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Deep learning has exponentially enhanced the state-of-the-art in several Artificial 

Intelligence (AI) domains, including computer vision, user authentication, healthcare, 

object recognition and image processing. Recently, deep rule-based classifier (DRB) is 

being employed to solve diverse problems of classification or prediction. Thus, in this paper, 

we present a novel, simple, automatic, and effective DRB classifier-based scheme for MRI 

brain tumor classification. The proposed framework is composed of three stages, i.e., 

preprocessing, feature extraction and classification. Especially, in the second stage, we have 

investigated and analyzed comparative performances of various deep features extracted by 

the AlexNet, VGG-16, ResNet-50, ResNet-18 deep learning networks. After feature 

extraction step, a DRB classifier is employed for classification. The proposed method is 

evaluated on two publicly available datasets that are available on Kaggel website. The first 

database is a binary database (i.e., tumor and no tumor). Whereas the second one is a 

multiclass database (i.e., Meningioma, Glioma and Pituitary tumor). Experimental results 

show that the proposed method can obtain notable performances. Moreover, the 

comparative study with classical methods (e.g., SVM, KNN, Decision tree) as well as 

several state-of-the-art distance techniques demonstrated the effectiveness of proposed 

approach in MRI brain tumor detection and classification. 
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1. INTRODUCTION

According to the World Health Organization (WHO), 

cancer is one of the leading grounds of death worldwide [1, 2]. 

Unlike cancer, a tumor could be benign or malign [3]. The 

uniformity structures and non-active cancer cells are present 

in benign tumor. But non-uniformity structures and active 

cancer cells, which have been spread or could spread all 

various parts, are present in malignant tumor. The key issue is 

early detection and classification of brain tumor, thereby most 

suitable therapy, radiation, surgery, or chemotherapy can be 

decided to avoid the further complications [4]. Consequently, 

the chances of survival of a tumor-infected patient can be 

increased significantly [5]. 

Owing to the high soft tissue’s contrast, high spatial 

resolution, and non-invasive characteristic, MRI is the most 

effective technique for diagnosing human brain tumors [6]. 

However, it is still a challenging and time-consuming process 

because of the brain tumors’ complexity. The manual 

evaluation of results and images depends strongly on the 

radiologists’ experience and knowledge. Furthermore, 

conventional methods are impractical for large amounts of 

data, and are also non-reproducible and susceptible to human 

subjectivity. Therefore, computer-aided-diagnosis (CAD) 

systems are very necessary to overcome such limitations. 

Over the years, automated machine learning based methods 

have been developed. However, most traditional machine 

learning approaches have certain limitations with MRI images, 

mainly owing to huge data, and so on. New developments in 

AI show that deep learning (DL) frameworks can easily handle 

and processes big data efficiently. In particular, recent deep 

learning techniques have achieved great success and 

popularity not only in healthcare/medical fields but also in 

several AI domains such as autopilot vehicles, speech 

recognition, image classification, and hand-written digit 

recognition. The success of DL is due to the large amount of 

available data and compute capacity. Such factors allow DL 

frameworks to effectively learn and extract powerful features 

from data; rather than classical approaches that use hand-

crafted features or rules designed by experts. Also, numbers of 

DL studies have demonstrated results surpassing human 

accuracy. 

The latest introduction of information technology in 

medical diagnosis is greatly helping specialists to offer better 

solutions. These days, early-stage brain tumors detection is 

possible and vital for efficient treatments. The problem of 

brain tumor classification can mainly be divided into two 

categories: (i)binary classification, i.e., normal and abnormal 

classes; (ii) multi classification, which aims at discriminating 

between different types of brain tumors such as Glioma, 

Meningioma, Pituitary, and Metastatic [7]. Despite advances 

in MRI brain tumor detection and classification using machine 

learning methods, the performances sometime are less than 

expected if the size of the database is small or the framework 

is huge and requires huge database and compute facilities. 

Inspired by such issues and to solve some of the existing 
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problems, we propose a new automated MRI brain tumor 

classification framework based on deep learning techniques. It 

consists of three stages, i.e., preprocessing, feature extraction 

and classification. Both feature extraction and classification 

steps are hinged on deep learning techniques. Namely, the 

proposed work extracts deep features from the MRI images, 

and utilizes the deep rule based (DRD) classifier for the 

classification of MRI brain tumor. The proposed method is 

evaluated on two public datasets. The first database is a binary 

database (i.e., tumor, no tumor) and the second one is a 

multiclass database (i.e., Meningioma, Glioma and Pituitary 

tumor). 

