designers rely heavily on their own subjective 

perceptions to design scenarios, making them unconvincing. It 

is therefore necessary to conduct experimental research on 

HCI and ergonomics in target selection tasks in VR 

environments, and to construct corresponding target selection 

models to provide designers with a rationale for building 

relevant scenarios. There are two types of target selection 

models: static and moving. Static target selection models focus 

on the study (modelling) of interactive interface elements, 

involving design factors such as element size and position. 

Moving target selection models are studied (modelled) for 

moving elements in VR environments. 

2. LITERATURE REVIEW

User goal selection models are dominated by Fitts's Law, a 

behavioural model of human movement and in particular user 

goal selection, which has been widely used in human-

computer engineering and HCI. In 1992, Dr Fitts proposed the 

original version of Fitts's Law inspired by Shannon's Theorem 

17 in informatics [1]. Mckenzie and Buxton [2] proposed that 

Fitts's Law can be used for prediction and measurement. Table 

1 shows the most used versions of Fitts's law and its variants 

until 2003. Goldberg et al. [3] compared the performance of 

models 1, 3 and 4 in Table 1. The results showed that the 

square-root model proposed by Meyer et al. [4] was more 

suitable for fixed W and A targets except the most difficult 

targets (with large A/W). In addition, several studies have 

extended Fitts's Law. Zhang et al. [5] investigated a control 

theory that could be an alternative to Fitts's Law based on an 

improved crossover model. Tang et al. [6] proposed that the 

performance of the previous trial had a predictable effect on 

the next trial when Fitts's Law was used in measuring. 

Bertucco et al. [7] investigated quick pointing action. At the 

level of motor planning, they tested the relationship between 

movement time (MT) and index of difficulty (ID). The results 

showed that due to different moving parts, changes in 

movement distance may lead to changes in the relation 

between MT and ID. Bernhaupt et al. [8] argued that in terms 

of MT, the shortest MT should be considered in addition to the 

average time. Glazebrook et al. [9] showed that thanks to a 
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more efficient online control process, MTs to the last target 

location in an array are shorter than predicted by Fitts's Law. 

Petrič et al. [10] showed that Fitts's Law may not be applicable 

to cyclic impact tasks. 

Table 1. The pre-2003 Fitts models 

No. Year Author Models Model name 

1 1954 Fitts MT=a+blog2(2A/W) Original model 

2 1968 Welford MT=a+blog2(A/W+0.5) \ 

3 1988 Meyer MT=a+b√A/W Square-root model 

4 1992 MacKenzie MT=a+blog2(A/W𝑒+1) We model 

Table 2. Fitts's Law extended models 

No. Year Author Models 
Model 

name 

1 2013 Cha MT=a+bθ
1
+csinθ

2
+dlog

2
(2A/(W+F)) 3D model

2 2018 Murata MT=a+blog
2
(αβ(A/W)+1) 3D model 

Table 2 shows the current extended models of Fitts's Law. 

Cha and Myung [11] proposed a variant of Fitts's Law 

equation (model 1 in Table 2) that can be applied in a 3D 

environment. Based on empirical data, the model fits better 

than previous models for 3D tasks. Murata and Fukunaga [12] 

proposed model 2 in Table 2, focusing on a 3D eye-gaze input 

system, and the results showed that the model fits the 

experimental data well and predicts pointing times for various 

HCI tasks more effectively. The above two models 

demonstrate the feasibility of introducing Fitts's Law into a 3D 

environment. 

Dynamic target selection is a hot topic in the field of HCI 

research, and the extension to virtual reality scenarios is also 

important. However, most of the current researches focus on 

static targets selection [13-16]. In recent years, for the problem 

of moving target selection, some scholars have enhanced 

pointing by extending the alternative targets or setting up more 

easily achievable agents for each target [17]. 

