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Due to the impact and importance of the kidney objects in human body, the kidney tumor 

analysis from three dimensional CT and MRI medical images becomes a pivotal research 

topic, which helps in diagnosing the kidney diseases like kidney stones, polycystic and 

kidney tumors etc. In deep learning, U-Net became a prominent and reliable solution for 

kidney image analysis and objects segmentation process. Although several research works 

were focused on kidney object detection and tumor segmentation from medical images, they 

are suffering from some intrinsic limitations due to: variance in network depths, enforced 

feature fusion, segmentation errors and inaccuracy. In order to address these limitations in 

kidney tumor segmentation process, in this paper we proposed the 3D-CU-Net model for 

kidney tumor segmentation, which is a custom variant of the U-Net. In 3D-CU-Net, the 

encoder-decoder network model is unified to tolerate the depth invariance issues, while 

training various input images with the same model. Completely connected dense skip 

connections are designed at each layer of 3D-CU-Net, to control the enforced feature fusion 

and to extract the crucial features. An integrated loss function is designed with Binary Cross 

Entropy (BCE) and Soft-Dice Coefficient (SDC) to mitigate the segmentation errors and 

inaccuracy. Experiments on TCGA-KIRC dataset with 3D-CU-NET recorded the high 

accuracy in kidney tumor segmentation with mIoU (91.21%) and mDSC (92.69%). 
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1. INTRODUCTION

Since a decade, the kidney disease patients are growing up 

worldwide and today the 15% of US adult population is 

suffering from various kidney diseases. Among these kidney 

diseases, carcinoma tumors are the most dangerous and cause 

to high mortality in diseased patients. Abnormal or chaotic 

growths on kidneys are considered as tumors or renal mass, 

which may be cancerous or non-malignant. Tumors are 

scattered over various regions of the kidneys with different 

shapes and sizes. 

In medical science, disease diagnosis is the primary activity, 

which happens by thoroughly analyzing the patient’s clinical 

and radiological (medical image) information. X-rays, 

Computed Tomography (CT), Magnetic Resonance Imaging 

(MRI), Positron Emission Tomography (PET) and Ultrasound 

are the popular imaging models in radiology. As the MRI 

contrast agents are safer than other imaging methodologies, 

physicians use to prefer the 3D-MRI scan for kidney disease 

diagnosis. According to Glaser et al. [1] the 3D-MRI images 

supports the multi planner reformatting and provides the equal 

spatial resolution for X, Y planes and Z direction. This 

isotropic spatial resolution helps in constructing the high 

definition kernels and sharpened filters while processing the 

3D images for disease diagnosis.  

In order to detect and lineate the tumors from kidney 

diseases, the 3D-MRI images should be analyzed thoroughly 

at pixel level. Base Region of Interest (RoI) selection, objects 

detection, boundaries segmentation and Tumors lineation are 

the main phases of the 3D- MRI kidney object segmentation 

and tumors selection process. As it is widely utilizing in 

disease diagnosis, severity estimation and surgeries planning, 

automated segmentation of the tumors from 3D-MRI kidney 

images became a popular research topic in recent years. 

Most of the former research works concentrated on kidney 

MRI 2D image segmentation over the 3D image segmentation, 

due to the segmentation process complexity and resource 

deficiency. In imaging modalities, the 3D images are 

composed with the isotropic voxels, which provides the high 

spatial resolution and improvises the visibility of the image 

objects at low noise rate. Indeed the 3D images are very 

accurate in disease diagnosis than 2D images, due to the multi-

dimensional planes acquisition and higher signal to noise ratio 

while scanning. In general, the 3D MRI segmentation is 

having more process complexity than 2D, but 3D provides the 

better visualization of the small objects and also helps in 

estimating the objects size, shape, convexity, inertia and 

location. The advantages of MRI 3D images made them 

prominent and widely using in clinical diagnosis.  

Inspired from the advantages of MRI 3D images and to 

facilitate the in depth analysis with limited resources, our 

research is aimed to design the accurate and reliable 3D MRI 

kidney tumor segmentation model. As part of the design of 

automated kidney tumor segmentation model, literature 

review is conducted and a set of relevant former research 

works were reviewed for problem definition is presented in 

section-2. As on several research works proposed various deep 

learning models (i.e. ResNet, VGG-16, GoogLeNet, U-Net 

etc.) for segmentation discussed by Parvathi et al. [2], among 

them the U-Net become more popular and reliable due to its 
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wide variety of characteristics. 

