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Plants are susceptible to a variety of illnesses throughout their growth stages. One of the 

trickiest issues in agriculture is the early diagnosis of plant diseases. The entire output may 

be negatively impacted by infections if they are not discovered early on, which would lower 

farmers' profitability. Numerous researchers have proposed numerous cutting-edge 

solutions based on Deep Learning and Machine Learning techniques to address this issue. 

However, the majority of these systems either has poor classification accuracy rates or 

utilizes millions of training parameters. In this research, a novel model using ConvLSTM U 

Net-based automatic detection of plant disease is proposed. To the best of our knowledge, 

no state-of-the-art systems described in the literature have a hybrid system based on CAE 

and CNN to automatically identify plant diseases. The proposed model employed in this 

study is to identify the presence of Bacterial Spot disease in medicinal plants using the image 

of their leaves, but it may be extended to identifying any plant disease. The work conducted 

for this research employ a dataset that is readily accessible to get images of medicinal plant 

leaves. In comparison to previous methods described in the literature, the proposed 

ConLSTM U-Net model requires for less training parameters. As a consequence of this, the 

amount of time necessary to train the model for automatic plant disease detection and the 

amount of time required to diagnose the disease in plants using the trained model are both 

significantly decreased. 
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1. INTRODUCTION

The ability to automatically identify plant diseases from leaf 

samples is a significant step forward in agriculture. In addition, 

the prompt and accurate diagnosis of plant diseases has a 

major influence on both crop yield and quality [1]. Due to the 

wide variety of crops grown, even a trained agronomist or 

pathologist may miss a plant disease's telltale symptoms on the 

leaves. However, in rural sections of impoverished countries, 

visual examination is still the major technique of disease 

diagnosis [2]. Experts must keep a constant eye on it as well. 

Farmers in more remote areas would have to spend time and 

money travelling to consult with an expert [3, 4]. Automated 

computational methods for plant disease identification and 

diagnosis are useful for farmers and agronomists due to their 

high throughput and accuracy.  

Deep learning is an emerging technique in machine learning 

(ML) that is being used in many different areas of study [5].

Deep learning enables the direct use of raw data [6] without

the need for the usage of manually produced features. The use

of deep learning in computer vision has received significant

attention in recent years, leading to the development of a

number of new approaches in the field [7]. The CNN-based

system proposed by Lu et al. [8] can accurately identify 10 

common rice diseases, including rice blast, rice false smut, rice 

sheath blight, foolish seedling disease, rice bacterial leaf blight, 

rice brown spot, rice seeding blight, rice sheath rot, rice 

bacterial sheath root, and rice bacterial wilt [9]. 

Many methods for assisting farmers and agricultural 

professionals in diagnosing illnesses have been identified 

using advanced image processing and pattern recognition 

algorithms. Using images and other artificial intelligence-

based technologies, the quality of agricultural and aquaculture 

items may also be automatically rated [10]. To construct a 

plant disease detection system, photographs of different plant 

sections may be obtained. The most common site to locate 

plant ailments is on a plant's leaves. Even though image 

processing technologies are useful in recognizing plant 

illnesses, these systems are prone to disparities in leaf 

photographs owing to changes in shape, color, texture, and 

other characteristics. Models for deep learning and machine 

learning may be trained using these photographs. In recent 

years, various deep learning techniques have been applied to 

the world of agriculture to handle a number of challenges, 

including insect identification, fruit detection, and 

classification of plant leaves, fruit disease detection, and leaf 
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disease detection. Real-time implementation of traditional 

machine learning algorithms for illness detection is fairly 

tough. Deep learning methods may therefore pave the way to 

overcoming these obstacles and establishing expert systems 

that will assist the agriculture business. Plant diseases have 

been detected and recognized using a number of approaches. 

The bulk of plant disease symptoms may be revealed by a very 

complex analysis of images of plant leaves. Due to the 

diversity of crops and the complexity of psychopathological 

problems, even trained agronomists often miss signs of plant 

sickness. Using deep learning and computer vision-assisted 

techniques, field experts and farmers may better diagnose 

plant diseases through the analysis of input leaf images. 