3. FEASIBILITY STUDY ON PREDICTIVE INTENT

MODEL

3.1 Minimum mental effort and Fitts's Law’s ID 

The middle choice between identical objects minimises the 

ID of Fitts's Law, as shown in Eq. (1). Recent research has also 

shown that the objects with the minimum Fitts's Law’s ID 

minimise mental effort. 

log ( 1)2
D

ID
W

= + (1) 

In this paper, the user intention in dynamic target selection 

is predicted according to the influence of mental work on ID 

value. we assume that the ID of the Fitts or another function of 

the size and distance of the target predicts user intent in a 

dynamic target selection task. According to the initial segment 

strategy, when the target tasks are selected in order, ID for the 

first target is a better predictor of user selection intent than the 

sum of ID for the other targets in the task sequence. 

3.2 Validation experiments 

(1) Apparatus and participants

The experiment used Rhino for 3D modelling, UE4

blueprints for the experimental scenes and HTC Vive as the 

input device. Twenty-six volunteers on campus aged between 

23 and 47 were selected to participate in this experiment. 

There were 18 males and 8 females, two of the participants 

were left-handed and the rest were all right-handed. 

(2) Design

The experiment was divided into two sub-experiments, each

presenting a different number of target spheres randomly. In 

each sub-experiment, all spheres appeared 0.3m below the 

participant's head (Pi,y=Ph,y-0.3), 5m away from the participant 

(Pi,z=-5), as shown in Figure 1. 

Figure 1. Spatial position of the participant in relation to the 

sphere 

Sub-experiment 1 

In sub-experiment 1, there was only one experimental 

sphere, shifting with a fixed velocity of 2.5 m/s along the z-

axis, and the experimental variables are the radius of the 

sphere(r1=[0.1,0.2]) and the position of the sphere with respect 

to the participant (left: x-axis -0.5, middle: origin position, 

right: x-axis 0.5). Six experimental spheres were randomly 

combined and show to the participants randomly until five 

rounds were completed for each type of sphere (i.e., 30 trials 

were performed). 

Sub-experiment 2 

Upon completion of sub-experiment one, the number of 

spheres becomes 2, the speed was reduced to 1.5 m/s along the 

z-axis, and the two spheres were separated by 0.5 m. However,

the three positions of the two spheres on the x-axis are (-0.5, -

0.25, 0) and (0, 0.25, 0.5) relative to the participant, as shown

in Figure 2. The experimental variables were the sphere radius

and the position of the sphere pair relative to the participant

(left, centre, right). The experimental conditions (12) were

presented randomly, with 5 experiments per condition, or 60

experiments per person.

(3) Procedure

The experimenter was instructed to stand within the

designated area of the experimental scene and was asked to 

complete all target selection tasks for the experiment. During 

the experiment, a set of virtual balls with different horizontal 

positions and sizes moved in front of the participant and flew 

towards the participant along the z-axis. When the sphere 

approached, the participant was asked to reach out and touch 
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it, rather than holding out his hand and waiting for the ball to 

come. When the sphere was touched by the participant or when 

it passed 0.5m above the experimenter's head in the z-axis, the 

sphere automatically disappeared. An experiment ended when 

all spheres were touched or 0.5m above the experimenter's 

head. In this experiment, auditory and tactile feedback were 

also designed to prompt the participant' s performance. When 

the sphere was touched, the participant would hear a prompt 

tone and the handle of his hand would twitch slightly. 

Figure 2. Spatial position of the experimental spheres 

The task completion time, the head pose (Ph, Qh), the handle 

pose (Pw, Qw), the sphere position, the contact between handle 

and ball were recorded in detail during the experiment. 

(4) Analysis of experimental data

Experiments in which the participant had no contact with

any of the spheres were deleted. The following values were 

calculated from the initial position of the handle, the diameter 

of the ball, and the initial position of the ball. 

The distance between the handle and the sphere is shown in 

Eqns. (2) and (3). 

1 1D P Pw= − (2) 

1 2D P Pw= − (3) 

where, Pw is the initial position of the handle and P1, P2 is the 

initial position of the sphere. 

