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In the last few years, huge interest has been directed towards research in wireless 

communications technology, notably at the level of the recently born massive MIMO 

systems. In such systems, the function of precoding at the base station (BS) plays a central 

goal in guaranteeing reliable downlink transmission. This paper aims to suggest a new low 

complexity linear precoding algorithm that can provide enhanced performance for downlink 

mm-wave massive MIMO systems. For this end, a first iterative solution is briefly computed

by the Jacobi (Jac) method and then provided as an initialization for the known iterative

symmetric successive over relaxation (SSOR) algorithm. This developed iterative way

reduces the complexity by one order of magnitude compared with that of the zero forcing

(ZF) near-optimal precoding, which relies on direct calculation of a large inverse matrix. In

addition, to prove the performance of the new proposed Jac-SSOR iterative algorithm

compared with its origin versions, some benchmarking simulations have been carried out in

adequate typical scenario.
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1. INTRODUCTION

The last decade has seen enormous research studies aimed 

in improving the performance of radio mobile communication 

systems, especially with the increasing requirement of 

wireless throughput by the growing number of their users. The 

response to this accelerated user demand is targeted across the 

implementation of massive MIMO technology, which can play 

a key role in the actual appearance of fifth-generation (5G) 

cellular systems. In fact, this new technology employs a large 

number of antennas with structured signal processing to 

transmit and receive different signals simultaneously at both 

communication system extremities [1, 2]. Furthermore, the 

promised benefits that a massive MIMO (m-MIMO) system 

can deliver depend upon strong challenges concentrated 

particularly in channel estimation, pilot contamination, 

precoding, detection, energy and spectral efficiency. 

The preprocessing, or precoding, is an essential signal 

processing procedure in m-MIMO downlinks that uses the 

channel state information (CSI) from the prior transmitter. 

With effective delivery CSI, precoding can provide promising 

benefits to the m-MIMO system as it can mitigate the negative 

effects created by path loss and inter-user interference and thus 

maximize link performance [3]. Using a precoding process 

allows for the simplification of receiver complexity, 

enhancement of system spectrum efficiency, and reduction of 

bit error rate. For all this, precoding has found applications not 

only in massive MIMO but in several other communication 

systems such as satellites, power lines, and optics [4]. 

The precoding techniques can be primarily classified into 

two categories: non-linear and linear approaches. The 

implementation of nonlinear precoding techniques is difficult 

for practical purposes due to their complex signal processing, 

whereas the less complexity of linear precoding techniques 

allows for a simple implementation at the base station [5]. In 

addition, the selection of an adequate precoding technique is 

based on different parameters, such as the computational 

resources, the number of users, the number of antennas at the 

base station, and the particularities of the environment. 

Among linear precoding schemes that exist in literature, the 

zero-forcing (ZF) precoding is considered as benchmark 

because it can reach the near-optimal performance [6]. 

Furthermore, for the ZF algorithm, a calculation of matrix 

inversion of large size is required that causes a high 

computational complexity which is cubic in regards to the 

number of users [5]. The ZF precoding predicated on the 

Neumann series approximation has been considered in the 

study [7] as one way to lower the complexity of matrix 

inversion by transforming it into a series of matrix-vector 

multiplications. On the other hand, various iterative-based 

precoding techniques derived from linear equations have 

attracted great interest by turning channel matrix inversion 

into solving linear equations. Among them, a Jacobi method 

(JM) based precoding has been proposed in the study [8] to 

overcome the complex matrix inversion and attain near-

optimal performance and capacity approximating the ZF 

precoding. Additionally, the convergence rate of the JM-based 

precoding has been quantified, and a faster convergence was 

revealed with the increasing number of BS antennas. Further, 

the Gauss-Seidel (GS) and the Successive Over Relaxation 

(SOR) have also been introduced as a conventional example 

of iteration based precoding schemes [9], in which a series of 

low-complexity matrix multiplications and additions are 

employed instead of complicated matrix inversion. 

In order to substantially decrease the complexity of the ZF 

precoding and to simultaneously accomplish its near-optimal 
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performance, a reduced-complexity linear precoding approach 

relying on the symmetric successive over relaxation (SSOR) 

method has recently been proposed [10]. The key idea of the 

SSOR-based precoding is to exploit the asymptotical 

orthogonality channel feature in m-MIMO systems to 

approximate an optimal relaxation parameter. In addition, a 

proposed least square QR (LSQR) precoding scheme [11] has 

computed iteratively the expected signal after precoding based 

on QR decomposition; its goal is to mitigate the ZF complexity 

by avoiding its undesirable matrix inversion of large size. Also, 

and as an example, a low-complexity and fast-convergence 

linear precoding based on modified SOR was more recently 

proposed [12], in which complicated matrix inversion is 

directly avoided. This new precoding proposition exploits the 

diagonal-dominant property of the matrix instead of the 

original zero-vector solution to get good performance with a 

small number of iterations. 