Although the former researcher works concentrated on U-

Net for designing the 3D MRI kidney tumor segmentation, 

they encountered a set of the considerable limitations are: i) 

variance in network depths, ii) enforced feature fusion, iii) 

segmentation results inaccuracy and errors.  

To overcome these limitations in 3D MRI kidney tumors 

diagnosis process, an accurate and reliable 3D-CU-Net model 

is proposed in this paper, for kidney object and tumor 

boundaries segmentation. Unified encoder-decoder networks 

are designed to counter the variance in network depth and 

completely connected dense skip connections are designed to 

counter the enforced feature fusion. Efficient integration of the 

loss functions reduced the errors in training and improved the 

results accuracy.  

The main objective of this study is designing a deep learning 

model for automated segmentation of the kidney object and 

tumor from 3d MRI images, to help the physicians in disease 

diagnosis, severity estimation, treatment planning etc. As part 

of the research experiments, the proposed model is developed 

using the python supporting image processing libraries. 

TCGA-KIRC kidney MR images are selected to conduct the 

experiments on tumor diagnosis and the comparative analysis 

also conducted with 3D-CU-Net counterparts. Comparative 

analysis proven that; the proposed 3D-CU-Net achieved the 

high accuracy in kidney tumor diagnosis.  

Rest of this paper is organized as follows: section-2 presents 

the literature analysis on U-Net and the other deep learning 

models with their limitations in segmentation process. 

Section-3 describes the proposed 3D-CU-Net architecture, 

functionality and process flow information. Section-4 presents 

the experimental results and comparative analysis over the 

proposed model. Section-5 presents the conclusions and future 

research directions on proposed model. 

 

 

2. RELATED WORK 

 

In this section, the literature on basic U-Net architecture and 

its limitations in MRI medical image segmentation process are 

described in brief. 

U-Net: In recent times, U-Net became a popular deep 

learning model for 3D medical image (i.e., CT or MRI) 

seamless segmentation process, was introduced by 

Ronneberger et al. [3]. Basic U-Net architecture is an encoder-

decoder networking model, designed with parallel processing 

paths are: contracting path (encoder part) and the expanding 

path (decoder part). In U-Net the encoder sub-network part 

performs the convolutions (down-sampling and pooling 

operations) on low-level fine-grained features of training 

samples for semantic segmentation. Similarly, the decoder 

sub-network part performs the de-convolutions (up-sampling 

and concatenation) on coarse-grained semantic features of 

convolved samples for target object instance detection and 

segmentation. The input data images are encoded first to 

extract the feature maps and then decoded with feature 

propagation to classify the target output with same pixel 

resolution. Each level of U-Net encoders and decoders are 

symmetrically connected through the skip connections and 

bottleneck layers to concatenate the encoder and decoder paths. 

The processing encoder node is connected with all the other 

nodes of that level including decoder node to forward the 

knowledge obtained in training to the others. 

The encoder path performs 3x3 convolutions with Rectified 

Linear Unit (ReLU) activation functions to reduce the input 

size and to highlight the target features Ronneberger et al. [3]. 

The highlighted target features are then down sampled with 

2x2 max-pooling operations. The same set of operations 

(Conv+ReLU+Max-Pool) evaluated at each level of encoders 

and the resultant feature maps are forwarded to the decoders 

using the cascading convolutional operations. At decoder path, 

the extracted features are up-sampled (2x2 Conv+ReLU) to 

separate the foreground and background information. After 

training the model with stochastic gradient descent, the pixel-

wise soft-max evaluates the energy function over the loss 

function is as follows: 
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The energy function Δ(E) is evaluated in above equation 

with the weighted map Wc, softmax function Pl(q), distances 

from border to the first nearest cell r1 and second nearest cell 

r2, pixel 𝑞 ∈ 𝛺 and the σ is a static value. 

U-Net Limitations: By impressing from these 

segmentation features, some former researchers utilized this 

‘U’ shaped convolutional neural network (U-Net) for medical 

image segmentation and identified some limitations in 

segmentation process are: variance in network depths, 

enforced feature fusion, semantic segmentation inaccuracy 

and segmentation errors. 

