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 Due to security concerns, the necessity for authentication and identity techniques has 

increased in the modern world. A novel Accurate and Automated Fingerprint Biometric 

Authentication Model (AAFBAM) is introduced. The operation of the suggested AAFBAM 

is divided into two parts: (a) enrollment and (b) verification. During the enrollment phase, 

the database is prepared, and the input fingerprint is authenticated during the identification 

phase. The enrollment phase includes the data acquisition stage, preprocessing feature 

extraction stage, and minutiae point detection phase. The minutiae point detection is 

performed using the MISHO-based Optimized Deep Neural Network (MISHO-DNN) 

classifier. The weight function of DNN is tuned optimally using the proposed Memory 

Integrated Spotted Hyena Optimization (MISHO) algorithm to enhance its detection 

accuracy. The Verification Phase includes the preprocessing, feature extraction stage, 

minutiae point detection with MISHO-DNN, minutia matching, and minutiae score 

evaluation. Here, the minutiae score is obtained by matching minutiae from both phases and 

is compared with the threshold value. When the minutiae score exceeds the threshold, the 

user is identified as the genuine user, and their request is accepted. Otherwise, the user is 

recognized as an unauthenticated user, and their request is rejected. Finally, a comparative 

evaluation is conducted to validate the efficiency of the projected model. 
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1. INTRODUCTION 

 

The rapid advancement of information technology has aided 

not only the expansion of businesses but has also been used to 

dismantle those same enterprises in terms of information 

leakage. The organization also must ensure the data's integrity. 

There are a variety of authentication methods accessible, each 

with its own set of benefits. Fingerprints are biometrics that 

does not alter with aging or other factors. The other 

characteristics of biometrics are prone to alter as a result of the 

age factor and other factors. As a result, fingerprint 

authentication may be done quickly and efficiently [1, 2]. 

Preprocessing, feature extraction, and classification 

procedures make up a fingerprint recognition system. The 

system should be built to prevent limits on fingerprint location, 

matching rate, and accuracy, all of which might be crucial 

sources for identifying people. Preprocessing is a technique for 

enhancing images to obtain high-quality images [3, 4]. The 

image was enhanced using techniques, such as normalization, 

image orientation, and Gabor filtering. The noise in the image 

is filtered using histogram equalization [5]. Prasad et al. [6] 

suggests the wavelet transform as a suitable improvement 

approach without providing any proof or comparable 

outcomes. Galton points, also known as minutiae, have been 

utilized to identify and classify fingerprints [7]. Despite the 

Euclidean distance classification, normalization, and Gabor 

filter performance [8] only delivered 89.6% efficiency due to 

a poor preprocessing strategy. One of the finest methodologies 

for classification that is recommended is Euclidean distance. 

The minutiae points and Euclidean distance categorization 

produce a high level of accuracy. For Euclidean distance 

classification, the extraction of minutiae is critical. In the chain 

coding approach, image quality is important for binary images 

[9]. When compared to pattern-based matching, minutiae-

based matching is determined to be superior because just the 

relative location is required. Pattern-based matching, on the 

other hand, collects the fingerprint's overall features [10]. As 

a result, minutiae-based matching [11] is concerned with high 

precision. Furthermore, as compared to deterministic and 

probabilistic-based fusions, the employment of evolutionary-

based fusion in multi-biometric systems is a promising state-

of-the-art strategy that has demonstrated its capacity to 

improve performance accuracy [12]. Swarm Intelligence (SI) 

based hybrid meta-heuristic algorithm [13] has been used to 

resolve the issue of low accuracy by optimizing weights 

associated with hand-based modalities.
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1.1 Challenges 

➢ To achieve higher recognition performance, a multimodal

biometrics recognition strategy was proposed by Basha et

al. [14] using local fusion visual features and a variation

Bayesian extreme learning machine. However, the rate of

recognition was insufficient.

➢ A joint scarcity-based feature level fusion approach was

developed to improve multimodal biometric identification

accuracy [15]. The fusion method was stable and

improved overall recognition accuracy substantially. The

temporal complexity of recognition, on the other hand,

was higher.

