
Design of Dynamic Network for Parallel Processing on a Distributed System

Aseel Thamer Ebrahem1* , Basil Shukr Mahmmood2

1 Department of Computer Engineering, Northern Technical University, Mosul 41002, Iraq
2 Computer Engineering Department, Collage of Engineering, University of Mosul, Mosul 41002, Iraq

Corresponding Author Email: aseelthamer@ntu.edu.iq

https://doi.org/10.18280/isi.280128 ABSTRACT

Received: 20 December 2022

Accepted: 30 January 2023

Modern computation systems involve multicomputer configurations. Multiple computers

enable multiple threads to be executed simultaneously, with the ability to perform the same

operations on different processors (computers) at the same time. This paper addresses the

building of a software application to be implemented on 8*8 dynamic multistage network

exchange depending on the client/server principles so that one can select one type of

different topologies that is suitable to the type of application. The network can serve any

number of nodes. Two different applications were examined, convolution operations and

matrix multiplication. The goal of this paper is to explore the different ways, in which the

multistage network topology can simulate supercomputer systems employing large-scale

parallel processing. This paper proposes designing parallel systems on a distributed system,

running different topologies such as linear systolic, mesh, and hypercube topologies of the

parallel processor’s networks, and also a dynamic selection of the appropriate network

topology based on the nature of the solved problem. Simulation of parallel processing

systems on distributed environments mainly done through Socket programming based on

JAVA threads.

Keywords:

parallel processing, network topologies,

threads, dynamic selection

1. INTRODUCTION

Parallel processing is a method of computing that involves

using two or more CPUs or nodes in order to do different parts

of a bigger task. Parallel computing is the use of two or more

processors (cores, computers) to tackle a single problem in

parallel. It is a sort of computer architecture in which

numerous processors simultaneously run or process an

application or task. Parallel computing enables the execution

of complex computations by distributing the workload among

numerous processors, all of which are working on the

computation at the same time. The majority of supercomputers

work on the basis of parallel computing concepts. Parallel

processing comes in a variety of flavors, including MMP,

SIMD, MISD, SISD, and MIMD. Although SISD computers

cannot operate in parallel, a cluster can be formed by linking

several of them. A program's execution time can be reduced

by distributing a task's multiple parts across several

processors. Each processor runs a different section of the

program concurrently [1], and when execution is finished, the

results are blended and sent back to the main computer. There

are various varieties of parallel processing; SIMD and MIMD

are two of the most popular varieties. Single instruction

multiple data, or SIMD is a form of parallel processing in

which a computer contains two or more processors that each

handle a different kind of data while yet conforming to the

same set of instructions. Another popular method of parallel

processing is MIMD, or multiple instructions multiple data, in

which each computer has two or more processors, and each

executes its own program and receives data from several data

streams. In this form of architecture, the concepts of server and

client computers will be used. The server's computer transmits

commands to client machines for concurrent executions [2].

Distributed system software, also known as middleware, is

used to implement the network topology or connections

between nodes. Examples of this middleware include socket,

remote procedure call, and remote method invocation.

Middleware is described as a software layer that sits above the

operating system and below the application program, offering

a common programming paradigm for distributed systems [3-

5]. As examples of using a distributed system to execute

parallel programs, in this research we will see the results of

executing some mathematical formulas, such as convolution,

matrix multiplication. etc. using parallel methods.

The structure of this paper is as follows: A brief history of

parallel processing is given in Section 2, followed by

descriptions of distributed systems and cloud computing in

Section 3, the design of the general network to implement

topologies like a mesh, hypercube, and omega networks in

Section 4, the results and discussions in Section 5, and the

conclusions in Section 6.

2. PARALLEL PROCESSING

Parallel processing is increasingly being viewed as the sole

practical approach for the quick resolution of computationally

challenging and data-intensive issues. This creates the

conditions for significant parallel software growth [6]. There

are three types of parallel processing client-side object

rendering, client-side and server-side operations [7].