The task difficulty index between the handle and the sphere 

is shown in Eqns. (4) and (5). 

1log ( 1)1 2
1

D
ID

W
= + (4) 

2log ( 1)2 2
2

D
ID

W
= + (5) 

where, W1, W2 is the diameter of the sphere. 

The inter-sphere distance is shown in Eq. (6). 

2 1D P Psph = − (6) 

The inter-sphere task difficulty index is shown in Eqns. (7) 

and (8). 

log ( 1)1, 2 2
2

Dsph
ID

W
= + (7) 

log ( 1)2, 1 2
1

Dsph
ID

W
= + (8) 

The total task difficulty index is shown in Eqns. (9) and (10). 

1 1, 21
ID ID IDn = + (9) 

2 2, 12
ID ID IDn = + (10) 

The feature sets were evaluated based on the J48 classifier 

in the Weka machine learning suite. The feature sets that need 

to be evaluated are {𝐼𝐷𝑛1
, 𝐼𝐷𝑛2

}, {𝐼𝐷1,2, 𝐼𝐷2,1}, {𝐼𝐷1, 𝐼𝐷2} and

{𝐷1, 𝐷2, 𝑟1, 𝑟2}. The evaluation results were used to predict the

target selection of the sphere. 

The classifier recursively selects decision nodes based on 

yielding the maximum information gain. The value of feature 

(F) is divided by the reduction of entropy (R) on the training

set (T).

( , ) ( ) ( | )I T F R T R T F= − (11) 

1 2 1 2 2 2( ) log logR T p p p p= − − (12) 

( )

( | ) ( )V

v

v Value F

TR T F R T
T

=  (13) 

where, pi is the relative frequency of the sphere i(sphi) in the 

set T and Tv corresponds to the subset obtained by dividing T 

with the value v of the feature F. The advantage of the 

subclassifier is that it is easy to interpret the classification rules 

and select the simplest decision tree from the input attributes. 

In the scope of this study, decision trees can represent and 

analyse the choices of participants solving each task. To avoid 

overfitting the experimental data, a 10-fold cross-validation 

method was used to generate the tree model. 

Finally, the relative frequency of any sphere was calculated 

according to Eq. (14). 

i
i

n
p

N
= (14) 

where, ni is the number of experiments for choosing sphere i 

(sphi) and N is the total number of experiments. This method 

allows the generation of simple single-node decision trees with 

an empty feature set that always predicts the highest-frequency 

sphere. 

Table 3. Assessing the accuracy for each feature set and their 

95% confidence intervals 

 Feature set Tree size 
Tree 

height 
Accuracy 

95% confidence 

level 

1 𝐼𝐷𝑡1
, 𝐼𝐷𝑡2 9 5 70.56% ±2.27% 

2 ID1,2, ID2,1 6 4 71.20% ±2.26% 

3 ID1, ID2 6 4 70.95% ±2.27% 

4 D1, D2, r1, r2 6 4 71.20% ±2.26% 

5 Ø 1 1 63.81% ±2.40% 
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(5) Results

J48 algorithm was used to generate decision trees according

to feature sets 1-4 in Table 3. It was then used to predict the 

selected sphere, with an accuracy of 70.9% and a confidence 

of 95%, which was better than other methods. Statistically, the 

prediction results of all the tested feature sets were close, but 

the tree generated for feature set 1 was more complex than that 

generated for feature sets 2-4 and therefore not practical. And 

there may be overfitting as the five non-leaf nodes had only 

two attributes. 

As can be seen from Table 3, the prediction results of 

feature sets 2 and 4 show great similarity, and they can be 

regarded as equivalent. This is because the only associated 

conditions between the spheres task difficulty index that 

makes up feature set 2 is the sphere diameter, while feature set 

4 consists of the sphere radius and the handle-sphere distance. 

However, further study of the decision tree generated by 

feature set 4 revealed that the J48 algorithm may ignore the 

sphere-handle distance based on the low information gain. 