Numerous approaches have been developed by researchers 

to address the aforementioned problems. A wide variety of 

feature sets may be used by machine learning for plant disease 

classification. Among these feature sets, the traditional hand-

crafted ones and the ones based on deep learning (DL) are the 

most well-liked. Preprocessing, including image improvement, 

color alteration, and segmentation [11], is required prior to 

efficient feature extraction. The next step after feature 

extraction is to apply a classifier. Some examples of common 

classifiers are K nearest neighbors [12], support vector 

machine [13], random forest, decision tree [14], logistic 

regression, rule generation, naive bayes [15], Deep CNN, and 

artificial neural networks. Using similarity measurements 

(such as distance, proximity, or closeness) to address 

classification issues, KNN is a simple supervised machine 

learning approach [16]. A second popular supervised machine 

learning technique for classification, SVM [17, 18], has gained 

a lot of attention recently. The purpose of SVM [19, 20] is to 

identify a hyperplane that divides the data into distinct groups. 

In order to provide forecasts, NB classifiers use many 

probability metrics [21]. It's based on the assumption that the 

qualities that were artificially introduced have no causal 

relationship with one another [22]. An ANN is a kind of 

network with an output that is modelled after the neurons in 

the human brain [23]. The network is composed of an input 

layer, a processing layer, and an output layer. Learning is 

achieved by adjusting the weights [24]. Strong classification 

results may be obtained using handmade feature-based 

techniques, but these methods aren't without their limitations, 

such as the need for expensive and time-consuming 

preprocessing. The handcrafted-based approach has limited 

feature extraction, and the recovered attributes may not be 

enough for effective identification, so the accuracy goes down. 

Machine learning and other statistical approaches perform 

poorly since they depend on manual characteristics for 

operation. As a result, techniques based on deep learning were 

developed to identify various plant diseases in large datasets. 

The leaves of the Vigna mungo plant may be classified as 

healthy, moderate, or severe using a convolutional neural 

network [25]. When training the sequential network on images, 

several different preprocessing strategies are used. The overall 

accuracy of the model using images from different categories 

was 97.403%. The Efficient Net architecture [26] uses transfer 

learning to train a model using laboratory images of several 

plant leaf diseases for disease classification [27]. In the alpine 

steppes of northern Tibet, hyperspectral imaging is also used 

to identify plant species. Differentiating between plant species 

in challenging environments with high spatial homogeneity 

has been accomplished using principal component analysis, 

spectral indices, continuum reduction, and derivatives [28]. A 

total of 94.73 percent used four different types of machine 

learning approaches. Using imaging and convolutional neural 

network methods, researchers were able to combat bacteriosis, 

a common ailment of peach harvest [29]. A variety of adaptive 

strategies for determining the optimal color image channel and 

grey-level slicing for analyzing leaf photos. Bacteriosis is 

detected with 98.75 percent accuracy by the deep learning 

model. The PD2 SE-Net is an AI-assisted network developed 

for diagnosing plant diseases and quantifying their impact [30]. 

A total of five crops were divided into three groups for the 

study, and the Resnet-50 architecture was utilized to train a 

variety of images. Another study using transfer learning to 

diagnose cassava plant disease found it to be 93% accurate 

when presented with unlabeled images [31]. All the positive 

findings from the studies that have been published so far don't 

negate the need for further research into how to develop AI-

based systems with the sensitivity and specificity needed to 

accurately identify plant species and categories and detect 

illnesses. For these automatic classification frameworks to be 

more reliable and useful, they should be trained on a large 

number of crops in different classes and imaging settings. 

The remainder of the paper is organized into four 

subsections. In Section 2 of this study, some cutting-edge 

technologies for automated plant disease detection are 

explored. The construction of the suggested hybrid model and 

the processes involved are discussed in Section 3. Section 4 of 

this research presents the model's findings for identifying 

peach plants infected with bacterial spots. Finally, Section 5 

concludes the paper. 