The main contributions of this study are summarized as 

follows: 

• A generalized framework for MRI brain tumor 

classification using deep learning techniques. 

• For enhanced classification performance, use of deep 

features with the DRB classifier. 

• Several experiments on two public datasets, i.e., a 

binary database (i.e., tumor, no tumor), and a multiclass 

database (i.e., Meningioma, Glioma and Pituitary 

tumor). Furthermore, a comparative analysis of results 

on a small database and a large database. 

• A comparative evaluation of the state-of-the-art 

classical methods (SVM, KNN, Decision tree) together 

with different low- and high-level features. 

• A comparative study of various distance methods with 

the DRB classifier.  

The remained of this paper is organized as follows. Section 

2 presents an overview of related work. The proposed 

methodology is presented in Section 3. Section 4 describes the 

architecture of the DRB classifier employed in this paper. 

Experimental results are presented in Section 5. Conclusions 

are drawn in Section 6. 

 

 

2. RELATED WORK 

 

There exist several studies on detection and classification of 

MRI brain images using machine learning techniques, 

summarized in Table 1; such as fuzzy clustering means (FCM), 

K-nearest neighborhood (K-NN), and support vector machine 

(SVM). For instance, Zhang et al. [8] proposed pathological 

brain detection (PBD) method, where wavelet packet Tsallis 

entropy (WPTE) technique and fuzzy support vector machine 

(FSVM) has been applied in feature extraction and 

classification step, respectively. Bahadure et al. [9] combined 

Berkeley Wavelet Transformation (BWT) features with the 

support vector machine (SVM) to classify healthy and infected 

tissues from MRI images. They achieved an accuracy of 

96.51%. Zhang et al. [10] proposed an automatic method for 

classification of MRI brain images based kernel support vector 

machine (KSVM) and wavelet transform (WT) features with 

Principal Component Analysis (PCA) to reduce the size of 

features. Usman and Rajpoot [11] investigated wavelet texture 

features with random forest classifier to predict tumor labels 

as multiclass classification. Cheng et al. [7] presented an 

automatic classification method by focusing on the 

classification of three types of brain tumors (i.e., Meningioma, 

Glioma, and Pituitary tumor). To improve the classification 

accuracy, the augmented tumor region was used instead of the 

original image. For feature extraction, three methods (i.e., 

intensity histogram, gray level, and co-occurrence matrix 

(GLCM), and bag-of-words) were combined. 

In recent years, several studies using deep learning (DL) 

techniques have been developed. For example, Ari and 

Hanbay [12] designed a technique based on extreme learning 

machine local receptive fields (ELM-LRF) to classify the 

tumor region as benign or malignant, which obtained an 

accuracy of 97.18%. Varuna et al. [6] presented Discrete 

Wavelet Transformation (DWT) for MRI brain images feature 

extraction and probabilistic neural network as classifier, and 

achieved nearly 100% accuracy. Byale et al. [13] presented a 

binary classification technique. The proposed technique first 

employed Grey Level Co-occurrence Matrix (GLCM) for 

feature extraction followed by Neural Networks (NN) to 

classify the tumor as benign or malignant with accuracy of 

93.33%. Badža et al. [2] presented a new CNN architecture for 

MRI-based brain tumor classification. They examined the 

classification of three tumor types (i.e., Meningioma, Glioma 

and Pituitary tumor) from an imbalanced database. The 

accuracy achieved by this work was 96.56%. 