In a quest to achieve almost the same objective as most of 

the above mentioned techniques, we consider in this work the 

mm-wave massive MIMO system and suggest an iterative 

combined precoding approach with low complexity to reach 

the performance of the ZF near-optimal precoder. In particular, 

we initialize the existing SSOR algorithm with an initial 

solution that is provided by the conventional Jacobi algorithm. 

Hence, the simple proposed approach is based on matrix 

channel decomposition to prevent wide matrix inversion 

calculations before starting the precoding iterative procedure, 

and this leads to a complexity reduction of about one order of 

magnitude compared with the ZF near-optimal linear 

precoding technique. 

The balance of this paper is organized in the following 

manner: In section 2, the problem formulation is made first. 

Then, some interesting linear pre-coding algorithms including 

the proposed one, together with the complexity analysis, are 

presented in section 3. Section 4 offers some numerical results 

with discussions. Finally, in section 5, the conclusion is given. 

 

 

2. PROBLEM FORMULATION 

 

In the present letter, we consider a single-cell downlink 

scenario of a large-scale antenna system where its base station 

(BS) is leveraged with an array of N antennas to 

simultaneously transmit data for K users with a single antenna, 

as simply depicted in Figure 1. In such a system, we often 

assume that N is much greater than K (N≫K). The N×1 

transmitted signal x undergoes a precoding at the BS while the 

K×1 received signal vector y at the user side can be formulated 

as: 
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 (1) 

 

Or more succinctly: 

 

ry Hx n= +  (2) 

 

where, ρr is the average received power, H represents the K×N 

flat Rayleigh fading channel matrix whose entries are 

independent and identically distributed (i.i.d) according the 

distribution CN(0, 1), and n  denotes a K×1 (AWGN) vector 

whose entries are i.i.d. each one following the distribution 

CN(0, σ2). 

 

 
 

Figure 1. Illustration of a massive MU-MIMO system 

 

When a linear precoding scheme is made in downlink 

transmission to lower the users’ interference, the resultant 

preceded signal vector x can be expressed as: 

 
x Ws=  (3) 

 

where, W denotes the N×K precoding matrix, and 𝑠 =
[𝑠1, 𝑠2, ⋯ , 𝑠𝐾]

𝑇 accounts for the K×1 vector of original 

signal for K users to be transmitted. Furthermore, the 

precoding matrix should be subjected to the following power 

constraint: 

 

( )  =Htr WW P  (4) 

 

where, P is the total transmitting power at the BS. 

Hence, substituting (3) into (2) yields: 

 

r ry HWs n Qs n = + = +  (5) 

 

Q=HW is the equivalent channel matrix on which we base 

to express the signal-to-interference plus noise ratio (SINR) at 

the reception part. This last parameter can be given for the kth 

user as: 
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where, qm,k stands for the element of the matrix Q in the mth 

row and kth column. 

Now, we can compute the ergodic capacity for the downlink 

massive MIMO system after precoding using the following 

expression [13]: 

 

( )2

1

log 1

K

k

k
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=

= +  (7) 

 

The achievable capacity is one of the main factors used to 

evaluate the performance of precoding methods. 
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3. PRECODING ALGORITHMS

In this section, we first discuss the three linear precoding 

schemes such as zero-forcing (ZF), Jacobi, and SSOR. Then, 

we present in detail our proposed scheme. And finally, we will 

analyze the computational complexity of each method. 

3.1 Zero-forcing precoding algorithm 

Zero-forcing (ZF) precoding is a basic algorithm that aims 

to solve the inter-user interference problem by following the 

optimization criteria to minimize it. In other words, the ZF 

precoder attempts to nullify all interferences between users. 

The ZF algorithm is given as [3]: 

1 1( )H H H
ZFW H HH H G − −= = (8) 

where, G=HHH forms the Gram matrix, and β is the normalized 

parameter of the average of the transmit power fluctuations. 

This parameter is defined as: 

1( )

K

tr G


−
= (9) 

The resultant signal to be transmitted after ZF precoding can 

then be expressed as: 

1H H
ZF ZFx W s H G s H z −= = = (10) 

where, G-1s=z that leads evidently to: 

Gz s= (11) 

The corresponding received signal vector after ZF 

precoding becomes: 

1( )H H
F rZ ry HH HH s n Es n   −= + = + (12)

where, 𝐸 = 𝐻𝐻𝐻(𝐻𝐻𝐻)−1  is the ZF equivalent channel

matrix. 

Then, the corresponding received SINR for any user k can 

be calculated as: 
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where, em,k stands for the element of the matrix E in the mth 

row and kth column. 