However, under the parallel programming technique,

programs are created explicitly to take use of parallelism. As

a result, creating a parallel application requires splitting up the

Ingénierie des Systèmes d’Information
Vol. 28, No. 1, February, 2023, pp. 239-245

Journal homepage: http://iieta.org/journals/isi

239

https://orcid.org/0000-0002-1090-0454
https://orcid.org/0009-0009-4640-5541
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280128&domain=pdf

workload into tasks and assigning those tasks to workers (i.e.,

the computers where the tasks will be accomplished.) [8-10].

Additionally, there is a wealth of literature on designing

parallel programs and the applicability of algorithms for

parallel execution [10-16].

In order to accomplish the processing, processing units are

connected via an interconnection network and the required

software. For large-scale computer systems, interconnection

networks enable efficient communication between

components like processors and memory units [17].

Due to their scalability and adaptability, multistage

interconnection networks (MINs) have been extensively

researched for distributed systems, parallel, communication

networks, optical networks, and contemporary embedded

systems as they are dynamically configured and scalable.

MINs are used to connect numerous processors or processor-

memory systems. Dynamic interconnection networks, in

particular, created parallel machines' efficient and flexible

communication capacity. The previous few decades have seen

a variety of MIN topologies proposed. Either multipath or

unique path networks make up the majority of these

topologies. MINs try to lower costs and reduce diameter,

where diameter is the distance between any two nodes [18-23].

Most well-liked MIN architecture is called SEN (Shuffle

Exchange Network). It is available in many different classes,

such as cube, baseline, and mesh networks. The self-routing

network (SEN) in Figure 1 is based on the shuffle and

exchange routing functions.

Figure 1. 8*8 SEN topology

The network has self-routing property. It works for each

possible input. The logical rotation left of the bits used in the

port IDs determines how the stages are connected to one

another. Figure 2 shows this operation.

Figure 2. The logical rotation left of the bits used in the port

Ids (If bit is “0” then send cell out upper port, if bit is “1”

then send cell out lower port)

Bit0 indicates connecting to the higher output (upper port)

for each entry in each switch, while bit1 indicates connecting

to the lower output (lower port) as shown in Figure 1. This

multi-stage architecture can be used in supercomputer systems

that widely use parallel processing. Different network

topologies such as hypercube, mesh, and linear topologies are

implemented in multi-stage interconnection networks as

shown in Figure 3, to implement the connection between any

two nodes, two key classes from the java.net package used for

creation of a TCP stream are ServerSocket class and Socket

class [24].

1. ServerSocket class

The java.net.ServerSocket class is used by the server to

create a socket at the server port and listing for the connection

request from the clients, this class contain many methods, one

of its method is accept method, which gets a connection

request from the queue or if there is no connection request (the

queue is empty), this method blocks until one connection

request arrives [25]. The result of executing accept method is

an instance of Socket used for communicating with the client.

2. Socket class

The java.net.Socket class is used by the client and server,

the client uses the constructor of the socket class to create a

socket specifying the hostname (IP address) and port number

of the server, this constructor not only creates a socket, but also

connects the socket to the remote server [26].

getInputStream() and getOutputStream() are used for

returns the socket input stream and returns the socket output

stream respectively.

Each node in each network topology is represented in a

specific thread and can be a dynamic selection of topology

according to the problem that wants to be solved. So, the

proposed design solved the problem of blocking in MINs. The

use of a distributed system with at least eight input nodes and

eight output nodes to construct a basic SaaS (Software as a

Service) cloud computing system. Problems that were

resolved using parallel systems are now solved with this cloud.

Figure 3. Networks that implement in the proposed design.

(a) linear topology. (b) hypercube topology. (c) mesh

topology

3. THE DISTRIBUTED SYSTEM AND CLOUD

COMPUTING

A distributed system is made up of a number of networked

devices (computers, hardware, or software) that communicate

their actions through message passing [27]. Due to resource

sharing, high availability, parallel processing, and other

factors, heterogeneous, and distributed systems have gained

popularity in modern computer applications with the

advancement of computer network technology [28-32].

There are different types of distributed operating systems

that concentrate on the overall system and the distribution of

distributed system components over multiple machines.