In general, the depth of the U-Net architecture is decided by 

the input dataset factors are: class labels, image size and 

process complexity etc. Based on this training data decision 

making factors, the U-Net architecture depth is selected at 

runtime, which may be different from application to 

application. Ciompi et al. [4] highlighted that, the variance in 

network depth requires a separate U-Net model for each depth 

level. Some applications may need to utilize various U-Net 

architectures (with depth variance) to train the same model 

with the underlying dataset images. In medical image datasets, 

the images are collected from various patients and devices are 

having the variance in their properties like size, brightness and 

contrast etc. Due to the variance in medical image properties, 

various U-Net models are required to train various images with 

depth variance. In order to obtain the comprehensive 

knowledge in this way of training, the multiple trained models 

needed to be consolidated. Dietterich et al. [5] specified that, 

the consolidation (ensemble) of various trained networks with 

depth variance will increases the detection ambiguity and 

segmentation inaccuracy, due to the uncommon encoders. This 

unconventional model of training and consolidation will also 

cause to loss the benefits of multi-tasking in model training. 

While training a deep learning model, sometimes the 

succession decrease of training loss may not improvise the 

accuracy of finding the ROI, is considered as “vanishing 

gradient problem”. To solve the vanishing gradient problem 

and to speed up the learning process, the back propagation 

method was proposed in deep learning models with cost 

functions. Back propagation method optimizes the partial 

derivatives by adjusting the hyper parameter weights and bias 

values at each layer. Although the back propagation optimizes 

the model parameters iteratively, the frequent backward 

moves in layers will decrease the gradient value, which causes 

to the “training instability” [6]. Recent deep learning 

architectures were introduced the skip connections among the 

model layers, to alleviate the instability in training and to keep 
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the adequate gradient value [5]. In case of the low gradient 

values in training, the skip connections will activate the 

gradient [7] to skip the immediate layers and feed the current 

gradient as input to the other layers. This method provides the 

additional connections among the layers of neurons for model 

convergence and instigates the stability in training with 

adequate gradients.  

U-Net also contains the skip connections, which are simply 

connected using the feature concatenation process as shown in 

Figure 1. Even though the U-Net skip connections are assuring 

the feature maps with gradient as a non-zero, in deep 

segmentation tasks these simple skip connections are partially 

extracting the crucial features [8]. On other hand, the U-Net 

skip connections are designed for the same layer encoder 

decoder feature maps, which restrict and enforce the feature 

fusion at same layer. Feature fusion at same layer encoder-

decoder networks (via skip connections) may get back the 

foreground features available in that layer, but not from the 

previous layers. Same layer features restoration with skip 

connections is facing the semantic dissimilarity among feature 

maps due to the less homogeneity in feature properties. 

 

 
 

Figure 1. Graphical representation of the U-Net process 

layers 

 

 

3. 3D- CU-NET AND KIDNEY TUMOR 

SEGMENTATION 

 

Deep learning process models emerged as the reliable 

solutions for medical image data processing and object 

segmentation. Advancements in deep learning process models 

gained the capability to diagnose the disease information (i.e., 

Carcinoma Tumors, Stones, Polycystic, glomeruli etc.) from 

3D MRI kidney medical images.  

To overcome the challenges and limitations in kidney tumor 

segmentation process, deep learning-based 3D-CU-Net kidney 

tumor segmentation model is proposed (shown in Figure 2) in 

this paper. This model describes the components, connectivity, 

actions and results of the proposed 3D-CU-Net in an integrated 

manner with its modules and flow in action. The coherence 

view of this model presents the organization of the feasible 

solutions at each module to address the limitations discussed 

in section-2. At every step of processing, this model is 

designed with the fine gained solutions, which are simplified, 

feasible, compatible and reliable. 

 

 
 

Figure 2. Architecture diagram of the proposed 3D-CU-Net 

kidney tumor segmentation model 

 

Proposed 3D-CU-Net kidney tumor segmentation model 

contains 4 main phases in processing are i) 3D MRI 

Read/Write Phase ii) 3D MRI Data Preprocessing Phase iii) 

3D-CU-Net Model Configuration Phase and iv) 3D-CU-Net 

model Training and Testing phase. Each phase of this model 

is connected with the next phase and the output of one phase 

is sent as input to the next phase for further processing. 

3D MRI Read/Write Phase: This section explores the 

process of reading and writing of the kidney 3D MRI images 

from dataset using the python I/O libraries. Initially a set of 

kidney 3D MRI images from TCGA-KIRC dataset are 

collected from the web and stored in a specific system path. 