 

 

2. MATERIALS AND METHODS OF THE PROPOSED 

MODEL 

 

Image processing is a technique for extracting quantitative 

information from images proposed in Ensemble Classifier for 

Plant Disease Detection (ECPDD) [32]. These image 

processing methods have been applied to real-world issues in 

a wide variety of fields, including medical imaging, remote 

sensing, robotic vision, pattern recognition, video processing, 

and color processing, and so on. In agriculture, these methods 

have been useful for a wide variety of tasks, including 

estimating crop yields, assessing the quality of fruits and 

vegetables, and diagnosing illnesses in leaves. The quality of 

plants and crops is greatly diminished by the overuse of 

fertilizers and pesticides; professionals can typically detect 

plant illnesses merely by looking at them. This work proposes 

an ensemble model for plant disease detection at the leaf level, 

using Random Forest and K-Nearest Neighbor (KNN). Images 

of plant diseases were utilized as the benchmark dataset. One 

thousand photographs of both healthy and diseased leaves 

(brown rust, early blight, and late blight) are included in this 

collection. 

In Automatic Recognition of Medicinal Plants using 

Machine Learning Techniques (ARMP), a wide range of 

individuals may benefit from improved plant species 

identification [33]. Among them are foresters, taxonomists, 

botanists, pharmaceutical labs, doctors, organizations working 

to save endangered species, governments, and the general 

public. As a result, there is a growing need for machine-based 

plant identification capabilities. It has been proven to be 

possible to fully automate the identification of medicinal 

plants using computer vision and machine learning approaches. 

Twenty-four different medicinal plant species had their leaves 

picked in a controlled environment and shot using a smart 
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phone. Each leaf's length, breadth, area, perimeter, colour, 

number of vertices, and hull area were recorded. Finally, based 

on these primary features, a large number of derivative 

features were calculated. Using a random forest classifier and 

a 10-fold cross-validation technique yielded the most 

promising results. With an accuracy of 90.1%, the random 

forest classifier outperforms the k-nearest neighbour, support 

vector machine, naive Bayes, and neural network methods. 

This fundamental rationale provides the basis for new state-

of-the-art segmentation and classification algorithms [34], and 

is a major driving force in the Particle Swarm Optimization 

with fuzzy C means based segmentation and machine learning 

classifier for leaf disease prediction (PSOFCM). This paper's 

primary focus is on developing a unique approach to disease 

prediction in leaves. This study examined a novel and effective 

method for segmenting images, extracting features, and 

classifying plant leaf diseases. The proposed technique begins 

with image preprocessing for plant leaves, then applies 

background removal using the Gaussian Mixture Model 

(GMM), followed by segmentation using fuzzy c-means with 

assistance from Particle Swarm Optimization (PSO) (PSO-

FCM). Calculating vein and form features, edge-based feature 

extraction, and texture features (TF). In order to classify 

medicinal plant leaves, this method employs the Multiple 

Kernel Parallel Support Vector Machine (MK-PSVM) 

classifier. 

In the Classification of Medicinal Plant Leaves Based on 

Multispectral and Texture Features Using Machine Learning 

Approach (MTFML), the Department of Agriculture at 

Islamia University of Bahawalpur in Pakistan gathered the 

leaves of six different types of medicinal plants for the dataset. 

Scientifically, these plants are referred to by their Latin names: 

Mentha balsamea, Ocimum sanctum, Melissa officinalis, 

Aegle marmelos, Stevia rebaudiana, and Nepeta cataria. 

(Herbal) Common English names for these plants include 

Peppermint, Tulsi, Lemon, balm, Bael, Stevia, and Catnip [35]. 

Computer vision lab space is required to collect the 

multispectral and digital image datasets. They scale down the 

leaf and convert it to grayscale before they begin working on 

it. The second stage is to apply a Sobel filter to detect edges 

and lines in the data based on the strength of the seeds. There 

are a total of 65 fused features retrieved, all of which are a 

mashup of texture, run-length matrix, and multispectral 

features. To start the feature optimization process, they had 

selected 14 primary features using a chi-square feature 

selection strategy. 14 optimized features are Texture Energy 

Average, Correlation Range, Inverse Diff Range, Texture 

Entropy Range, 45dgr_GLevNonU, Vertl_GLevNonU, S (5, 

5) Entropy, Skewness, 135dgr_RLNonUni, R, G, B, NIR, and 

SWIR. 

The primary contribution of the proposed study is the 

creation of a system for the identification and categorization 

of plant diseases based on deep learning. Based on their health 

and disease classification, plant leaves from four distinct crops 

have been taken into consideration [36]. The gathered dataset 

makes use of pictures from databases from various nations to 

ensure that the suggested framework is accepted globally. For 

creating a solid foundation, the photos include both laboratory 

and field images. Dense convolutional neural network 

architectures are trained on a big dataset of gathered pictures 

from diverse categories [37]. Images feature a lot of intra-and 

interclass variance and complicated backgrounds. For the 

purposes of studying and testing the framework, the collected 

dataset is separated into training, validation, and testing sets. 