Systems that are client-server, three-tier, and N-tier, as well as

240

middleware. Client-server architecture and peer-to-peer

architecture are the two main system-level architectures that

matter today. The server will react appropriately to any

requests made by the client. The remote side is typically

handled by a single server, however, using many servers

ensures complete safety. Peer-to-peer networks, sometimes

referred to as P2P networks rely on the premise that there is no

centralized control in a distributed system. Once a node joins

the network, it can act either as a server or a client at any given

time.

A lot of computing devices are linked together over a real-

time communication network (internet) in the networking

technology known as "cloud computing". It refers to the

delivery of computing resources over the internet. If we want

to store some pictures, or solve some computational problem

online instead of using our own computer, we are using cloud

computing services. In another word, cloud computing allows

individual users to use the cloud services which is managed by

third parity at remote location [33, 34]. It is broadly divided

into IaaS (infrastructure as a service), PaaS (Platform as a

Service), and SaaS (Software as a Service). This technology is

believed to be cost-saving and offers resource optimization to

a larger extent. In this paper, a SaaS cloud computing system

for parallel processing network topology was designed. The

nodes in the distributed system are connected to each other

according to the network topology to be created. In this work,

a control program has been created through which it is

controlled how the nodes are linked after determining the type

of topology to be created for the sequence of nodes in the

network.

4. DESIGN DYNAMIC NETWORK AND

METHODOLOGY

Using socket programming in the Java eclipse and TCP

datagrams, the Dynamic Network for Parallel Processing was

created. The controller, clients, and servers' programs were

displayed, put to the test, and evaluated.

Clients and servers use a socket, which serves as both an

interface for the application and the network to connect and

establish connections. In addition, it is among the greatest

distributed computing techniques for enhancing system

performance [35-39]. Java socket programming uses BSD

(Berkeley Software Distribution) style sockets, which offer

features for inter-process communication when interacting

with TCP/IP services. It was designed as an Application

Programming Interface (API) for inter-process virtual

communication that used Internet connections [40-43]. Java

offers two classes supporting network connections, Socket,

and Server Socket.

In suggestion system, each node has its thread for each

application. For example, in this design, batting and covering

threads are used. By using interconnection, we can create a

topology of a parallel processing network without blocking so

that we can improve the performance of the omega network

bypassing the blocking problem.

MPI (Message Passing Interface) is used to express tasks

for parallel processing. A multistage network is used to

distribute tasks to network nodes so they can be carried out.

The multicast method's distribution latency cost is O(log(N)),

and N refers to the total number of target nodes. for job

processing. A number of stages n can be calculated as

n=log2N, each stage consisting of N/2 switching elements.

In the proposed methodology, the application was

developed in Java utilizing socket programming Eclipse IDE

(Integrated Development Environment) provided by TCP/IP

datagram. The client-server is used to design a general

interconnection network which is used to connect different

types of topologies and can select the type of topology

dynamically according to the application that wants to

implement it. The connection between nodes is changed

according to the type of topology selected from the GUI main

frame. Swing package of java GUI (Graphical User Interface)

is used, it was used to create a desktop application that can run

on any platform and on any system because it is a component

of the Java framework. The proposed system and the

application both made use of classes, interfaces, exceptions,

InetAddress, IOException, object input and output streams,

and Util.Scanner. Figure 4 represents the implementation of

the general network (SEN) for parallel processing on a

distributed system. In the controller class which has GUI

frame after selecting one of the topologies (systolic array,

mesh, or hypercube), to transmit and receive data to other

system nodes, the nodes open input and output streams on TCP

Sockets that they build. After entering the nodes ID of the

network that wants to be created, these IDs are converted to

binary numbers and implement XOR operation between

source and destination then, to determine the path of

connection through switches in the network. This is

implemented by using these equations [6]:

h=2k if 0 =>k => (p/2)-1 (1)

2k+1-p (p/2) => k => p-1 (2)