 
Table 1. Summary of prior works on MRI brain tumor identification and classification system 

 
Year Authors Features Methods Accuracy 

2020 Badža et al. [2] CNN CNN 96.56% 

2018 
Varuna et al. 

[6] 
Discrete wavelet Transformation (DWT) Probabilistic Neural Network 100% 

2015 Cheng et al. [7] 
Intensity histogram, Gray Level Co-occurrence Matrix 

(GLCM), and Bag-of-Words (BoW) model 
SVM 91.14% 

2015 Zhang et al. [8] Wavelet Packet Tsallis Entropy (WPTE), 
Fuzzy Support Vector Machine 

(FSVM) 
99.49% 

2017 
Bahadure et al. 

[9] 
Berkeley Wavelet Transformation (BWT) Support Vector Machine (SVM) 96.51% 

2012 
Zhang and Wu 

[10] 

Wavelet transform (WT) followed by Principal 

Component Analysis (PCA) 

Kernel Support Vector Machine 

(KSVM) 
99.38% 

2017 
Usman and 

Rajpoot [11] 
Wavelet Texture Features  Random forest classifier 95.00% 

2018 
Ari and Hanbay 

[12] 
Convolutional Neural Network (CNN) 

Extreme Learning Machine Local 

Receptive Fields (ELM-LRF) 
97.18% 

2018 Byale et al. [13] Grey Level Co-occurrence Matrix GLCM Neural Networks (NN) 93.33% 
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3. PROPOSED METHODOLOGY  

 

The main aim of this study is to devise an MRI brain tumor 

classification method using deep learning techniques. The 

proposed methodology which presented in Figure 1 it consists 

of three stages, i.e., preprocessing, feature extraction, and 

classification. The feature extraction and classification steps 

are both based on deep learning techniques. 

 

 
 

Figure 1. Block diagram of the presented method 

 

3.1 Pre-processing step 

 

The preprocessing step plays an important role in improving 

the quality of the image that leads to achieving better results 

in feature extraction and classification steps. It consists of 

fundamental pre-processing techniques such as binarization, 

normalization, rotation, resizing, and removal of undesired 

parts of MR images. 

 

3.2 Feature extraction step 

 

Feature extraction is also a vital step in the classification 

process. It consists of finding the most significant 

characteristics from the original data in order to improve the 

overall efficiency of the system. To this aim, in this study, we 

employ deep learning feature descriptors. We utilized four pre-

trained convolution neural networks such as AlexNet, VGG-

16, ResNet-18, and ResNet-50. These pre-trained CNN 

networks have been utilized to extract suitable MRI image 

features. 

 

3.2.1 AlexNet 

AlexNet, introduced by Krizhevsky et al. [14], and 

competed in the ImageNet challenge in 2012. The network 

achieved a top-5 error of 16.4%. AlexNet includes five 

convolutional layers, three max pool layers, and three fully 

connected layers. The input image size should be [227 × 227 

× 3] [15, 16]. 

 

3.2.2 VGG-16 

VGG (Visual Geometry Group Net) is convolutional neural 

network (CNN) introduced by Simonyan and Zisserman [17]. 

It was one of the most prominent models that participated in 

ILSVRC-2014 (ImageNet Large Scale Visual Recognition 

Competition) for the classification task. VGG Net was trained 

on ImageNet database which contains over 14 million images 

of 1000 classes (i.e., 1.3 million images for training, 50,000 

images for validation, and 100,000 images for testing). The 

model achieved an accuracy of 92.7% on ImageNet database. 

VGG Net input image size should be 224×224 RGB. The 

images are then passed through a stack of convolutional layers 

with the fixed filter size of 3×3 and the stride of 1. VGG-16 

architecture contains five max pooling layers integrated 

through a stack of convolutional layers that are followed by 3 

fully connected layers. The first and second layers have 4096 

channels, while the third one has 1,000 channels. Soft-max 

layer is the final layer in VGG-16 model [18]. 

3.2.3 Residual Network (ResNet-50 and ResNet-18) 

ResNet is an artificial neural network (ANN) developed by 

He et al. in 2016. It ranked 1st in ILSVRC 2015 with top 5 

error rate of 3.57%. Also, it won the ILSVRC and COCO 2015 

competitions for ImageNet Discovery, ImageNet Localization, 

Coco Discovery, and Coco Segmentation. It is a very deep 

feed forward neural network with hundreds of layers, much 

deeper than previous neural networks. Skip connections or 

shortcuts are used to jump over some layers. ResNet gives a 

relative improvement of 28% over VGG-16. The ResNet18 

makes a good offset between depth and performance. It 

contains five convolutional layers, one average pooling, a 

fully-connected layer, and finally a softmax layer. ResNet50 

is composed by 49 convolutional layers and a fully-connected 

layer at the end of the network [19]. 