Real-time operation, resolution invariance, as well as the 

ability to link to camera systems for monitoring plant health 

are only some of the advantages of the proposed framework. 

 

 
 

Figure 1. ConvLSTM U-Net with bidirectional connectivity 

and completely linked convolutional layers 

 

There are four steps to the BCDU-Net contracting process. 

Convolutional 33 filters, a maximum pooling function of 22, 

and a ReLU are used in each step. Each stage increases the 

number of feature maps by a factor of two as depicted in Figure 

1. Using a layer-by-by-layer expansion method, the 

contracting methodology constantly extracts picture 

representations. The last layer of encoding generates a high-

dimensional visual representation with a significant amount of 

semantic information. A set of convolutional layers make up 

the last step of the original U-encoding Net's process. When a 

network includes a number of convolutional layers, the 

method learns many types of properties. Even yet, duplicate 

features from succeeding convolutions could be picked up by 

the network. This problem is addressed by densely coupled 

convolutions [38]. This helps the network operate better by 

using the idea of "collective knowledge," in which the feature 

maps are reused across the network. Before passing them on 

to be used as the input to the next convolution, it involves 

merging the feature maps learned from the current layer with 

the feature maps learned from all prior convolutional layers 

[39]. 

There are certain advantages to using densely coupled 

convolutions rather than standard convolutions. It helps the 

network learn new feature maps, rather than only relying on 

the same old ones. This idea also improves the network's 

representational power by facilitating the exchange of data 

between nodes and the recycling of previously used 

characteristics. To further mitigate the threat of gradient 

inflation or disappearance, densely coupled convolutions may 

get an advantage from all features produced before. Taking the 

opposite path to get to their proper nodes in the network also 

speeds up the transmission of gradients. The proposed network 

makes advantage of densely coupled convolutions. To do this, 

we add a single block in the form of two convolutions. Figure 

2 depicts the last convolutional layer of the encoding 

procedure, which consists of a sequence of N blocks. 

The output of the preceding layer must be upsampled before 

decoding can begin. Regular U-Nets have matching feature 

maps trimmed in the contracting route and then transferred to 

the decoding path. Following the up-sampling procedure, 

these feature maps are sent into the algorithm. To further refine 

the processing of these two feature maps, we use 

BConvLSTMin BCDU-Net. First, χd is sent to an up-

convolutional layer (see Figure 3), where a 2 x 2 convolution 
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and an upsampling function are used to decrease the number 

of feature channels while simultaneously expanding the size 

of each feature map [40]. 

 

 
 

Figure 2. Dense Layer of Bi-Directional ConvLSTM U-Net 

 

 
 

Figure 3. U-Net Bi-Directional ConvLSTM 

 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ∗ 𝜒𝑡 + 𝑊ℎ𝑖 ∗ ℋ𝑡−1 + 𝑊𝑐𝑖 ∗ 𝐶𝑡−1 + 𝑏𝑖) (1) 

 

𝑓𝑡 = 𝜎(𝑊𝑥𝑖 + 𝜒𝑡 + 𝑊ℎ𝑓 ∗ ℋ𝑡−1 + 𝑊𝑐𝑓 ∗ 𝐶𝑡−1 + 𝑏𝑓) (2) 

 

𝐶𝑡 = 𝑓𝑡𝜊𝐶𝑡−1 + 𝑖𝑡𝑡𝑎𝑛ℎ(𝑊𝑥𝑐 ∗ 𝜒𝑡 + 𝑊ℎ𝑐 ∗ ℋ𝑡−1

+ 𝑏𝑐) 
(3) 

 

𝜊𝑡 = 𝜎(𝑊𝑥𝑜 ∗ 𝜒𝑡 + 𝑊ℎ𝑜 ∗ ℋ𝑡−1 + 𝑊𝑐𝑜𝜊𝐶𝑡 + 𝑏𝑐) (4) 

 

ℋ𝑡 = 𝑜𝑡𝜊tanh (𝐶𝑡) (5) 

 

 
 

Figure 4. Leaf photos from several categories utilized in the 

suggested work 

After splitting the input into forward and backward paths 

using two ConvLSTMs, BConvLSTM makes a judgement for 

the current input by taking into account the dependencies in 

both directions of the data. In a typical ConvLSTM, just the 

forward-direction dependencies are taken into account. 