As the collected MRI images contain the neuroimaging file 

format (NifTI1), the NiBabel library functions are selected for 

read/write operations. After selecting the dataset path, the 

NiBabel library read functions are used to load the 3D MRI 

kidney images and its associated masks (ground truths) from 

path and transforms the pixel data into the three-dimensional 

numeric vectors for processing. By the time of transformation, 

each image metadata is collected and stored in headers. With 

help of this metadata and the vector affine information and 

position of the image can be referenced while processing. To 

facilitate the processing model activities (train, validate and 

test), each 3D kidney image and its relevant mask is stored 

with same index values at same path. 

After preprocessing of the input dataset, this read/write 

module functions are used to create the batches to initiate the 

parallel processing and to back up the intermediate models 

while processing. Once the deep CU-Net model is created, it’s 

the responsibility of the learning algorithm (gradient descent) 

to update model from the training examples iteratively. The 

batch size specifies the number of samples to be considered 

from the available training set to update the model. At the end 

of the iterations, the batch elements are shuffled from the 

training dataset to generate the new batch for next iteration. 

Similarly, the intermediate batches with high relevance need 

to be serialized in local space for further processing. In order 

to serialize those batches temporarily, the “python pickle 

library” functions are selected for batches serialization and 

deserialization process. 

3D MRI Data Preprocessing Phase: Data preprocessing is 

a common and prominent phase in medical data analysis, 

which transforms the raw input data into model acceptable 

input using various preprocessing techniques. As part of the 

data preprocessing, a set of image preprocessing techniques 
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(i.e. image synthesis, noise reduction, normalization and 

resampling) are employed in this study to make the training 

data sufficient and error free.  

In general, the medical data is available in limited quantity, 

which is insufficient for deep learning models to train and test. 

To overcome this limitation, image synthesis techniques was 

implemented using the 3D Conditional Generative Adversarial 

Networks (3D-cGAN) [9] to generate the plausible dataset 

images for efficient learning. Among the available data 

synthesis techniques, the 3D-cGAN is selected because it 

contains both generator and discriminator networks, which 

helps in balancing the augmentation process and produces the 

indistinguishable images from actual dataset, is proven by 

Wang et al. [10]. 3D-cGAN is having the ability to generate 

the high contrast synthetic 3D MRI images from the images 

that are generated under the low contrast agents.  

In contrary to the other generator models, the 3D-cGAN 

model controls the generator (G) and discriminator (D) 

functionalities with the metadata(m) based conditions as input 

to them. Generator combines the image noise Iq(Q) and the 

metadata ’m’, whereas the discriminator adjoins the metadata 

‘m’ and discrimination methods (n) to generate the synthetic 

images at the range between minimum and maximum count is 

as follows: 

 

𝑉[min(𝐺) ∗ max(𝐷)] = log𝐷(𝑚|𝑛) ∗ 𝐸𝑚≈𝐼(𝑞) +

[log (1 − 𝐷(𝐺(𝑞|𝑛))) ∗ 𝐸𝑞≈𝐼(𝑄)]   
(2) 

 

Contrast of an image defines the degree of pixels variation 

among the image internal objects and it helps in achieving the 

high accuracy in object detection and segmentation operations. 

Perumal et al. [11] stated that the adequate contrast 

enhancement process will improvise the image quality, 

visualization, boundaries and pixel differences. To improvise 

the kidney tumor segmentation accuracy, the 3D-cGAN model 

adopted the contrast enhancement as one of the prominent 

factor in synthetic images generation as part of the data 

augmentation process. Contrast enhancement or adjustment 

helps in differentiate the tumor boundaries from its neighbor 

tissue boundaries.  

In general, the medical image datasets with limited images 

causes to create the over-fitting problems in learning the 

process models. In case of over-fitting due to less input 

medical data availability, the model fit the available limited 

features, noise and variations from training data in memory, 

which may fail or less accurate in handling the unseen real life 

test data. The generalization inabilities (over fitting) of a 

model will record the high variance in performance over 

varied datasets. K-fold cross-validation method is employed in 

testing phase to determine our model is suffering from the 

over-fitting issues or not. To overcome the over fitting issues 

in our model, we selected the 3D-cGAN and K-fold cross-

validation techniques. D-cGAN generates the high-quality 

synthetic data images to increase the dataset size and K-fold 

cross-validation technique for dataset partitions and hyper 

parameter tuning. 