 

3.3 Classification step 

 

There exist several techniques for classification of data such 

as fuzzy clustering means (FCM), support vector machine 

(SVM), and artificial neural network (ANN).  

Motivated by the high classification accuracy achieved by 

the DRB classifier [20], we explore it for the classification of 

MRI brain tumors. 

 

 

4. GENERAL ARCHITECTURE OF THE DRB 

CLASSIFIER 

 

As shown in Figure 2, the proposed method is composed of 

three main stages, i.e., pre-processing, feature extraction, and 

classification using DRB block (i.e., massively parallel rules, 

decision-maker). The pre-processing block and feature 

extraction layer are described in Sections 3.1 and 3.2, 

respectively. In the following, we describe the DRB 

classification. 

 

 
 

Figure 2. General architecture of the DRB classifier 

 

DRB block consists of two sections. The first section is 

basis of the DRB classifier for training phase. It is a series of 

parallel IF...THEN rules which are based on the self-

developed FRB models known as AnYa type. These non-

parametric rules do not need the existence of a membership 

function to be defined [21, 22]. They emerge from data 

patterns by following the concept of the Empirical Data 

Analytics [23]. The form of each fuzzy rule, as presented in 

Table 3, is a disjunction (logical operators OR) between a 
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considerable number of fuzzy sets predetermined by many 

prototypes which are the most representative of the data clouds. 

The second section is the decision-maker which is used 

during the validation stage. It is the process that, based on the 

operator “winner-takes-all”, determines the label of winning 

class. The one making the last call on the basis of the results is 

the local decision-maker [24, 25]. For more precision, we 

present the key notations with their respective definitions used 

in this paper in Table 2. 
 

Table 2. Descriptions of the key notations used in this paper 
 

Notations Description 

C The number of Dataset classes  

d Feature vector dimensionality 

k Observed training images number 

I A single input image 

x The corresponding feature vector of I 

𝒙 Vector normalization 

Nc 
The number of identified prototypes of the Cth 

class 

μc 
The global mean of feature vectors of the training 

images of the Cth class 

D Data density 

Ic,k The kth training image of the Cth class 

xc,k The corresponding feature vector of Ic,k 

Pc,i The ith prototype of the Cth class 

pc,i 
The mean of feature vectors of the training images 

associated with Pc,i 

Sc,i The number of training images associated with Pc,i 

rc,i 
The radius of the area of influence of the 

𝑑𝑎𝑡𝑎𝑐𝑙𝑜𝑢𝑑𝑠 d associated with Pc,i 

λc 
The score of confidence given by the local 

decision-maker of the Cth fuzzy rule 

Sgi The ith segment of the image I or local information 

 

Table 3. Samples of AnYa type fuzzy rules identified with 

brain tumor dataset 

 

Fuzzy rule 

IF (I≈ ) OR (I≈ ) OR (I≈ ) OR…OR (I≈ ) 

THEN NO Tumor 

IF (I≈ ) OR (I ≈ ) OR (I≈ ) OR…OR (I≈ ) 

THEN Tumor 

 

4.1 Massively parallel FRB 

 

The fuzzy rule-based (FRB) layer is a group of 

IF…THEN… rules, which are extremely parallel based on the 

so-called AnYa type 0-order fuzzy rules [23]. These non-

parametric rules do not need the existence of a membership 

function to be defined [21, 22]. After the Empirical Data 

Analytics concept, the fuzzy rules emerge from data patterns 

[23]. 

 

IF(I~Pc,1)OR … OR(I~Pc,Nc
) THEN (class C) (1) 

 

where, “~” means resemblance that can be considered as a 

fuzzy degree of satisfaction/membership [22] or typicality [21, 

25]; I is a specific image; c=1, 2, ..., C; Nc is the number of 

prototypes of the Cth class. The identified prototypes are 

denoted by P. 

 

4.1.1 Training process of the DRB system 

In this section, a summary of the main procedure of the 

training process of a particular FRB subsystem is outlined. 

Because of the highly parallel structure of the DRB system, we 

consider the Cth (c=1, 2, …, C) fuzzy rule. 

We initialize the kth (k←1) of the training image to check 

the condition 1 and separate stage 0 and the other stages. 