However, the whole chain of information must be considered, 

therefore backward dependencies must be taken into 

consideration. Prediction accuracy was shown to increase by 

looking at data from both the present and the past. Standard 

ConvLSTMs may be thought of as both backward and forward 

ones. There are, therefore, two groups of settings to adjust for 

the forward and reverse states. 
The disease known as bacterial spot has been identified in 

plants using the model that was presented. The Mendeley 

dataset has been mined for photos of plant leaves, and those 

results have been presented here. Arjun, Alstonia, Scholaris, 

Bael, and Jatropha are the four plants that have been chosen 

for this purpose. All four of these plants are good for both the 

economy and the environment. Images of these plants' leaf 

surfaces, both when they were healthy and when they were 

sick, have been collected and put into two different modules. 

The whole collection of pictures has been divided into two 

categories: healthy and ill. This was the primary method of 

organisation used. To begin with, the obtained photos are 

categorised and named in accordance with the plants. Figure 4 

illustrates both a healthy leaf and a damaged leaf from a leaf 

plant, providing an example of each. 

 

 

3. EXPERIMENTAL VALIDATION 

 

Between the original U-Net and the new network that is 

being planned, there are many notable fundamental 

differences. Table 1 provides a summary of our findings on the 

"Accuracy" and "Average Processing time" of the original U-

Net and its modifications for the 10 datasets that were utilised. 

After making any changes to the network, we evaluate each 

part for its effect on the final result. Table 1 depicts how the 

basic U-outcome Net's is enhanced by the addition of 

BConvLSTM to the skip connections. There are 10 samples of 

Alstonia Scholaris plant leaves from Mendeley dataset in 

Figure 5. The original U-Net and the BCDU-Net are shown 

with their percent accuracy for each sample. Compared with 

the original U-Net segmentation, the recommended network's 

results are more precise. In order to use the capabilities of the 

subsequent encoding layer and the preceding decoding layer, 

it is necessary to incorporate the skip connections. For the sake 

of shorthand, we refer to these as the encoded and decoded 

features. These two types of features are concatenated together 

in the initial version of U-Net. 

In order to merge the information that had been encoded and 

decoded, we used a set of BConvLSTMs as a component of 

the proposed network. The encoded features are more detailed 

on a level that is measured in terms of individual pixels, yet 

the decoded qualities include a greater amount of semantic 

information. Due to the relative relevance of these two features, 

a collection of feature maps that are rich in both local and 

semantic information may be generated using them. Instead of 

a straightforward concatenation, we use the BConvLSTM 

algorithm, which allows us to combine the encoded and 

decoded features. For each feature class, the BConvLSTM 

algorithm applies a chain of convolution filters. This way, each 

ConvLSTM state that corresponds to a particular feature (such 

as an encoded feature) can encode relevant information about 
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a separate feature. Using convolutional filters and hyperbolic 

tangent functions, the network is able to learn advanced data 

architectures. 

Table 2 and Figure 6 depict the accuracy in terms of 

percentage for the Arjun plant leaf with the comparison of 

existing and proposed methods. For the 100% data chunk, the 

accuracy is 96.84919%, which is much higher than the existing 

methods, ECPDD, ARMP, PSOFCM, and MTFML such as 

94.99%, 89.75%, 89.79% and 95.09% respectively. 

Table 3 and Figure 7 depict the accuracy in terms of 

percentage for the Arjun plant leaf with the comparison of 

existing and proposed methods. For the 100% data chunk, the 

accuracy is 98.79%, which is much higher than the existing 

methods, ECPDD, ARMP, PSOFCM, and MTFML, such as 

96.94%, 91.69%, 91.74% and 97.04% respectively. 

Table 4 and Figure 8 depict the accuracy in terms of 

percentage for the Arjun plant leaf with the comparison of 

existing and proposed methods. For the 100% data chunk, the 

accuracy is 98.79%, which is much higher than the existing 

methods, ECPDD, ARMP, PSOFCM, and MTFML, such as 

96.94%, 91.69%, 91.74% and 97.04% respectively. 