Shorten et al. [12] specified that, adding the Gaussian Noise 

(GU) or noise injection to the input images under 

augmentation process will enhances, the trained model ability 

to perform the efficient segmentation process on low contrast 

and noisy images. Rotations are the best way of augmentation, 

which creates the reliable synthetic images by just rotating the 

image objects without disturbing them. According to Kalra et 

al. [13], the augmentation with rotation not only increases the 

dataset size, but also improves the trained model efficiency in 

classification and segmentation. 

Apart from the augmentation, the preprocessing phase 

employed the normalization, noise removal, clipping and 

resampling techniques for comprehensive preprocessing. Data 

normalization makes the calculations feasible at model 

generation. The image input vector pixel values are 

normalized before training, by rescaling the values in range of 

0-1using the Z-Score method. Noise reduction is another 

preprocessing technique, which eliminates the unnecessary 

information from the input images. Fan et al. [14] discussed a 

set of smoothing and filtering (Gaussian and Fuzzy based) 

techniques, which are employed in this 3d-CU-Net model for 

noise reduction from input images. In order to keep the MRI 

image pixel vector values in a consistent range and to 

eliminate the uninterested background from the images, the 

image clipping technique is applied. As part of clipping, the 

minimum and maximum thresholds are evaluated and the pixel 

ranges are clipped. Image resampling process is applied on 

input MRI image vectors to overcome the imaging geometry 

issues. Gurjar et al. [15] explored the efficient resampling 

methods, which works by transforming the original image 

orientation, resolution and size values. By using the 

aforementioned image synthesis and preprocessing techniques 

(shown in Figure 2), the proposed 3D-CU-Net model 

completes the preprocessing phase and provides the error free 

and reliable input data for training and testing process. 

3D-CU-Net Model Configuration Phase: Soon after data 

preprocessing, the next phase of our model is 3D-CU-Net 

model design and configuration with respective parameters. 

Compared to the other medical object segmentation models, 

the kidney tumor segmentation (tumor pixels detection) and 

boundaries lineation is a complex and sensitive operation. 

Parvathi and Jonnadula [16] specified that, designing the 

kidney tumor segmentation model become a challenging 

research topic due to the objects overlapping, object detection 

ambiguity and morphological diversity issues. As on, some 

former researches concentrated on medical image 

segmentation process and implemented the U-Net architecture 

for medical image segmentation. Although the U-Net 

performed better segmentation than its former segmentation 

models, it’s still suffering from some intrinsic limitations at 

encoder-decoder networks are discussed in section-2.  

To address the U-Net limitations in kidney tumor 

segmentation process, in this paper the U-Net architecture is 

customized as the 3D-CU-Net (is shown in Figure 3), to 

increase the prediction accuracy in 3D MRI kidney tumor 

segmentation. The proposed 3D-CU-Net model features are 

customized at encoders and decoders level, to support the 3D 

analysis and to achieve the high accuracy in segmentation 

process.  

To overcome the variance in network depths issue, our 3D-

CU-Net model is designed with a unified encoder-decoder 

network, which consists of various network depths (L1, L2, L3 

and L4) in the same model is shown in Figure 3. The encoder-

decoder nodes of this architecture with various network depths 

(L) are: L1={X(0,0), X(0,1)}, L2={X(0,0), X(0,2)}, 

L3={X(0,0), X(0,3)} and L4={X(0,0), X(0,4)}. In this model, 

all networks are sharing a common encoder (X(0,0)) to receive 

the training inputs but having their own decoders {(X(0,1)), 

(X(0,2)), (X(0,3)), (X(0,4))} to generate the output. According 

to the requirement in deep analysis, the appropriate network 

depth is selected while processing. In any deep network level 

from L1 to Ln, the connectivity node is (X(i,j)), in  which the 
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‘i’ stands for the encoder index and ‘j’ stands for dense skip 

convolutions, are used to calculate the target feature maps. 

When the ‘j’ value is 0 means, convolution receives only 

single input from its former encoder path layers and feature 

maps are calculated as: 

 

 )((
,1,

xx
jiji −

=   (3) 

 

Similarly when the ‘j’ value is a non-zero means, it receives 

the two inputs from two immediate levels of the encoder path 

layers and the feature maps are calculated as: 
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where, the convolution (∆) process is implemented by the 

respective activation functions in up-sampling layer ω and 

down sampling layer ∝ with concatenation (⊕) operator. The 

inputs from the former encoder paths and dense skip 

connections will use the appropriate activation functions with 

‘P’ kernels for deep supervision through deep feature mapping 

process. Before to the output layers, the feature 

(background/foreground) relative probabilities of the input 

image voxels are determined using the soft-max layer. 