P: no. of inputs or outputs nodes=8 as an example

K: input node ID

h: output node ID

This network is made up of log p stages, where p represents

the number of inputs (processing nodes) as well as the number

of outputs. Each stage of the omega network is made up of an

interconnection pattern that connects p inputs and p outputs; if

Eqns. (1) and (2) are valid, a link exists between input k and

output h. These equations represent the operation of left-

rotating the binary representation of k to get h. This pattern of

connections is known as a perfect shuffle. It was used to build

the connection of switches in Omega Network as software. For

example, if the network has eight nodes (p=8), the first four

inputs (k=0 to 3) connect to the first input of each switch in

network according to the Eq. (1) and the second four inputs

(k=4 to 7) connect to the second input of each switch in the

network according to the Eq. (2). These equations are

implemented on any number of nodes.

Thread in the program is used and represented as tj, j from

0 to 7, and each number represents node ID for servers.

To deliver a high-quality real-time overview, a GUI

application built on the Java swing framework is developed.

One of the greatest and most reliable frameworks for

developing GUI applications is the swing set. The GUI app

builder in the Eclipse IDE was utilized for the design. We

utilized the Java class JFrame, a container type that derives

from the java.awt.Frame class, for the main frame. It performs

similarly to the primary window's labels and buttons, and text

fields are added to make a GUI. JFrame is in the javax.swing.*

library and its constructor class function is used to build an

object using the controller program:

241

JFrame frame=new JFrame("Omega Network 8x8

(Supercomputing)....TCP Socket programing ");

Figure 5 is an example that shows the main interface of the

proposed system that has three buttons named MI

Multiplication to design mesh topology of four nodes and

implement matrix multiplication as an application, LT

Convolution Operation to design linear topology of eight

nodes, and implement convolution operation as an application,

and HC Multiplication operation to design hypercube eight

nodes and implement multiplication operation as an

application. When clicking on each button new frame is

displayed. This is implemented by using the following code

for each button:

nameButton.addActionListener(new ActionListener());

Anytime you click the button, the Java ActionListener

receives a notification. It is informed of an ActionEvent with

a warning. The ActionListener interface is part of the

java.awt.event package.

(a)

(b)

Figure 4. Flowchart of the proposed design for the controller

program

Figure 5. Flowchart of the proposed design for the controller

program

242

The java.net package implemented two different types of

abstraction for network-related programming classes.

(1) Low-level APIs: sockets for bi-directional

communication, network interfaces, network identifiers like IP

addresses, etc.

(2) Universal Resource Identifiers and Universal Resource

Locators are two examples of high-level APIs. Connections.

With the following code, the client Java program creates a

communications socket:

Socket s = new Socket (host, port);

The host is a String that contains the server's IP address. The

socket constructor throws an exception if it can't locate the

host. Two streams can be connected to the socket once it has

established a connection with the server for reading

(InputStream) and writing (OutputStream) operations. In the

proposed system, we created eight clients and named tc0-tc7.

All of them started concurrency by using (client name.start)

code and waiting for servers to start depending on the network

type and application to be implemented. As an example:

tc0.start

The port number needed to build a server socket is given as

follows (this may also throw an Exception):

ServerSocket ss = new ServerSocket(port);

Socket s = ss.accept();

The accept() method will remain around until the first client

connects to the server.

5. RESULTS AND DISCUSSION

When clicking on the “HC Multiplication Operation

“button, the following jpanal in Figure 6 is displayed which is

used to create a hypercube topology with 8 nodes and

implement matrix multiplication after inserting two matrices

(A and B) It has one source that you can select any node that

you want to connect to the network through insert any node ID

from 0 to 7 (insert source node ID and destination nodes IDs

where data to be sent to them). Initially, the source node has

fed by the problem (matrix multiplication) that to be solved.

The problem is then divided into parts and sent to the

destination nodes (according to the sequence of nodes in the

network topology) to be able to solve this problem in a parallel

processing mode. The outcome is then returned to the

controller class which sums the collected results and displays

it on the main screen and console workspace of the java

program. As an example, assuming multiplying two matrices

of dimension 2*2, A and B.