 

 
 

Figure 5. Accuracy for Alstonia Scholaris plant leaves 

 
 

Figure 6. Accuracy for Arjun plant leaf 

 

 
 

Figure 7. Accuracy for Bael plant leaf 

 

Table 1. Parameters of accuracy (%): Plant name - Alstonia Scholaris 
 

Data (%) ECPDD [32] ARMP [33] PSOFCM [34] MTFML [35] BIDCU [Proposed Method] 

10 50.97006 62.47006 55.27007 64.17006 62.22006 

20 63.8101 68.89156 63.65083 72.21713 70.98042 

30 73.67596 76.83777 72.68187 79.11423 80.19102 

40 79.03364 80.19656 78.1651 84.89768 84.37428 

50 82.68828 81.35683 79.44756 85.83125 86.86797 

60 86.64868 84.39197 83.44533 89.54398 90.08407 

70 88.49948 86.53772 85.6936 90.80124 91.80556 

80 92.59455 88.33894 88.01674 94.16562 94.6055 

90 92.85191 88.17555 88.56374 94.02846 95.88203 

100 94.99919 89.74919 89.79919 95.09919 96.84919 
 

Table 2. Parameters of accuracy (%): Plant name – Arjun 
 

Data (%) ECPDD [32] ARMP [33] PSOFCM [34] MTFML [35] BIDCU [Proposed Method] 

10 51.13187 62.63187 55.43188 64.33188 62.38187 

20 65.26641 70.34787 65.10715 73.67343 72.43674 

30 71.73422 74.89603 70.74012 77.17249 78.24928 

40 77.2537 78.41663 76.38516 83.11774 82.59434 

50 82.85009 81.51863 79.60936 85.99307 87.02977 

60 86.00143 83.74472 82.79808 88.89673 89.43682 

70 88.49948 86.53772 85.6936 90.80124 91.80556 

80 92.59455 88.33894 88.01675 94.16562 94.60551 

90 93.9846 89.30824 89.69642 95.16114 97.01473 

100 94.99919 89.74919 89.79919 95.09919 96.84919 
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Table 3. Parameters of accuracy (%): Plant name – Bael 

 
Data (%) ECPDD [32] ARMP [33] PSOFCM [34] MTFML [35] BIDCU [Proposed Method] 

10 50.32281 61.82282 54.62282 63.52281 61.57282 

20 65.26641 70.34787 65.10715 73.67343 72.43674 

30 73.67596 76.83777 72.68187 79.11423 80.19102 

40 77.09189 78.25481 76.22335 82.95593 82.43253 

50 84.14459 82.81313 80.90385 87.28757 88.32427 

60 87.94318 85.68646 84.73982 90.83848 91.37856 

70 88.49948 86.53772 85.6936 90.80124 91.80556 

80 92.10912 87.8535 87.5313 93.68018 94.12007 

90 94.14642 89.47006 89.85824 95.32296 97.17654 

100 96.94094 91.69094 91.74094 97.04094 98.79094 

 

 
 

Figure 8. Accuracy for Jatropha plant leaves 

 

Table 5 and Figure 9 depict the average processing time in 

terms of milliseconds for the Alstonia Scholaris plant leaves 

with the comparison of existing and proposed methods. For the 

80% data chunk, the processing time is 1253ms, which is 

much lesser than the existing methods, ECPDD, ARMP, 

PSOFCM, and MTFML such as 1576ms, 1401ms, 1529ms 

and 1956ms respectively. 

 

 
 

Figure 9. Average processing time (ms) for Alstonia 

Scholaris plant leaves 

 

Table 6 and Figure 10 depict the average processing time in 

terms of milliseconds for the Arjun plant leaf with the 

comparison of existing and proposed methods. For the 100% 

data chunk, the processing time is 1273ms, which is much 

lesser than the existing methods, ECPDD, ARMP, PSOFCM, 

and MTFML such as 1595ms, 1424ms, 1555ms and 1982ms 

respectively. 