➢ With the help of an SVM classifier and adaptive neuron-

fuzzy inference system (ANFIS), an efficient biometric

multimodal recognition strategy employing Fingerprint

and Iris was described by Bailey et al. [16]. The

recognition rate of this approach is higher. True positive

rate of person recognition, on the other hand, was

insufficient.

➢ An ideal weight score is determined to fuse the derived

feature sets of finger knuckle and finger vein images,

resulting in a multimodal biometric recognition system

employing finger knuckle and finger vein images [17]. As

a result, recognition accuracy improves.

➢ The user identification and authentication utilizing multi-

modal behavioral biometrics performed well in terms of

false acceptance and rejection rates. However, the

system's recognition accuracy was insufficient.

The key contribution of this research work is manifested 

below: 

To develop an accurate and automated fingerprint 

biometric authentication with the assistance 

acquired from the new MISHO based Optimized 

Deep neural network (MISHO-DNN) classifier. 

The weight function of DNN is optimized via 

Memory Integrated Spotted Hyena Optimization 

(MISHO) algorithm to enhance the detection 

accuracy. This MISHO is developed by 

amalgamating the concepts of SHO and CSA, 

respectively. 

The rest of this paper is arranged as: Section 2 portrays the 

information regarding the proposed biometric user 

authentication system: an overview, Section 3 and Section 4 

depict about Enrollment phase and verification phase, 

respectively. The results acquired with the projected model are 

discussed comprehensively in Section 5. This paper is 

concluded in Section 6. 

2. DESIGN OF BIOMETRIC USER 

AUTHENTICATION SYSTEM

2.1 Architectural description 

The proposed AAFBAM includes two major phases: (a) the 

enrollment phase and (b) the verification phase. Figure 1 

manifests the architecture of the projected model. The steps 

followed in each of the phases are manifested below. 

Figure 1. The architecture of the projected AAFBAM model 
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(a) Enrollment phase: This phase includes the “data

acquisition stage, pre-processing feature extraction stage, and 

minutiae point detection phase”. Initially, the fingerprint 

image 𝐻𝑖
𝑖𝑛𝑝

 from both the left and right hands is considered as

the input. The collected data 𝐻𝑖
𝑖𝑛𝑝

 
is pre-processed via the

image thinning approach. Then, from the pre-processed 

images 𝐻𝑖
𝑝𝑟𝑒

, the features, such as ridge ending fE, Ridge

bifurcation, fB and Galton points fG are extracted. All the 

features are integrated, and it is represented using the notation 

F. Then, the minutiae point detection is performed using the

MISHO-based Optimized Deep Neural Network (MISHO-

DNN) classifier [18]. To enhance the detection accuracy of the

DNN (ultimate decision-maker), its weight functions W are

tuned optimally using the proposed Memory Integrated

Spotted Hyena Optimization (MISHO) algorithm. The

proposed algorithm is developed by integrating the concepts

of the SHO algorithm [19] and the CSO algorithm [20]. The

prepared dataset is denoted as Di.

(b) Verification Phase: The Verification Phase includes the

“pre-processing, feature extraction stage, minutiae point 

detection with MISHO-DNN, minutiae matching, and 

minutiae score evaluation”. The minutiae point is detected 

precisely via MISHO-DNN. The minutiae matching is 

accomplished between the prepared dataset Di and the 

extracted features of a user's input fingerprint image. Further, 

the minutiae score M is computed, and it is contrasted with the 

pre-defined threshold value T. When the minutiae score is 

greater than the threshold, then the user is identified as the 

genuine user and the request is accepted, otherwise, the user is 

identified as the unauthenticated user, and the request is 

rejected. 

3. ENROLMENT PHASE

3.1 Architectural description 

This phase includes the “data acquisition stage, pre-

processing, feature extraction stage, and minutiae point 

detection phase”. 

Data acquisition: The data is collected from left and right-

hand fingers (“index finger, little finger, middle finger, ring 

finger, and thumb finger”). This image is together represented 

as 𝐻𝑖
𝑖𝑛𝑝

∈ (𝑙𝑒𝑓𝑡ℎ𝑎𝑛𝑑, 𝑟𝑖𝑔ℎ𝑡ℎ𝑎𝑛𝑑).