Condition 1: 

 

𝐼𝐹(𝑘 = 1)𝑇𝐻𝐸𝑁 (𝑠𝑡𝑎𝑟𝑡𝑤𝑖𝑡ℎ 𝑠𝑡𝑎𝑔𝑒 0) (2) 

 

If condition 1 is satisfied, then it is the first image arrived 

then we initialize the system by following the stage 0. 

If condition 1 is not met, then the system has been initialized 

before and we pass directly the stage 1. 

 
Stage 0: System Initialization.  

We initialize the Cth fuzzy rule by the first image Cth 

(denoted by Ic,1) of the corresponding class with the global 

feature vector denoted by xc,1(xc,1=[xc,1,1, xc,1,2, xc,1,d]), d is the 

dimensionality. Then, we initialize the meta-parameters of the 

system as follows:  

 
𝑘 ← 1; 𝝁𝑐 ← 𝒙𝑐,1; 𝑁𝑐 ← 1; 𝚸𝑐,𝑁𝑐

← 𝚰𝑐,1; 𝒑𝑐,𝑁𝑐

← 𝒙𝑐,1; 𝑆𝑐,𝑁𝑐
← 1; 𝑟𝑐,𝑁𝑐

← 𝑟𝑐; 
(3) 

 
where, k represents the current time instance, μc is the global 

mean of all the observed data samples of the Cth class. 𝒑𝑐,𝑁𝑐
 is 

the mean of feature vectors of the images associated with the 

first 𝑑𝑎𝑡𝑎𝑐𝑙𝑜𝑢𝑑 with the visual prototype 𝐏𝑐,𝑁𝑐
, 𝑆𝑐,𝑁𝑐

 is the 

number of images associated with the data cloud. 𝑟𝑐,𝑁𝑐
 is the 

radius of the area of the data cloud, r0 is a small value to 

stabilize the initial status of the newly formed data clouds. 

 
Stage 1: System preparation. 

In this stage, we calculate the densities to check the 

condition 2. Firstly, we read the newly arrived kth(k←k+1) of 

the training image (Ic,k) that belongs to the Cth class. Then, we 

update the global mean μc and calculate the data densities of 

all existing prototypes Pc,i by following: 

 

𝝁𝑐 ←
𝑘 − 1

𝑘
𝝁𝑐 +

1

𝑘
𝒙𝑐,𝑘 (4) 

 

𝐷(𝐏𝑐,𝑖) =
1

1 + ‖𝒑𝑐,𝑖 − 𝝁𝑐‖
2

∕ 𝜎𝑐
2
 (5) 

 

𝐷(𝐈𝑐,𝑘) =
1

1 + ‖𝒙𝑐,𝑘 − 𝝁𝑐‖
2

∕ 𝜎𝑐
2
 (6) 

 

where, 𝜎𝑐
2 = 1 − ‖𝝁𝑐‖2. 

 

Stage 2: System update. 

In this stage, we check the condition 2, if the Ic,k becomes a 

new prototype or we find the nearest prototype to Ic,k using the 

D(Pc,i) and D(Ic,k) calculated in the previous stage. Then, we 

update the system and meta-parameters. 

Condition 2: 

 

𝐼𝐹 (𝐷(𝐈𝑐,𝑘) > max
𝑖=1,2,3,…,𝑁𝑐

(𝐷(𝐏𝑐,𝑖))) 𝑂𝑅  (𝐷(𝐈𝑐,𝑘)

< min
𝑖=1,2,…,𝑁𝑐

(𝐷(𝐏𝑐,𝑖))) 𝑇𝐻𝐸𝑁 
(7) 
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(𝐼𝑐,𝑘  𝑖𝑠 𝑛𝑒𝑤 𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒) 

 

If condition 2 is met, then Ic,k is new prototype with new 

data cloud. 