 

 
 

Figure 3. Unified 3D-CU-Net model with encoder-decoder 

networks to support the depth variance 

 

In addition to the depth invariance problem, our model 

addresses the U-Net skip connections related enforced feature 

fusion issue (explained in section-2) also. To control the 

forced feature fusions, our 3D-CU-Net model is designed with 

a set of completely connected dense skip connections at each 

layer of the encoders and decoders is shown in Figure 4. In our 

3D-CU-Net model, the dense skip connections are designed 

for complete connectivity among the deep layers of the 

architectures. Apart from the same level connections and 

completely connected dense networks, the descendent layers 

also connected via dense skip connections. Unlike the other U-

Net models, 3D-CU-Net is completely connected, means each 

node in the network is having the direct connectivity with all 

others of same layer and with their symmetric descendants of 

the below layers too is shown in fugure-5. Due to the complete 

dense connectivity, the semantic gap is reduced between the 

layers. Our skip connection allows selection of any best 

feature node from either the same layer or the descendant layer. 

This facility enables the in-depth analysis of input data at 

network layers and performs the deep feature fusion at 

decoders, to extract the crucial features for foreground 

prediction. To overcome the complete dense connectivity 

model created additional burden in training, the feature rich 

nodes are tagged at each layer and the tagged nodes only 

considered for propagation in training. In this way, the 3D-

CU-Net model addresses the slow pace of learning rate and 

controls the delays in model training too. Loss functions are 

designed specifically to find the training loss at 3D-CU-Net 

layers. 

 

 
 

Figure 4. Graphical representation of the 3D-CU-Net process 

layers 

 

Loss Function: While training and prediction process, the 

loss function is defined separately for each network (L1 to L4) 

at their decoders (X(0, n)) with a sigmoid activation function 

(S). In case of the kidney tumor segmentation process, the 

kidney tumors are generally very small (granules) in size and 

scattered over the kidney region. Because of the size 

invariance in tumor segmentation, finding the local minima in 

loss function is facing the ambiguity and biased towards the 

background voxels is specified by Yeung et al. 2022, Hashemi 

et al 2018. This biased mechanism may fail to detect the 

foreground (small tumors) part either partially or completely. 

To overcome the local minima finding issues of the loss 

function [17], the 3D-CU-Net integrated the Binary Cross 

Entropy (BCE) loss function and Soft-Dice Coefficient (SDC) 

loss function features together to find the local minima of the 

loss in predicted segmentations accurately. This integrated 

method generalizes the training and prediction loss by 

redesigning the weights of the foreground features. This 

integrated model of loss function is designed as: 

 

( ))~1log(*)1()~(log()~,( yyyyyyL −−+−=  (5) 

 

In a binary cross entropy loss function 𝐿(𝑦, �̃�) , the y is 

segmentation mask value and the �̃� is predicted segmentation 

value, which are joined later with the soft-dice coefficient 

function 𝐷(𝑦, �̃�) are: 
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In order to balance the precision and recall values in loss 

function, the foreground voxel weights are redesigned and the 
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integrated loss function 𝐿 ∗ 𝐷(𝑦, �̃�) is designed as: 
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where, the p(fi) is the probability of the predicted voxel 

foreground value where fi=1 and p(bi) is the probability of the 

predicted voxel background value, where bi=0. In contrary to 

this, the voxel actual values are reversed as 𝑓𝑖 = 0 and �̃�𝑖 = 1 

to cope up with the hyper parameters α and β of the loss 

function. In this size invariant tumor segmentation process, to 

leverage the computational efficiency and to handle the bias in 

background selection, the min-threshold (δmin) is defined. 

This threshold value limits the local minima, in which only the 

voxel contrast value is greater than the min-threshold (δmin) 

are considered for background separation to optimize the 

computational depth. Threshold approximation method 

defined by the Mayala and Haugsøen [18] for nucleus 

segmentation is adopted in our research to determine the min-

threshold (δmin) value. Based on the image pixel intensity and 

their frequencies approximation from histograms, the min-

threshold is evaluated in this research. 