Step 1- Pre-processing: The information quality 𝐻𝑖
𝑖𝑛𝑝

 is

enhanced via the image thinning approach. The pre-processed 

data acquired after image thinning is denoted as 𝐻𝑖
𝑝𝑟𝑒

.

Step 2- Feature extraction: Subsequently, 𝐻𝑖
𝑝𝑟𝑒

 the

features like Ridge ending fE, Ridge bifurcation, fB and Galton 

points fG are extracted. 

Step 3- Feature fusion: All these extracted features are 

fused as F= fE + fB + fG.  

Minutiae point detection: Next, the minutiae point 

detection takes place via MISHO-DNN. To enhance the 

detection accuracy of DNN, its weight function W is fine-

tuned using a new hybrid optimization model named as 

MISHO algorithm. As a result, the database is prepared 

effectively. The prepared dataset is denoted as Di. 

3.2 Pre-processing-image thinning 

The collected input image 𝐻𝑖
𝑖𝑛𝑝

∈ (𝑙𝑒𝑓𝑡ℎ𝑎𝑛𝑑, 𝑟𝑖𝑔ℎ𝑡ℎ𝑎𝑛𝑑)
is pre-processed via image thinning to enhance the quality 

of 𝐻𝑖
𝑖𝑛𝑝

. The pre-processed image acquired after image

thinning is denoted as 𝐻𝑖
𝑝𝑟𝑒

.

3.3 Feature selection 

The features like Ridge ending, Ridge bifurcation, and 

Galton points are extracted from 𝐻𝑖
𝑝𝑟𝑒

.These extracted

features are integrated, and they are denoted as F= fE + fB + fG
.

3.4 Minute point detection 

A new MISHO-DNN is used for precise minutiae point 

detection. To acquire a precise detection mechanism, the 

weight function of DNN is fine-tuned with the new MISHO 

model. 

(a) All the inputs Fi are multiplied by their weights. The

weight function Wi provides information regarding the

strength of the input Fi. After the addition of weights, the

bias function is added. The major objective behind this

research work is to maximize the recognition accuracy

Racc. Mathematically, the objective function Obj can be

given as per Eq. (2). To achieve this objective, the weight

function Wi is fine-tuned via MISHO.

iii WFZ *= (1) 

)max( accRObj = (2) 

The solution fed as input to MISHO is manifested in Figure 

2. 

Figure 2. Solution encoding 

In Figure 2, N denotes the count of weight functions. 

(b) To the acquired linear expression Zi, the activation

function is applied. The activation function assists in

inculcating the non-linearity in the model.

(c) All the computations are performed in the hidden layer.

After the completion of the operations, the data moves to

the output layer, from where the outcome is acquired.

(d) On acquiring the final prediction values from the output

layer, the error is computed. The error function is the

difference between the actual and the predicted outcome.

MISHO model: The stages used in the MISHO model are 

as follows: 

Step 1: The population p of m the count of search agents is 

initialized. The position of the search agent is denoted as Qi; 

i=1, 2, …, n. The current iteration is pointed as t and the 

maximal iteration count is denoted as maxt. 

Step 2: Validate the termination criterion: check whether 

t<maxt. If the condition is satisfied then move to step 4, else 

terminate the process. 

Step 3: Compute the fitness of the search agents using Eq. 

(2). 
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Step 4: Based on the computed fitness, explore the best 

search agent Qbest. 

Step 5: The targeted solution (optimal weight) is encircled 

by the search agent in the Encircling prey phase. This phase 

can be modeled mathematically as per Eq. (3). 

)()(. tQtQBD agentprey −= (3) 

Here, D, Qprey, and Qagent points to the distance between the 

prey and the search agent; opposition of the prey; and position 

of the search agent, respectively. The next position Qagent(t+1) 

is computed as per Eq. (4). The notation B, E points to the co-

efficient vector, and they are computed as per Eq. (5) and Eq. 

(6), respectively. 

DEtQtQ preyagent .)()1( −=+ (4) 

1.2 randB = (5) 

HrandHE −= 2..2 (6) 

( )






−=

t

t
H

max*5
5 (7) 

In Eq. (7), H is linearly decreasing from 5 to 0 over the 

variation in the iteration count.  

Step 6: They search for the target solution after it has been 

surrounded. This phase can be mathematically given as per Eq. 