According to Eq. (13), we can compute the sum capacity 

achieved by the ZF precoding for the massive MIMO system 

using the following expression [14]: 
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3.2 Jacobi precoding algorithm 

Probably, among all the iterative linear methods, the Jacobi 

method is the simplest one to avoid the direct calculation of 

matrix inversion [15]. In fact, the Jacobi method solves a 

diagonally dominant linear system At=b. Its process involves 

separating the matrix A as follows: 

A D R= + (15) 

or more clearly: 
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(16) 

where, D is the diagonal component matrix and R is the 

remainder off-diagonal matrix. 

When we put Gz=s exactly equivalent to the previous linear 

equation At=b, we can arrive at: 

( )    D R z s+ = (17) 

Formally, the Jacobi precoding scheme sets: 

( ) ( )
1 1

1
+

i i
z D Rz D s− −

+
= (18) 

where, i denotes the iteration index. 

The initial solution of the Jacobi algorithm is given by: 

( )
1

0
z D s−= (19) 

The precoded signal vector resulting from the Jacobi 

precoding algorithm is: 

H
Jacx H z= (20) 

3.3 SSOR precoding algorithm 

The symmetric successive over relaxation (SSOR) method 

is considered as a modified variant of its original SOR method. 

In the SSOR method, each iteration is formed with two half 

iterations: a forward iteration, which is the SOR method, 

followed by a backward iteration, which is actually the SOR 

method with equations in reverse order. The goal of the SSOR 

based precoding is to overcome the complicated matrix 

inversion problem in an iterative manner. Since the precoding 

matrix W is Hermitian positive definite, as demonstrated in 

[10], we can use the SSOR method for linear precoding 

according to these three steps: 

Step1: we decompose the precoding matrix W, or rather the 

Gram matrix G, into three parts as below: 

HG D L U D L L= + + = + + (21) 

where, in order, D, L, and U=LH stand for the diagonal, strictly 

lower triangular, and strictly upper triangular constituents of 

G. 
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Step 2: basing on the SOR method, we compute directly the 

forward iteration of the precoded signal to be transmitted using 

the following mathematical expression: 

 

( ) ( )( )1
2

( ) ( )

1

( )
1 H

i ii
z D L Dz L z s   

−

+
= + − − +  (22) 

 

Step 3: expressing the SOR method in reverse order, we 

compute the backward iteration of the precoded signal to be 

transmitted as follows: 

 

( ) ( )( )1 1
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here, the “relaxation factor” ω is a real number selected in the 

interval 0<ω<2. Moreover, an optimal value of this parameter 

has been selected through a detailed mathematical analysis 

[10], which is given as: 
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(24) 

 

where, ρ[⋅] stands for the spectral radius of a matrix. Here B 

is the iteration matrix of the Jacobi method, which is presented 

as [16]: 

 
1 1( )HB D L L D R− −= + =  (25) 

 

Finally, the SSOR precoded signal can be given as: 

 

SSOR
Hx H z=  (26) 

 

It is recalled that β is the normalized parameter of the 

average of the transmit power, which is expressed in (9). 

 

3.4 Proposed Jac-SSOR precoding algorithm 

 

As we have previously mentioned, the Jac-SSOR linear 

precoding scheme is simply a SSOR algorithm initialized by 

the Jacobi method. So, this new proposed scheme consists of 

two main parts, which are the initialization and the iteration. 

We summarize below the complete steps of our proposed 

precoding approach in algorithm I. 

 

Algorithm I: Proposed Jac-SSOR precoding scheme 
Input: 

s: original signal 

H: channel matrix 

N: number of BS antennas 

K: number of users 

I: number of iterations 

Initialization step: 

G=HHH: Gram matrix 
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: optimal relaxation factor 

( )
1

0z D s−= : first Jacobi solution 
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when (i=1) 

Iteration step: 

for 1: 1i I= −  
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end 

Output: 

Jac SSO
H

Rx H z− = : Jac-SSOR precoded signal 

 

3.5 Computational complexity analysis 

 

In the ensuing, we analyse first the computational load of 

the proposed Jac-SSOR precoder, and then we compare it with 

the basic ZF and the other iterative schemes studied in this 

work (see Table 1). As it is known, the computational 

complexity can be expressed generally in terms of the two 

fundamental arithmetical operations, which are addition and 

multiplication. However, the last operation dominates the 

complexity of numerous precoding schemes. 

The initialization part of the proposed Jac-SSOR precoding 

scheme requires i(4K2-2K), which is equivalent to the number 

of multiplications in the conventional Jacobi method, whereas 

the same number of multiplications as in the SSOR scheme is 

required for its iteration part. Thus, the total required number 

of complex multiplications of the Jac-SSOR precoding 

scheme is 6iK2. 