Therefore, it can be speculated that the radius provided an 

identical information gain for feature sets 2 and 3, since they 

generated decision trees with equivalent configurations and 

produced similar accuracies. 

Figure 3 is the decision tree generated according to feature 

set 4. From the figure, we can see that when sph2 is small, 

participants will prefer sph1; Participants preferred sph2 when 

sph2 was larger or when both spheres had the same radius. 

Figure 3. Decision tree generated by feature set 

The experiment shows that the decision tree method can 

predict user intention effectively. Fitts' ID predicted target 

selection well, but equivalent accuracy seemed to be obtained 

on the basis of sphere’s radius, suggesting that the user had a 

very basic strategy in which distance was not decisive for 

selecting a moving target. Since the moving target was moving, 

the participant may have prepared the starting position of the 

handle before performing the pointing task. 

4. PREDICTIVE INTENT MODEL OPTIMISATION

An improved moving target prediction model is proposed 

based on the use of target size and distance to predict targets, 

considering the problem of head pose.  

Predictions of expected targets were introduced by 

computing relevant features for head and hand targets within 

a time window, which can be generalised to different dynamic 

targets selection tasks, using the Ortega scoring function [18] 

as a benchmark to evaluate the accuracy of feature prediction. 

(1) Apparatus and participants

The apparatus and participants are the same as in the

previous section. 

(2) Design

In each sub-experiment, the experimental sphere appeared

5m in front of the participant, 0.3m below the initial head pose 

of the participant. 

Sub-experiment 1 

In sub-experiment 1, there was only one experimental 

sphere in the experimental scenario and the experimental 

variables were the radius of the sphere and the sphere position 

(left: x-axis -0.5, middle: origin position, right: x-axis 0.5). 

Five trials were conducted for each of the six scenarios (30 

trials in total). The aim of sub-experiment 1 was to familiarise 

participants with the experimental and to acquire the dynamic 

target task. 

Sub-experiment 2 

In sub-experiment 2, there are two spheres in each trial (sph1, 

sph2), the experimental variable is the radius of the spheres, 

and the relative positions of the spheres shown in Figure 2. In 

each trial, the two spheres move simultaneously at a constant 

speed of 1.5m/s for 5 trials for each of the 12 scenarios (60 

trials in total). 

(3) Procedure

During the experiment, each participant was asked to stand

in a designated circle in the experimental scene, facing the 

experimental wall, and complete relevant target selection tasks. 

In the course of the experiment, a horizontal set of spheres 

appeared in front of the participant and began to move in the 

positive direction of their z-axis. Each sphere has the same 

texture and colour and was scaled according to the sphere's 

radius. 

The participant had to reach out and select the target, but not 

to step out of the designated circle. Each target automatically 

disappeared when hit by the participant or when it got 0.5m 

past the participant's head on the z-axis. Once all the spheres 

disappeared, the trial was over. Auditory and tactile feedback 

is used to assist the participant in the selection process. Only 

when a sphere was hit, a sound would be played in the 

experimental scene and the handle would twitch slightly. 

During each experiment, the task completion time, the head 

pose, the handle pose, the target sphere position and the 

collisions that occurred between the handle and the sphere are 

recorded in an application log. 

(4) Analysis of experimental data

Based on each completed experiment, an inter-participant

analysis was performed. Trials where the participant didn’t hit 

a sphere were discarded. We calculated the relationship 

between the position of the sphere and the participant's head 

pose and handle pose. We also calculated the average of these 

measurements over a time window to assess the target sphere 

predicted by the different feature sets. 

a. Positioning relative to the participant's head

The head vector (�⃗� )  is calculated from the participant's

head orientation (Qh). Considering that the corresponding head 

vector is (0, 0, -1) if the participant has not turned his/her head, 

the unit vector −�̂� needs to be rotated in the direction of the 

head to calculate �⃗� . 