A= [1 2 3 4] (3)

B= [5 6 7 8] (4)

The multiplication operation A*B is performed after

spreading this operation to the destination nodes in parallel

processing. The final result is displayed in a text area in Figure

6 and in Figure 7 which represents the console window of the

java program.

When selecting “Back to main form” button in Figure 6, the

main window is displayed and can implement another network

topology with a different sequence. Figure 8 is displayed when

selecting “LT convolution operation” button in the main frame

which creates a systolic array network topology, after entering

the node sequence (IDs) that are required to connect the

desired topology. For example, two matrixes H= [2.3, 4.5, 6,

12.3] and X= [2, 4, 8.5, 11.3] can be controlled using four

nodes. When selecting “compute convolution”, the results are

as shown in the text area of Figure 8.

Figure 6. Matrix multiplication A*B

Figure 7. Results of multiplication on the console window

Figure 8. Linear topology used to implement convolution

operation

Figure 9 is displayed when clicking on the “MT

multiplication operation” button from the main frame which

implements mesh topology with four nodes as an example.

After selecting the sequence of nodes that formulate a mesh

topology, data of the elements of matrixes (A and B) should

be entered. Figure 10 shows the results of this type of

multiplication on the console window of java.

243

Figure 9. Mesh topology with 4 nodes

Figure 10. Results of multiplication on the console window

of java

6. CONCLUSIONS

This work produced a complete system with all its

algorithms for parallel processing operations using distributed

system approach. The necessary interconnection architecture

of the parallel nodes is formed on a distributed system through

the implementation of parallel processing. The designed

system was tested on eight nodes depending on the principle

client/server and used to solve many computational problems

based on various topologies. Parallel programs that need a

large number of processors can make benefit from the

distributed system by implementing the required topology of

processors to execute the program. So, this paper introduces

some of these topologies. It can be inferred that an actual

system has been addressed to provide the capability of

conducting large amounts of processing in parallel with the

ability to select the type of network topology, depending on

the type of application. As well as the ability to use processing

power across the cloud domain based on distributed system

concepts. This research paper provides an overview as well as

a thorough implementation of a general interconnection

network that is suitable to implement different network

topologies such as linear systolic topology, mesh, and

hypercube topologies, and uses those topologies in parallel

processing.

ACKNOWLEDGMENT

The authors would like to express their gratitude to the

faculty and staff of the University of Mosul-College of

Engineering, especially the departments of computer

engineering, for their support to complete this work.

REFERENCES

[1] Xiao, F., Zhan, C., Lai, H., Tao, L., Qu, Z. (2017). New

parallel processing strategies in complex event

processing systems with data streams. International

Journal of Distributed Sensor Networks, 13(8):

1550147717728626.

https://doi.dox.org/10.1177/1550147717728626

[2] Chaubey, M.S., Oluwaseun, A. (2019). Parallel and

distributed computing. IJRAR, 6(1).

[3] Le, M., Clyde, S., Kwon, Y.W. (2019). Enabling multi-

hop remote method invocation in device-to-device

networks. Human-centric Computing and Information

Sciences, 9(1): 1-22. https://doi.org/10.1186/s13673-

019-0182-9

[4] Kang, H., Jeong, K., Lee, K., Park, S., Kim, Y. (2016).

Android RMI: a user-level remote method invocation

mechanism between Android devices. The Journal of

Supercomputing, 72: 2471-2487.

https://doi.org/10.1007/s11227-015-1471-3

[5] Madhavi, D. (2016). Transparency in remote method

invocation (RMI) for distributed systems: Middleware

layer. International Journal of Emerging Technologies in

Engineering Research (IJETER), 4(1): 44-49.

[6] Grama, A., Gupta, A., Karypis, G., Kumar, V. (2003).

Introduction to Parallel Computing. Second Edition.

Addison-Wesley.

[7] Frachtenberg. E., Schwiegelshohn, U. (2007). Job

Scheduling Strategies for Parallel Processing. Springer

Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-

71035-6.

[8] Sottile, M.J., Mattson, T.G., Rasmussen, C.E. (2010).

Introduction to Concurrency in Programming Languages.