 
𝑁𝑐 ← 𝑁𝑐 + 1; 𝚸𝑐,𝑁𝑐

← 𝚰𝑐,1; 𝑃𝑐,𝑁𝑐
← 𝒙𝑐,1; 𝑆𝑐,𝑁𝑐

← 1; 𝑟𝑐,𝑁𝑐
← 𝑟𝑐 ; 

(8) 

 
If condition 2 is not satisfied, we find the nearest prototype 

Pc,n to Ic,k following the Eq. (9): 

 

𝚸𝑐,𝑛 = arg min
𝑗=1,2,…,𝑁𝑐

(∥ 𝒙𝑐,𝑘 − 𝑷𝑐,𝑗 ∥) (9) 

 

Before we associate the Ic,k with the data cloud of Pc,n, we 

need to check the last condition 3 to see whether Ic,k is located 

in the area of influence of Pc,n: 

Condition 3: 
 

     𝐼𝐹(∥ 𝒙𝑐,𝑘 − 𝒑𝑐,𝑛 ∥

≤ 𝑟𝑐,𝑁𝑐
) 𝑇𝐻𝐸𝑁(𝚰𝑐,𝑘  𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝚸𝑐,𝑛) 

(10) 

 

If the condition 3 is met, then we update the meta-

parameters and Ic,k assigned to the data cloud of the prototype 

𝚸𝑐,nusing: 

 

𝑆𝑐,𝑛 ← 𝑆𝑐,𝑛 + 1; 𝒑𝑐,𝑛 ←
𝑆𝑐,𝑛 − 1

𝑆𝑐,𝑛

𝒑𝑐,𝑛 +
1

𝑆𝑐,𝑛

𝒙𝑐,𝑘; (11) 

 

If the condition 3 not met, then Ic,k is out of the influence 

area of the nearest data cloud, we consider Ic,k is a new 

prototype by following Eq. (8). 

Once Stage 2 has been finished, the DRB system will update 

the fuzzy rule accordingly following the Eq. (12). Then, the K 

will increment by 1 (k←k+1), then the system goes back to 

Stage 1 and read the next image and start a new processing 

cycle. 

 

Stage 3: Generate Fuzzy rule based (FRB). 

After all the training data has been processed, the system 

will generate one fuzzy rule (Rulec) based on the identified 

prototypes. Samples of AnYa type fuzzy rules identified with 

brain tumor dataset are presented in Table 3. 

 

𝑅𝑢𝑙𝑒𝑐

∶ 𝐼𝐹(𝐈~𝐏𝑐,1)𝑂𝑅 … 𝑂𝑅(𝐈~𝐏𝑐,𝑁𝑐
)𝑇𝐻𝐸𝑁(𝐶𝑙𝑎𝑠𝑠𝐶) 

(12) 

 

4.1.2 Validation process of the DRB system  

At end of the training process, the DRB system generates C 

fuzzy rules depending to the C classes. For each testing image, 

the system generates c score of confidence λc(I) by its local 

(per rule) decision-maker based on the feature vector of I, 

denoted by x: 
 

𝜆𝑐(𝐈) = arg max
𝑗=1,2,…,𝑁𝑐

(exp(−‖𝑥 − 𝒑𝒄,𝒋‖
2

)) (13) 

 

Therefore, we have C scores of confidences λc(I) = [λ1(I), 

λ2(I), λ3(I), …, λc(I)] for each image. These scores represent 

the inputs of the overall decision-maker of the DRB classifier 

(the last layer in Figure 2), which decides the label of the 

testing image using the “winner-takes-all” principle as follows: 
 

𝑙𝑎𝑏𝑒𝑙(𝐈) = arg max
𝑐=1,2,…,𝑐

(𝜆𝑐(𝐈)) (14) 

The pseudo code of the training process is as follows. 
 

Algorithm 1. Training process of the deep rule-based 

classifier  

K=1; 

While the new feature vector xc,k of the kth image Ic,k of the 

Cth class is available Do 

IF (K=1) THEN 

1. Initialization using Eq. (3); 

2. Generate the Anya type fuzzy rule Eq. (12); 

ELSE 

1. Update μc using Eq. (4); 

2. Calculate D(Pc,i) and D(Ic,k) using Eqns. (5, 6); 

If (condition 2 is met) then 

• Initialize a new data cloud using Eq. (8); 

Else 

• Find Pc,n using Eq. (9); 

If (condition 3 is met) then 

▪ Update the existing data cloud using Eq. 

(11); 

Else 

▪ Initialize a new data cloud using Eq. (8); 

End if  

End if  

      Update the Anya type fuzzy rule using Eq. (12); 

End if  

K=k+1; 

End while  
 

 

5. EXPERIMENTS AND RESULTS 
 

5.1 Database 
 

In this work, we used two public datasets available on the 

Kaggle website. As described in Table 4, the first dataset 

contains 253 images with 2 classes (i.e., no tumor, 

pathological), the second dataset contains 3264images with 4 

classes (i.e., Glioma tumor, Meningioma tumor, Pituitary 

tumor, No tumor). Data for no tumors were obtained from the 

Novoneel Chakraborty Kaggle data set. (i.e., 

https://www.kaggle.com/datasets/navoneel/brain-mri-images-

for-brain-tumor-detection).  
 