 

 

4. EXPERIMENTS 

 

4.1 Training and testing 

 

This section explores the proposed 3D-CU-Net model 

training and testing on kidney MRI tumor segmentation 

process. Segmentation accuracy is evaluated using the 

standard metrics and compared against the counterparts of the 

proposed segmentation model. 

Dataset: To conduct the experiments on proposed 3D-CU-

Net model, a set of 3D MRI kidney images are selected from 

TCGA-KIRC dataset [19]. This dataset doesn’t contain any 

private information of data donors and is available in public 

domain for research analysis. As this dataset is collected from 

various locations, persons and devices, the dataset information 

is heterogeneous in image quality, modalities and metadata. 

The nature of the variance in dataset image properties helps to 

build the standard processing models, which can later process 

the data efficiently in real life applications. 

Although this dataset contains the CT and MR image 

modalities, only the 3D MRI images are selected for training 

and testing operations. Apart from this some required clinical 

data forms (i.e. kidney case quality form) are made available 

with this dataset for researcher reference. Along with the 

radiology images, the patients MRI volume metadata contains 

the demographic information and some clinical parameters 

also. A set of abdominal MRI images of NifTI1 type (with .nii 

extension) with their associated ground truth (masks) images 

are selected for research analysis. Health professionals and 

radiology institution technicians performed the kidney tumor 

ground truth segmentation for training and testing purpose. 

To conduct the experiments with TCGA-KIRC dataset, a 

prototype application is designed using the Python standard 

image processing libraries. Initially the NiBabel library 

functions are used in experiments for all read and write 

operations. After loading the MRI images and masks from 

system data paths, they are transformed into the Numpy arrays 

(3D Vectors) for further processing. A set of preprocess 

methods are applied on input vectors to prepare the input data 

for model training. As the selected dataset images are limited 

in count, a set of augmentation techniques like 3D-cGAN 

augmentation, Contrast enhancement, Noise injection, 

smoothing, skews and rotations are applied over the input 

dataset to increase the input data count 2x more (shown in 

Figure 5). Scikit Image and Numpy array library functions of 

python are widely used for input data preprocessing.  

 

 
 

Figure 5. Presentation of various preprocessing techniques 

applied on kidney MRI images 

 

After completion of the data preprocessing, an abstract deep 

learning 3D model for custom U-Net is created with Keras 

library, which is executing on TensorFlow platform. A set of 

completely connected dense networks are implemented using 

the concatenations immediate to the convolutions at encoders. 

The model (depth L4) with contracting layer, middle layer and 

expanding layers are generated using input the images, 

neurons and batch normalization functions. As the 3D-CU-Net 

model is compatible to handle all inputs with depth less than 

or equal to L4, depth invariance issues are normalized with 

same model and the completely connected dense skip 

connections assured the deep future fusions for crucial 

foreground features extraction. 

 

4.2 Experimental evaluation 

 

The total process of the experimental evaluation is classified 

into the three different phases are: Model Training, Prediction 

and Evaluation. 

Model Training: The TCGA-KIRC dataset contained MRI 

kidney image slices and associated masks are shuffled and 

partitioned as training dataset (70-75%) and test dataset (25-

30%). This training dataset images are splits into the batches 

(with size k) and are arranged into a pipeline for processing. 

By the time of the model creation, the initiation parameters 

like batch size, loss function, learning rate, metrics and other 

GPU settings are configured with respective values. After 

initializing with basic parameters, the proposed 3D-CU-Net 

model build function is compiled with weights, metrics, 

optimizers, loss functions and GPU mirror strategies. The 

build model is trained using an efficient fit function with the 

shuffled training data batches, epochs and callbacks. To avoid 

the class unbalance and over-fitting issues in model training, 

the weights and bias values are reassigned across the iterations 

of training process. For efficient memory management in 

training, a set of custom garbage collection functions are 

designed to clean up the temporary batch files and unusable 

data vectors in the middle. 
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Prediction: Soon after training the model with fitness 

function, the test dataset is given as input to the predict 

function for segmentation. Predict function with deep feature 

fusion capabilities performed the tumor segmentation from the 

test input data using the trained model knowledge. In 

prediction process, test dataset images from pipeline are 

iteratively loaded, segmented, post processed and persisted for 

future analysis. To ensure the proposed 3D-CU-Net prediction 

capabilities on data variance, a set of augmented (rotated) 

synthetic test images also segmented by the same model. 

Figure 6 is presenting the segmentation results obtained from 

the proposed 3D-CU-Net model. 