(8) and Eq. (9), respectively.

othersbest QQBD −= . (8) 

DEQQ bestothers .−= (9) 

Here, Qbest denotes the position of the first best search agent 

and Qothers is the position of other search agents.  

Step 7: In the new memory integrated attacking prey phase, 

the detected optimal weight (target prey) is attacked. The 

suggested memory-integrated prey assault phase can be 

analytically represented using Eq. (10) and Eq. (11), 

respectively. 

Memory
m

C
tQ *)1( =+ (10) 



















+
+

=+

elsetMemory

tMemoryfit

tfit
iftQ

tMemory agent

)(

))((

)1(
)1(

)1( (11) 

Here, Q(t+1) save the best solution and updates the 

positions of other search agents according to the position of 

the best search agent. In addition, Memory(t+1) is the memory 

of the next iteration. fit(t+1) and fit(Memory(t)) is the fitness 

function, respectively. 

Step 8: In a particular search space, verify if any search 

agents wander outside the border and adapt accordingly. 

Step 9: If a better solution exists than that of the prior 

optimal solution, compute the updating search agent optimal 

solution and update the vector Qbest. 

Step 10: Update the search agent fitness value for the group 

of spotted hyenas C. 

Step 11: The algorithm will be terminated if the stopping 

requirement is met.  

Step 12: After the stopping requirements have been met, 

return the most optimum solution (optimal weight) that has 

been achieved thus far. As a result, the database is prepared 

effectively. The prepared dataset is denoted as Di. 

4. VERIFICATION PHASE

4.1 Step-by-step verification process 

When an I input enters the verification phase, it's validated 

in this phase (whether he/she is an authorized person or not).  

Step 1:  Initially I is pre-processed via an image thinning 

approach. This pre-processed image is denoted as Ipre. From 

the pre-processed data Ipre, the features like Ridge ending, 

Ridge bifurcation, and Galton points are extracted. These 

extracted features are together denoted as G.  

Step 2:  Subsequently, the minutiae point is detected via 

MISHO-DNN. To enhance the detection accuracy, the weight 

function W of DNN is fine-tuned using the new MISHO model. 

Step 3:  The minutias’ matching is accomplished between 

the prepared dataset Di and the extracted features G of I.  

Step 4:  Further, the minutiae score M is computed, and it is 

contrasted with the pre-defined threshold value T. If M>T, then 

the user is identified as the genuine user, else unauthenticated 

user. 

5. RESULT AND DISCUSSION

5.1 Simulation procedure 

The projected AAFBAM with the MISHO-DNN model has 

been implemented in MATLAB. The sample images and their 

pre-processed, as well as minutiae points identified for image 

sample sets, are shown in Figure 3. 

5.2 Analysis on accuracy 

The projected model is validated over the existing models 

like KNN, SVM, DNN, SHO-DNN, and CSA-DNN, 

respectively. The results acquired are shown in Table 1. 

5.3 Analysis on F1- measure 

The projected model has recorded the highest detection 

performance in terms of F1-measure. The results acquired are 

shown in Table 2. 

5.4 Analysis on precision 

The highest precision achievement is a major challenge 

faced in the existing models [12, 15]. This challenge has been 

overcome in this research work, and it is evident from the 

results shown in Table 3. 

5.5 Analysis on recall 

The results acquired with the existing as well as existing 

models in terms of recall are depicted in Table 4. 
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5.6 Convergence analysis 

The projected model has been considered an optimization 

model, and it has been solved with the new MISHO model (a 

conceptual blend of CSA and SHO). The convergence speed 

is the major challenge faced by most of the existing models. 

The results acquired in terms of convergence speed are shown 

in Figure 4. 