Table 4. Datasets descriptions 
 

Dataset Classes 
Number of 

images 

Images 

type 

Dataset 1 
Tumor 155 

JPG 
No tumor 98 

Dataset 2 

Glioma tumor 926 

JPG 

Meningioma 

tumor 
937 

No tumor 500 

Pituitary tumor 901 
 

5.2 Performance metrics  
 

To demonstrate and validate the performance of the 

proposed scheme, three metrics have been used, including 

accuracy, specificity and sensitivity calculated by Eqns. (15, 

16 and 17) [26]. 
 

Accuracy: 
TP+TN

TP+TN+FP+FN
 (15) 

 

Sensitivity: 
TP

TP+FN
 (16) 

17

https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection


 

Specificity: 
TP

TP+FN
 (17) 

 

5.3 Experiment results 
 

In this section, we present an experimental evaluation of the 

proposed deep features-based MRI brain tumor classification 

system. Several experiments were conducted as shown in 

Figure 3 by applying the pre-trained CNN models (i.e., 

AlexNet, VGG-16, ResNet-50, and ResNet-18) for feature 

extraction. The obtained results were compared with SVM, 

KNN and Decision Tree. All in all, the performances were 

assessed in terms of accuracy, sensitivity, specificity, 
precision, and F-measure, which are presented in Table 5, 

Table 6, Table 7 and Table 8. As shown in Table 5 to 8, the 

proposed approach gives better results with the second 

database (i.e., multi-class classification). An accuracy of 

79.19% was obtained with AlexNet, 81.73% with VGG-16, 

78.17% with ResNet50, and 80.46% with ResNet18 that 

surpassed SVM, KNN and decision tree techniques. For the 

first database (i.e., binary classification), the proposed 

approach gives best results with an accuracy of 82.95% with 

ResNet50 and 85.22 % with ResNet18. Also, one can see the 

proposed method’s efficacy in Figures 4-11. 

 

 
 

Figure 3. Experimental evaluation of the proposed system 
 

Experiment 1: AlexNet with 4 different classifiers. 
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Figure 4. Confusion matrix of DRB with data 1 and Data 2 

Experiment 2: VGG-16 with 4 different classifiers. 
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Figure 5. ROC curves of dataset 1 and dataset 2 
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Figure 6. Confusion matrix of DRB with data 1 and Data 2 
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Figure 7. ROC curves of dataset 1 and dataset 2 

 

Experiment 3: ResNet-50 with 4 different classifiers. 
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Figure 8. Confusion matrix of DRB with data 1 and data 2 

 
Dataset 1 

 
Dataset 2 

 

Figure 9. ROC curves of dataset 1 and dataset 2 

 

Experiment 4: ResNet-18 with 4 different classifiers. 

 

 
Dataset 1 

 
Dataset 2 

 

Figure 10. Confusion matrix of DRB with data 1 and data 2 
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Dataset 1                                                                        Dataset 2 

 

Figure 11. ROC curves of dataset 1 and dataset 2 
 

Table 5. Comparative performance of AlexNet with 4 different classifiers 
 

AlexNet with 4 different classifiers 

Data set Architecture Accuracy Sensitivity Specificity Precision F-measure 

 

Dataset1 

DRB 

SVM 

KNN 

Decision Tree 

85.23% 

79.55% 

89.77% 

69.32% 

0.9375 

0.8438 

0.8750 

0.6563 

0.8036 

0.7679 

0.9107 

0.7143 

0.7317 

0.6750 

0.8485 

0.5676 

0.8219 

0.7500 

0.8615 

0.6087 

 

Dataset2 

DRB 

SVM 

KNN 

Decision Tree 

79.19% 

75.63% 

60.66% 

71.32% 

0.3500 

0.2000 

0.3700 

0.4000 

0.9422 

0.9456 

0.6871 

0.8197 

0.6131 

0.5556 

0.2868 

0.4301 

0.4605 

0.2941 

0.3231 

0.4145 
 

Table 6. Comparative performance of VGG-16 with 4 different classifiers 
 

VGG-16 with 4 different classifiers 
Dataset Architecture Accuracy Sensitivity Specificity Precision F-measure 