 
 

Figure 10. Average processing time (ms) for Arjun plant leaf 

 

Table 7 and Figure 11 depict the average processing time in 

terms of milliseconds for the Bael plant leaf with the 

comparison of existing and proposed methods. For the 100% 

data chunk, the processing time is 1252ms, which is much 

lesser than the existing methods, ECPDD, ARMP, PSOFCM 

and MTFML such as 1574ms, 1403ms, 1534ms and 1961ms 

respectively. 

 

 
 

Figure 11. Average processing time (ms) for Bael plant 

leaves 

 

Table 8 and Figure 12 depict the average processing time in 

terms of milliseconds for the Jatropha plant leaf with the 

comparison of existing and proposed methods. For the 100% 

data chunk, the processing time is 1257ms, which is much 

lesser than the existing methods, ECPDD, ARMP, PSOFCM 

and MTFML such as 1579ms, 1408ms, 1539ms and 1966ms 

respectively. 
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Table 4. Parameters of accuracy (%): Plant name – Jatropha 

 
Data (%) ECPDD [32] ARMP [33] PSOFCM [34] MTFML [35] BIDCU [Proposed Method] 

10 49.99919 61.49919 54.29919 63.19919 61.24919 

20 64.13373 69.21519 63.97446 72.54075 71.30405 

30 72.70509 75.8669 71.711 78.14336 79.22015 

40 78.06276 79.22569 77.19423 83.9268 83.4034 

50 81.71741 80.38595 78.47668 84.86038 85.89709 

60 86.97231 84.71558 83.76895 89.8676 90.40768 

70 89.47035 87.50859 86.66447 91.77212 92.77643 

80 93.56542 89.30981 88.98762 95.13649 95.57638 

90 93.17554 88.49918 88.88736 94.35208 96.20566 

100 95.97006 90.72006 90.77007 96.07006 97.82006 

 

Table 5. Average processing time in millisecond: Plant name - Alstonia Scholaris 

 
Data (%) ECPDD [32] ARMP [33] PSOFCM [34] MTFML [35] BIDCU[Proposed Method] 

10 1694 1476 1470 2042 1308 

20 1589 1497 1521 1988 1306 

30 1658 1413 1485 1929 1386 

40 1676 1367 1478 1935 1258 

50 1700 1458 1463 1990 1386 

60 1582 1361 1475 2033 1358 

70 1609 1439 1479 1953 1255 

80 1576 1401 1529 1956 1253 

90 1651 1407 1496 1977 1312 

100 1607 1436 1567 1994 1285 

 

Table 6. Average processing time in millisecond: Plant name – Arjun 

 
Data (%) ECPDD [32] ARMP [33] PSOFCM [34] MTFML [35] BIDCU[Proposed Method] 

10 1682 1464 1458 2030 1296 

20 1568 1476 1500 1967 1285 

30 1637 1392 1464 1908 1365 

40 1664 1355 1466 1923 1246 

50 1680 1438 1443 1970 1366 

60 1570 1349 1463 2021 1346 

70 1629 1459 1499 1973 1275 

80 1605 1430 1558 1985 1282 

90 1671 1427 1516 1997 1332 

100 1595 1424 1555 1982 1273 

 

Table 7. Average processing time in millisecond: Plant name – Bael 

 
Data (%) ECPDD [32] ARMP [33] PSOFCM [34] MTFML [35] BIDCU[Proposed Method] 

10 1702 1484 1478 2050 1316 

20 1598 1506 1530 1997 1315 

30 1657 1412 1484 1928 1385 

40 1684 1375 1486 1943 1266 

50 1709 1467 1472 1999 1395 

60 1590 1369 1483 2041 1366 

70 1617 1447 1487 1961 1263 

80 1584 1409 1537 1964 1261 

90 1660 1416 1505 1986 1321 

100 1574 1403 1534 1961 1252 

 

Table 8. Average processing time in millisecond: Plant name – Jatropha 

 
Data (%) ECPDD [32] ARMP [33] PSOFCM [34] MTFML [35] BIDCU [Proposed Method] 

10 1666 1448 1442 2014 1280 

20 1593 1501 1525 1992 1310 

30 1662 1417 1489 1933 1390 

40 1680 1371 1482 1939 1262 

50 1705 1463 1468 1995 1391 

60 1586 1365 1479 2037 1362 

70 1613 1443 1483 1957 1259 

80 1580 1405 1533 1960 1257 

90 1655 1411 1500 1981 1316 

100 1579 1408 1539 1966 1257 
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Table 9. True positive rate: Plant name - Alstonia Scholaris 