CRC Press. https://doi.org/10.1201/b17174

[9] Andrews, G.R. (1999). Foundations of Multithreaded,

Parallel, and Distributed Programming. Addison Wesley.

[10] Mattson, T.G., Sanders, B.A., Massingill, B. (2005).

Patterns for Parallel Programming. Addison-Wesley

Professional.

[11] Kumar, V., Grama, A., Gupta, A., Karypis, G. (1994).

Introduction to Parallel Computing: Design and Analysis

of Algorithms. Benjamin/Cummings Publishing

Company.

[12] Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J.,

Walker, D. (1988). Solving Problems on Concurrent

Processors, vol. 1. Prentice Hall, Englewood Cliffs.

https://doi.org/10.1063/1.4822815

[13] Quinn, M.J. (1994). Parallel Computing: Theory and

Practice. McGraw-Hill, New York, NY.

[14] Hansen, P.B. (1995). Studies in Computational Science:

Parallel Programming Paradigms. Prentice-Hall,

Englewood Cliffs, NJ.

[15] Chandy, K.M., Misra, J. (1988). Parallel Program Design:

A Foundation. Addison-Wesley, Reading, MA.

[16] Doroshenko, A.Y., Ovdii, O.M., Yatsenko, O.A. (2017).

Ontological and algebra-algorithmic tools for automated

244

design of parallel programs for cloud platforms.

Cybernetics and Systems Analysis, 53: 323-332.

https://doi.org/10.1007/s10559-017-9932-8

[17] Amodu, O.A., Othman, M., Yunus, N.A.M., Hanapi,

Z.M. (2021). A primer on design aspects and recent

advances in shuffle exchange multistage interconnection

networks. Symmetry, 13(3): 378.

https://doi.org/10.3390/sym13030378

[18] Chen, C.W., Lu, N.P., Chen, T.F., Chung, C.P. (2000).

Fault-tolerant gamma interconnection networks by

chaining. IEE Proceedings-Computers and Digital

Techniques, 147(2): 75-81. https://doi.org/10.1049/ip-

cdt:20000185

[19] Rastogi, R., Chauhan, D.S., Govil, M.C. (2012). Disjoint

paths multi-stage interconnection networks stability

problem. arXiv preprint arXiv:1202.0612.

https://doi.org/10.48550/arXiv.1202.0612

[20] Chen, C.W., Lu, N.P., Chung, C.P. (2003). 3-Disjoint

gamma interconnection networks. Journal of Systems

and Software, 66(2): 129-134.

https://doi.org/10.1016/S0164-1212(02)00070-5

[21] Borkar, M.A., Nitin (2011). 3D-CGIN: A 3 disjoint paths

CGIN with alternate source. In: Abraham, A., Mauri, J.L.,

Buford, J.F., Suzuki, J., Thampi, S.M. (eds) Advances in

Computing and Communications. ACC 2011.

Communications in Computer and Information Science,

vol 193. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-22726-4_4

[22] Rajkumar, S., Goyal, N.K. (2014). Design of 4-disjoint

gamma interconnection network layouts and reliability

analysis of gamma interconnection networks. The

Journal of Supercomputing, 69: 468-491.

https://doi.org/10.1007/s11227-014-1175-0

[23] Gunawan, I., Fard, N.S. (2012). Terminal reliability

assessment of gamma and extra-stage gamma networks.

International Journal of Quality & Reliability

Management, 29(7): 820-831.

https://doi.org/10.1108/02656711211258553

[24] Buyya, R., Selvi, S.T., Chu, X. (2009). Object-Oriented

Programming with Java: Essentials and Applications.

Tata McGraw-Hill.

[25] Reilly, D., Reilly, M. (2002). Java Network

Programming and Distributed Computing. Addison-

Wesley Professional.

[26] Garg, V.K. (2005). Concurrent and Distributed

Computing in Java. John Wiley & Sons.

[27] Coulouris, G.F. (2012). Distributed Systems: Concepts

and Design. Boston, Addison-Wesley.