ˆ( , )hT rot m Q= − (15) 

Then calculate the position of the sphere in the head pose 

(Ph, Qh) 
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ih i hP P P= − (16) 

The dot product between the normalized vectors is 

calculated as follows. 

ˆ ˆ
i ihdot T P=  (17) 

The dot product is a normalized scalar that is easy to 

interpret, and the closer it is to 1, the more aligned the user's 

head orientation is with the sphere. The dot product difference 

is calculated as follows. 

1 2dot dot dot = − (18) 

This quantity is used to evaluate the position of the user's 

head relative to the two spheres. The closer its value is to 1, 

the more aligned the user's head is with sph1. The closer its 

value is to -1, the closer the user's head is to sph2. 0 indicates 

that the user's head is in the middle of the two spheres. Finally, 

we calculated the handle-sphere distance Di and the distance 

difference ΔD. 

i w iD P P= − (19) 

1 2D D D = − (20) 

Similar to the dot product difference, the distance difference 

is used to assess the position of the user's handle with respect 

to the sphere: Greater than 0, the larger it is, the farther the 

handle is from sph1; Less than 0, the smaller it is, the farther 

the handle is from sph2; A value equal to 0 means that the 

handle is equidistant from both spheres. 

b. Distance score

To verify the validity of the proposed features, their

prediction accuracy was compared with the distance scoring 

function proposed by Ortega et al. [18] According to his 

method, all the targets are in an ordered list of increasing 

distance values, with the order denoted by j. The score of each 

N closest targets are increased as follows. 

(t)= (t-1)+(N-j) t;  (j<N)j jdS dS  (21) 

All the other targets will have their scores decreasing. 

(t)= (t-1)-(0.9N) t;  (j N)j jdS dS   (22) 

(t) 0jdS  (23) 

Since there are two spheres in the experimental environment, 

hence N=1. This only requires increasing the fraction closest 

to the target. The decay rate in equation 22(0.9N) is much 

higher than in the Ortega formula (0.5N). This is because the 

selection task requires a large amount of time to wait for the 

target to appear, so the great majority selection behaviour 

occurs at the end of the experiment. 

c. Choice of time window

Since the data are not completely consistent for each

movement, Δdot and ΔD are averaged over a time window 

rather than using discrete values. As the analysis is performed 

post-hoc, ideally the time window should start before the start 

of the arrival movement, with the user then specifying their 

intention and movement, and then end before reaching the 

target. Within the scope of this study, a graphical analysis of 

the point graph was carried out as time passed to heuristically 

determine the appropriate window. 

The value of Δdot gradually approaches 0 from the initial 

non-zero, between 0 and 1, indicating that they were choosing 

between two spheres; after 1 second Δdot started to diverge 

here, indicating that the participant's head was facing one of 

the spheres. The user's choices between two spheres clustered 

above and below 0. Based on this, 1.5s was chosen as the end 

time of the window. These times corresponded to 42.5% and 

63.8% of the 5th percentile of selection times (2.35s). 

Within this time window, the average dot product difference 

𝛥𝑑𝑜𝑡  and the average handle-sphere distance 𝛥𝐷  were 

calculated. The scoring function was also run through the time 

window. Depending on the final score, each target i is marked 

as 0 or 1. 

(5) Results

Single and combined feature sets were estimated to predict

the probability that the participant would choose the first 

sphere. The J48 classifier was used to evaluate the feature set 

because it can select the simplest decision tree based on the 

input attributes to generate easily interpretable rules. The 

performance of this research model can be simply assessed by 

calculating the prediction accuracy. Table 4 shows that both 

single and combined feature sets outperformed both chance 

and frequency predictions. The 95% confidence intervals for 

the accuracy of the two classifiers were: 

( )

( )1 1

1 2 95

2 2

1

(1 )

pre pre

numExp
pre pre z

pre pre

numExp

−

− 
−

+

(24) 

Although the model generated using the feature 𝛥𝑑𝑜𝑡 didn’t 

significantly outperform the model generated using 𝛥𝐷, the 

latter was not practical as it generated a more complex tree 

with lower average accuracy and over-fitted data. In contrast, 

the prediction accuracy of the feature set combined with 𝛥𝑑𝑜𝑡 

and 𝛥𝐷  was higher than that of features 𝛥𝐷  alone, and the 

resulting tree is shown in Figure 4. 