 
Data (%) ECPDD [32] ARMP [33] PSOFCM [34] MTFML [35] BIDCU [Proposed Method] 

10 50.94126 62.09982 55.07421 63.61722 61.82283 

20 63.85899 68.77007 63.65804 72.29578 71.09703 

30 73.83021 76.87735 72.87568 79.15717 80.449 

40 79.37925 80.24992 78.41412 84.78511 83.82508 

50 83.90514 82.35631 80.76715 86.97337 87.73164 

60 86.94219 84.49355 83.78128 89.46288 90.28326 

70 88.31904 86.18639 85.59718 90.01264 91.90157 

80 91.98917 87.79404 87.36592 93.32436 93.62748 

90 93.13108 88.81493 88.50491 94.31529 96.27409 

100 94.94611 89.11625 89.05016 94.16375 95.74307 

 

Table 10. True negative rate: Plant name - Alstonia Scholaris 

 
Data (%) ECPDD [32] ARMP [33] PSOFCM [34] MTFML [35] BIDCU [Proposed Method] 

10 51.00068 62.86368 55.48165 64.7697 62.64492 

20 63.76156 69.01463 63.64364 72.13903 70.86509 

30 73.5237 76.79831 72.4913 79.07142 79.93737 

40 78.69607 80.14339 77.92041 85.01099 84.9416 

50 81.55575 80.41724 78.23649 84.7576 86.04294 

60 86.3598 84.29098 83.11598 89.6254 89.88683 

70 88.68162 86.89593 85.79054 91.62155 91.70999 

80 93.21764 88.89977 88.69064 95.04018 95.62838 

90 92.57634 87.5569 88.62273 93.74532 95.49657 

100 95.05241 90.40296 90.57752 96.07512 98.01013 

 

Table 11. Parameter F-Measure (%): Plant name - Alstonia Scholaris 

 
Data (%) ECPDD [32] ARMP [33] PSOFCM [34] MTFML [35] BIDCU [Proposed Method] 

10 51.70888 63.03559 56.11698 64.88291 62.84426 

20 63.74616 68.99191 63.64124 72.16804 70.89999 

30 73.5905 76.8207 72.56565 79.09885 80.10674 

40 78.90958 80.17909 78.06901 84.92208 84.50011 

50 82.37195 81.06436 78.99715 85.60899 86.71592 

60 86.59543 84.36895 83.3626 89.5547 90.05948 

70 88.52649 86.60275 85.71294 90.89101 91.79616 

80 92.64755 88.42239 88.1202 94.22173 94.66531 

90 92.82871 88.07735 88.57246 94.00907 95.86451 

100 95.00214 89.83146 89.89609 95.15055 96.88683 

 

 

 
 

Figure 12. Average processing time (ms) for Jatropha plant 

leaves 

 

Table 9, 10 and 11 depicts the true positive rate, true 

negative rate, and F-Measure for the plant leaf Alstonia 

Scholaris. 

4. CONCLUSIONS 

 

Utilizing digital imagery to identify and classify plant 

diseases is a difficult endeavour. Therefore, prompt detection 

of the plant disease is crucial for farmers and plant pathologists 

to take the appropriate response. The proposed methodology 

uses a total of four distinct types of plant leaf photos for this 

purpose. The images of the plants that were taken into 

consideration were from a variety of different categories and 

included both lab-view and live field photos of the plants. 

Inherent diversity was present in each of these photograph 

types. During training, the deep learning dense model is given 

a variety of photographs from a wide range of categories. To 

properly evaluate the model, this was then tested on the testing 

set’s unseen photos. The proposed model demonstrated its 

applicability to identify plant diseases and classify them by 

achieving an average cross-validation accuracy of 85.39%, 

85.24%, 85.82%, and 85.38% and an average processing time 

of 1310.7ms, 1306.6ms, 1314ms and 1308.4ms for the 

Alstonia Scholaris, Arjun, Bael and Jatropha plant leaf 

respectively. Other plant leaf photos will be taken into 

consideration in subsequent work in order to diversify the 

plant leaf dataset and aid the trained model in challenging 

conditions. 
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