Image 

types 

Input image 

(samples) 

thinned image 

(pre-processed 

image) 

Minutiae points Image types 
Input image 

(samples) 

thinned 

image (pre-

processed 

image) 

Minutiae 

points 

Subtype 1 Subtype6 

Subtype2 Subtype7 

Subtype3 Subtype8 

Subtype4 Subtype9 

Subtype5 Subtype 10 

Figure 3. Sample set: Input raw image, pre-processed image, and its identified minutiae points 

Table 1. Analysis of the performance of the MISHO-DNN model in terms of accuracy 

Approaches 
count of 

samples=25 
count of samples=50 count of samples=75 count of samples=100 count of samples=200 

KNN 85.2642005 86.14909163 84.64311055 87.1965866 90.05221628 

SVM 84.78626212 82.82412277 83.75117711 86.80361492 89.33610572 

DNN 85.60416026 87.83344952 84.84964197 87.9031447 91.48937378 

SHO-DNN 89.33740869 88.73110533 91.94471044 89.71215596 93.19260083 

CSA-DNN 86.75357192 88.05887216 91.03561308 88.6138214 92.12448169 

MISHO-DNN 90.16178938 92.22771523 92.86154985 94.23333272 95.32666594 

Table 2. Analysis of the performance of the MISHO-DNN model in terms of F1-measure 

Approaches count of samples=25 count of samples=50 count of samples=75 count of samples=100 count of samples=200 

KNN 84.34809 83.88146 85.01988 90.33565 87.2165 

SVM 81.98961 82.16496 83.31485 89.46556 87.10648 

DNN 86.07264 86.50961 85.14287 92.63749 92.39413 

SHO-DNN 87.35168 90.14116 92.35454 94.34025 95.42417 

CSA-DNN 87.00285 86.58702 91.42392 93.47351 92.5767 

MISHO-DNN 90.22633 91.53329 93.627 94.93897 95.56679 

Table 3. Analysis of the performance of the MISHO-DNN model in terms of precision 

Approaches count of samples=25 count of samples=50 count of samples=75 count of samples=100 count of samples=200 

KNN 83.4568 84.2453 85.13595 85.22577 88.98395 

SVM 82.60569 83.04662 83.22253 84.49102 85.63596 

DNN 85.27343 85.80875 86.83014 86.85674 89.16552 

SHO-DNN 87.94544 89.03041 89.18225 89.68425 91.45732 

CSA-DNN 86.99387 87.06939 87.19151 88.15056 90.74305 

MISHO-DNN 90.20692 90.22795 92.43605 92.85763 93.29297 
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Table 4. Analysis of the performance of the MISHO-DNN model in terms of recall 

Approaches count of samples=25 count of samples=50 count of samples=75 count of samples=100 count of samples=200 

KNN 84.09872 84.45164 85.9493 87.02201 87.8676 

SVM 83.21897 83.80097 84.51808 84.79386 87.19874 

DNN 85.8204 86.79228 86.86541 88.22545 90.43205 

SHO-DNN 89.30965 89.64757 89.81876 91.9121 93.25075 

CSA-DNN 86.02746 87.9349 88.7807 91.43693 91.90141 

MISHO-DNN 90.41223 90.42335 92.04691 93.66687 95.06325 

Figure 4. Convergence analysis of the projected model 

6. CONCLUSION

In this research work, a novel AAFBAM has been proposed 

by following two major phases: (a) enrollment and (b) 

verification. During the enrollment phase, the database is 

prepared, and during the identification phase, the input 

fingerprint is authenticated. In the enrollment phase, the 

fingerprint data from both the left and right hands have been 

pre-processed via the image thinning approach. Then, from the 

pre-processed data the features, such as ridge ending, Ridge 

bifurcation, and Galton points have been extracted. The 

MISHO-DNN classifier has then used to detect Minutiae 

points. The suggested MISHO method was used to optimize 

the weight function of the RNN to improve its detection 

accuracy. The minutiae matching and Minutiae score 

evaluation, on the other hand, took place during the 

Verification Phase. The minutiae score is calculated by 

combining minutiae from both stages and comparing it to the 

Threshold value. If the minutiae score is above the threshold, 

the user is recognized as a real user, and his or her request is 

approved; otherwise, the person is recognized as an 

unauthenticated user, and his or her request has been refused. 

Finally, a comparative evaluation is undergone to validate the 

efficiency of the projected model. The projected model has 

recorded the highest accuracy as 95.36% while training the 

model with 200 counts of samples. Thus, the projected model 

is said to be much more significant for user authentication. In 

future, it’s planned to test the most will huge database. 

Moreover, the evaluation will also be made with individuals 

belonging to different age groups. The hands with strains will 

also be taken into consideration. 
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