Figure 4. Decision tree generated by {𝛥𝑑𝑜𝑡, 𝛥𝐷} feature set 
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Table 4. Number of nodes, layers, precision and 95% 

confidence intervals for the trees formed by each feature set 

Feature set 
Number of 

nodes 

Number of 

layers 
Precision 

95% confidence 

interval 

The scoring 

classifier 
1 1 67.59% [64.87%,70.30%] 

𝛥𝑑𝑜𝑡 4 3 70.09% [67.82%,72.36%] 

𝛥𝐷 6 4 68.42% [66.21%,70.62%] 

𝛥𝑑𝑜𝑡, 𝛥𝐷 10 5 70.58% [68.26%,72.89%] 

Table 5. Number of nodes, layers, precision for evaluating 

trees based on the target feature set 

Feature set Number 

of nodes 

Number 

of layers 

 Precision 95% confidence 

interval 

r1, r2 5 3 71.59% [69.06%,74.12%] 

𝛥𝑑𝑜𝑡, 𝑟1, 𝑟2
8 5 74.10% [72.02%,76.17%] 

𝛥𝐷, 𝑟1, 𝑟2
26 12 75.02% [72.92%,77.12%] 

𝛥𝑑𝑜𝑡, 𝛥𝐷, 𝑟1, 𝑟2
20 12 78.55% [76.13%,80.96%] 

The time window limit may change depending on the task, 

but the expected target is fixed, which is much better than 

considering the entire target's motion trajectory. 

Finally, using a single head-target relative parameter, such 

as 𝛥𝑑𝑜𝑡, and a single handle-target relative parameter, such as 

𝛥𝐷, may be of no or little use in tasks where the number of 

targets is large and their locations vary.  

Tables 5 shows that the feature set of combination 𝛥𝑑𝑜𝑡, 

𝛥𝐷, and r1, r2 obtained the best prediction result, exceeding 

the average precision of the reference standard {r1, r2} by 

almost 7%, but the resulting tree is too large for this study. 

Table 5 also shows that feature set {𝛥𝐷, 𝑟1, 𝑟2}  produces

higher accuracy than {𝛥𝑑𝑜𝑡, 𝑟1, 𝑟2}  and {r1, r2}. The high

accuracy of the feature set of combination 𝛥𝐷  and r1, r2 

indicates that in the simple task of dynamic target prediction, 

the function of the size and distance of the sphere target can 

predict the chosen sphere well. 

By integrating 𝛥𝐷 , it shows a significant increase in 

information gain, reflecting the correlation between handle 

and target poses. However, this only occurs after a certain task 

preparation time. 

(6) Experimental findings

Experimental results show that integrating head-target

feature set 𝛥𝑑𝑜𝑡  and handled-target feature set 𝛥𝐷  can 

effectively predict user intention in dynamic target selection 

task. These features were calculated in about 67% of the 

selection time, which was better than the reference standard 

prediction. In addition, the combined features of 𝛥𝑑𝑜𝑡 and 𝛥𝐷 

obtained higher accuracy than the separate features 𝛥𝐷. 

5. CONCLUSIONS

This paper investigates the selection of moving targets in a 

VR environment and constructs predictions of user intent for 

moving target acquisition in a VR scenario by combining the 

characteristics of moving targets with decision trees. Based on 

two sub-experiments with sphere as the target, we investigated 

the feasibility of predicting user intention based on the size and 

distance of the moving target in a VR scenario. Then, 

considering the influence of head orientation, an improved 

model for moving target prediction is proposed by the same 

two sub-experiments, and its prediction accuracy is calculated 

and compared based on the decision tree algorithm. 
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