[28] Shukur, H., Zeebaree, S., Zebari, R., Ahmed, O., Haji, L.,

Abdulqader, D. (2020). Cache coherence protocols in

distributed systems. Journal of Applied Science and

Technology Trends, 1(3): 92-97.

https://doi.org/10.38094/jastt1329

[29] Haji, L.M., Zeebaree, S., Ahmed, O.M., Sallow, A.B.,

Jacksi, K., Zeabri, R.R. (2020). Dynamic resource

allocation for distributed systems and cloud computing.

TEST Engineering & Management, 83(May/June 2020):

22417-22426.

[30] Shukur, H., Zeebaree, S., Zebari, R., Zeebaree, D.,

Ahmed, O., Salih, A. (2020). Cloud computing

virtualization of resources allocation for distributed

systems. Journal of Applied Science and Technology

Trends, 1(3): 98-105. https://doi.org/10.38094/jastt1331

[31] Dino, H.I., Zeebaree, S.R., Ahmad, O.M., Shukur, H.M.,
Zebari, R.R., Haji, L.M. (2020). Impact of load sharing
on performance of distributed systems computations.
International Journal of Multidisciplinary Research and
Publications (IJMRAP), 3(1): 30-37.

[32] Zeebaree, S.R., Shukur, H.M., Haji, L.M., Zebari, R.R.,
Jacksi, K., Abas, S.M. (2020). Characteristics and
analysis of hadoop distributed systems. Technology
Reports of Kansai University, 62(4): 1555-1564.

[33] Rashid, A., Chaturvedi, A. (2019). Cloud computing
characteristics and services: A brief review. International
Journal of Computer Sciences and Engineering, 7(2):

421-426. https://doi.org/10.26438/ijcse/v7i2.421426

[34] Patidar, S., Rane, D., Jain, P. (2012). A survey paper on
cloud computing. In 2012 Second International
Conference on Advanced Computing & Communication
Technologies, pp. 394-398.
https://doi.org/10.1109/ACCT.2012.15

[35] Zebari, D., Haron, H., Zeebaree, S. (2017). Security
issues in DNA based on data hiding: A review.
International Journal of Applied Engineering Research,
12(24): 0973-4562.

[36] Zeebaree, S., Zebari, I. (2014). Multilevel client/server
peer-to-peer video broadcasting system. International
Journal of Scientific & Engineering Research, 5(8):

260-265.

[37] Saleem, S.I., Zeebaree, S., Zeebaree, D.Q., Abdulazeez,

A.M. (2020). Building smart cities applications based on
IoT technologies: A review. Technology Reports of
Kansai University, 62(3): 1083-1092.

[38] Zebari, I.M., Zeebaree, S.R., Yasin, H.M. (2019). Real
time video streaming from multi-source using client-

server for video distribution. In 2019 4th Scientific
International Conference Najaf (SICN), Al-Najef, Iraq,
pp. 109-114.
https://doi.org/10.1109/SICN47020.2019.9019347

[39] Selamat, S.A.A.Z.A. (2017). Electronic learning
management system based on semantic web technology:
A review. International Journal of Advances in
Electronics and Computer Science, 4(3): 1-6.

[40] Sawant, A.A., Meshram, B. (2013). Network
programming in Java using Socket. Google Scholar.

[41] Kalita, L. (2014). Socket programming. International
Journal of Computer Science and Information
Technologies, 5(3): 4802-4807.

[42] Maata, R.L.R., Cordova, R., Sudramurthy, B., Halibas,

A. (2017). Design and implementation of client-server
based application using socket programming in a
distributed computing environment. In 2017 IEEE
International Conference on Computational Intelligence
and Computing Research (ICCIC), pp. 1-4.
https://doi.org/10.1109/ICCIC.2017.8524573

[43] Godla, S.R., Fikadu, G., Adema, A. (2022). Socket
programming-based RMI application for Amazon web
services in distributed cloud computing. In: Raj, J.S.,
Kamel, K., Lafata, P. (eds) Innovative Data
Communication Technologies and Application. Lecture
Notes on Data Engineering and Communications
Technologies, vol 96. Springer, Singapore.
https://doi.org/10.1007/978-981-16-7167-8_37

245