 

 
 

Figure 6. Comparison of 3D-CU-Net tumor segmentation 

results against the counterparts U-Net and U-Net++ 
 

Evaluation: In order to prove the accuracy of segmentation 

and efficiency of 3D-CU-Net model, experimental results are 

evaluated with the help of comparative analysis. For this 

comparison process, the popular deep convolutional networks 

U-Net and U-Net++ are selected as the counterparts to 3D-

CU-Net. After the selected segmentation models training and 

validation process, the training loss and validation loss are 

evaluated to showcase the under fitting or over fitting issues. 

Training and validation functions of these models are set with 

the gradient descendent minimum learning improvement value 

as Δ≥0.001, input feature coefficients values as α=0.7 and 

β=0.3, while training and validation. To perform the hyper 

parameter tuning process and to find the best fit values for ∆, 

α and β in training, we adopted the Adam optimization 

algorithm [20], which is consumes less memory and 

computational resources for estimation. 

Figure 7 is presenting the 3D kidney MRI image training 

and validation loss values obtained from the loss functions of 

U-Net with BCE, U-Net++ with SDC and 3D-CU-Net with 

SDC and CE. The mean value of the validation minimum loss 

values are U-Net (±0.146), U-Net++ (±0.098) and 3D-CU-Net 

(±0.091). Due to the efficient training and prediction methods, 

our 3D-CU-Net model recorded less error rate (loss) than its 

counterparts will improve the prediction accuracy. 

 
 

Figure 7. Comparative analysis of the training and validation 

loss in 3D MRI kidney tumor segmentation 

 

 
 

Figure 8. Comparison of the Kidney tumor segmentation 

accuracy using various deep learning models 
 

To conduct the extensive analysis on the selected deep 

segmentation models, the additional features (i.e. Deep fusion 

and Dense Skip Connections) are joined in experiments to 

generate more combinations. Intersection over Union (mIoU) 

and Dice Similarity Coefficient (mDSC) metrics are selected 

to calculate the similarity between prediction samples and 

their associated ground truth labels (masks). Finally, the mean 

value of these similarity vectors is considered as the prediction 

result accuracy value. Table 1 is presenting the MRI kidney 

tumor segmentation accuracy results obtained from various 

deep learning models with different feature combinations [21-

24]. 

Deep feature fusion with depth invariant unified 

architecture and completely connected dense skip connections 

of the 3D-CU-Net helped to record the highest segmentation 

accuracy with mIoU(92.21) and mDSC(92.69) is presented in 

Figure 8. 
 

Table 1. U-Net segmentation models prediction accuracy comparison using the metrics mIoU and mDSC 

 

Seg Model Params Deep fusion Dense Skip Loss Model mIoU mDSC 

U-Net 7.2M N N BCE 79.03 80.54 

U-Net ++ 7.7M N N SDC 82.72 80.11 

3D-CU-Net 8.2M N N SDC+CE 88.47 89.23 

U-Net 7.2M Y N BCE 83.14 84.07 

U-Net ++ 7.7M Y N SDC 87.91 85.25 

3D-CU-Net 8.2M Y Y SDC+CE 91.21 92.69 

70

75

80

85

90

95
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5. CONCLUSIONS

Deep learning models are playing a vital role in medical 

image analysis and disease diagnosis. In recent times, U-Net 

emerged as a popular deep network model for kidney tumor 

segmentation from 3D MRI images. In this study, the deep 

learning model U-Net limitations in medical image 

segmentation are thoroughly discussed. To address the U-Net 

limitations in medical image segmentation process, 3D-CU-

Net model is proposed with the encoder-decoder networks 

customization. 3D-cGAN and other preprocessing techniques 

are applied on input dataset for data augmentation and 

preprocessing. Unified deep network architecture is designed 

with depth invariant encoders and decoder to process various 

input images using the same model. A set of completely 

connected dense connections are designed to avoid the 

enforced feature fusion in model training. In depth analysis on 

input data extracts the crucial features, which helps in efficient 

foreground lineation. BCE and DSC loss function features are 

integrated to evaluate the pixel level segmentation accuracy 

between images and masks. TCGA-KIRC dataset is selected 

for experiments and python libraries are used for model 

implementation. Comparative analysis of experimental results 

is proven that, our proposed 3D-CU-Net model recorded the 

high accuracy in kidney tumor segmentation compared to its 

counterparts. 
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