 

Table 1. Complexity of the investigated precoding schemes 

 
Precoding schemes  Number of multiplications 

ZF  

 

Jacobi  

 

SSOR 

 

Proposed Jac-SSOR  

3N NK K+ +  

( )24 -2i K K  

( )22 +2i K K  

26iK  

 

In addition, the proposed scheme is able to keep the same 

order of the required complexity as their original algorithms 

while at the same time lowering it by one order relative to the 

ZF precoder complexity. 

 

 

4. NUMERICAL SIMULATION RESULTS 

 

In this section, we take the BER and sum-rate as the 

principal performances of the proposed Jac-SSOR precoding 

in order to compare it with the existing Jacobi and SSOR 

techniques on the one hand, and we consider the basic ZF as a 

reference for comparison on the other hand. For this end, we 

assume that the typical massive MIMO configuration involves 

128 transmitting antennas at the base station and 16 single 

antenna users. The base station takes 64 QAM as the 

modulation scheme, while Rayleigh fading is selected as the 

system channel model. 

Figure 2, Figure 3, and Figure 4 depict a comparison of BER 

performance between proposed Jac-SSOR, classical Jacobi, 

and classical SSOR for different iterations for the Rayleigh 
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fading channel of a massive MIMO system. In addition, the 

BER curve of ZF precoding accompanies the other curves as a 

benchmark for comparison. 

 

 
 

Figure 2. Performance comparison of precoding iterative 

techniques (i=2 iterations) in terms of BER for N×K=128×16 

massive MIMO configuration in Rayleigh fading channels 

 

 
 

Figure 3. Performance comparison of precoding iterative 

techniques (i=3 iterations) in terms of BER for N×K=128×16 

massive MIMO configuration in Rayleigh fading channels 

 

 
 

Figure 4. Performance comparison of precoding iterative 

techniques (i=4 iterations) in terms of BER for N×K=128×16 

massive MIMO configuration in Rayleigh fading channels 

Figure 2 shows that when the number of iterations is smaller, 

the Jacobi and SSOR conventional methods suffer from low 

convergence and poor BER performance. Nevertheless, a 

significant difference in BER performance is observed 

between the proposed method and the other two conventional 

methods, especially with the increasing SNR. 

It is also clear from Figures 3 and 4 that the BER 

performance of the two basic precoding methods can be 

improved proportionally with the increase in iterations. 

Furthermore, the SSOR method has always had a faster 

convergence rate compared with Jacobi method. We further 

note that the near-optimal BER performance of the ZF 

precoding technique can be achieved by the Jac-SSOR in only 

3 iterations. 

Basing on the results obtained from the previous figures, we 

conclude that the newly devised approach is more satisfying 

compared to its two original constructive methods in a 

comprehensive view. The convergence rate of the new 

approach is fast, and its performance in terms of BER is very 

close to that of the reference ZF precoding method. 

 

 
 

Figure 5. Comparison of the channel capacity of the 

studied precoding iterative techniques for an N×K=128×16 

massive MIMO configuration 

 

Figure 5 compares the channel capacities of Jacobi, SSOR, 

Jac-SSOR, and ZF precoding methods against the Signal to 

Noise Ratio (SNR). It is clear from this figure that there is a 

significant improvement in the achievable channel capacity of 

the Jacobi-based precoding with increasing iteration value. 

However, a number of iterations equal to 4 remains 

insufficient for the Jacobi method to be comparable to the 

optimal ZF precoding. Besides, we can observe that SSOR 

performs better than Jacobi, whereas a little difference in its 

performance compared to ZF can be noticed even with a lower 

number of iterations. Also, Jac-SSOR iterative precoding can 

get a lot closer to the benchmark ZF with matrix inversion 

from the point of view of channel capacity since its second 

iteration, and with only 3 iterations, its achieved capacity 

becomes identical to that of the ZF precoding. This good result 

confirms further the validity and accuracy of our proposed 

scheme for precoding in a downlink massive MIMO system. 

 

 

5. CONCLUSIONS 

 

In this paper, an efficient hybrid linear-based precoder for 

mm-wave massive MIMO systems is devised by combining 
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the individual good aspects of both Jacobi and symmetric 

successive over relaxation (SSOR) classical algorithms. The 

low complexity Jac-SSOR approach uses the conventional 

Jacobi to compute a first iterative solution that will be used as 

an initialization for the SSOR algorithm in order to follow the 

iteration procedure. Basing on all our comparison results, we 

can clearly notice the effectiveness of the proposed Jac-SSOR 

precoder compared with its origin versions in terms of bit error 

rate and achievable rate at the same time. In other words, our 

developed Jac-SSOR-based precoding approach allows 

achieving the near optimal properties of low computational 

complexity, fast convergence, and significant channel capacity. 

Its superiority in massive MIMO linear precoding 

performance has been confirmed in comparison with the 

Jacobi and SSOR classical algorithms. 
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