 

Dataset1 

DRB 

SVM 

KNN 

Decision Tree 

79.55% 

84.09% 

86.36% 

75.00% 

0.8125 

0.7500 

0.9063 

0.7500 

0.7857 

1 

0.8393 

0.7500 

0.6842 

0.6957 

0.7632 

0.6316 

0.7429 

0.8205 

0.8286 

0.6857 

 

Dataset2 

DRB 

SVM 

KNN 

Decision Tree 

81.73% 

77.16% 

61.93% 

72.84% 

0.4800 

0.2900 

0.4400 

0.3800 

0.9422 

0.9456 

0.6871 

0.8197 

0.7059 

0.6042 

0.3188 

0.4578 

0.5714 

0.3919 

0.3697 

0.4153 

 

Table 7. Comparative performance of ResNet 50 with 4 different classifiers 

 
ResNet-50 with 4 different classifiers 

Dataset Architecture Accuracy Sensitivity Specificity Precision F-measure 

 

Dataset1 

DRB 

SVM 

KNN 

Decision Tree 

82.95% 

78.41% 

79.55% 

72.73% 

0.8125 

0.8125 

0.8750 

0.7188 

0.8393 

0.7679 

0.7500 

0.7321 

0.7429 

0.6667 

0.6667 

0.6053 

0.7761 

0.7324 

0.7568 

0.6571 

 

Dataset2 

DRB 

SVM 

KNN 

Decision Tree 

78.17% 

77.16 % 

62.18 % 

68.78 % 

0.2900 

0.3000 

0.4100 

0.2800 

0.9490 

0.9320 

0.6939 

0.8265 

0.6591 

0.6000 

0.3130 

0.3544 

0.4028 

0.4000 

0.3550 

0.3128 

 

Table 8. Comparative performance of ResNet18 with 4 different classifiers 

 

ResNet18 with 4 different classifiers 

Dataset Architecture Accuracy Sensitivity Specificity Precision F-measure 

 

Dataset1 

DRB 

SVM 

KNN 

Decision Tree 

85.22% 

77.27% 

81.82% 

69.32% 

0.9063 

0.6250 

0.7813 

0.9063 

0.8214 

0.8571 

0.8393 

0.7514 

0.7436 

0.7143 

0.7353 

0.5472 

0.8169 

0.6667 

0.7576 

0.6824 

 

Dataset2 

DRB 

SVM 

KNN 

Decision Tree 

80.46% 

75.89% 

65.74% 

73.35% 

0.3200 

0.2900 

0.3900 

0.3200 

0.9694 

0.9184 

0.7483 

0.8741 

0.7805 

0.5472 

0.3451 

0.4638 

0.4539 

0.3791 

0.3662 

0.3787 
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6. CONCLUSION 

 

In this study, we have presented an automated MRI brain 

tumor identification technique using deep learning methods. 

The framework employed the DRB classifier to perform the 

MRI brain tumor classification tasks. The deep features were 

extracted by deep learning models such as AlexNet, ResNet-

50, ResNet-18, and VGG-16. The developed method was 

evaluated on two datasets provided on Kaggle website. The 

first dataset is a binary database (i.e., tumor, no tumor), while 

the second one is a multiclass database (i.e., Meningioma, 

Glioma, and Pituitary tumor). The experimental results 

showed that the devised method based on DRB classifier for 

tumor classification is a robust, simple, and competent, which 

can reach high level of performance. An accuracy of 79.19% 

was obtained with AlexNet, 81.73% with VGG-16, 78.17% 

with ResNet50, and 80.46% with ResNet18 surpassing SVM, 

KNN and decision tree techniques. It is hoped that this 

framework will help neuroscientist in their job, which is most 

difficult task, i.e., making decisions from MRI brain data, and 

to avoid wrong judgments on subjects. 

In the future, we will explore two main directions. First, we 

will extend the devised framework with other specific modules 

for detection of other and numerous pathological diseases, 

second, open-source web-based systems that could be freely 

used by medical practitioners and researchers. 
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