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The ideas of the studies in this article are back-grounded by the work diligently and 

carefully to relate the influence of two independent variables, e.g., distance and time on 

one dependent variable, i.e., temperature changes which are solved by a partial 

differential equation. In this article, we explain the particular features of a naturally 

physical system that it seeks to understand. The diagnosis of the temperature changes 

in a metal rod to consider a conduction phenomenon can be covered by all-natural 

physical phenomena through conduction. By making the mathematical equations based 

on partial differential equations (PDEs), it is shown that the temperature change is 

influenced by distance and time. The objectives of this study are (i) to make a prototype 

of the problem based on the one-dimensional heat conduction equation, (ii) to process 

the solution of the mathematical equation based on the parabolic partial differential 

equation (PDE) using the separation of variables, and (iii) to display the phenomena of 

the temperature changes as a function of the length in the copper bar and the time. 

Achieving the research objectives takes several stages in the research methods which 

include (a) making the prototype of the problem, (b) processing the solution of a 

mathematical equation, and (c) displaying the temperature changes phenomenon in the 

form of a curve. The results are (i) a mass balance is developed for a finite segment ∆𝑧 

along the tank’s longitudinal axis in order to derive a differential equation, (ii) the final 

complete solution in the form of a Fourier sine series, and (iii) a three-dimensional curve 

as an indication of the existence of the phenomenon of temperature changes. In general, 

it can be concluded that the making of a mathematical model based on partial differential 

equations with the method of separating variables as an analytical solution can be used 

to diagnose the phenomenon of temperature changes as a function of distance and time. 
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1. INTRODUCTION

Physics is a science that studies the order of the universe 

and as much as possible uses that order for two important 

things [1, 2], namely (i) discovering other regularities in the 

universe that have not been discovered and (ii) exploiting the 

order that has been found to be useful for human life [3]. 

Physics complements the existence of the trinity of the original 

hard sciences, in addition to the other two, i.e., chemistry and 

biology [4, 5]. In physical phenomena, the term “mathematical 

model” or to be known as a “model” is going to refer to a set 

of consistent equations intended to explain the particular 

features or behavior of a naturally physical system that it 

seeks to understand [6, 7]. The dynamics of a physical system 

are often described by differential equations, therefore the 

performance of physical systems is obtained by utilizing the 

physical laws of mechanical, electrical, fluid, and 

thermodynamic systems. The formation of mathematical 

models of physical phenomena of science and engineering 

models based on partial differential equations can be 

implemented through the elimination of constants or functions 

[8]. A diagnosis is an act of identifying a problem by 

examining something, therefore whatever that problem may 

be or the identification or naming of it is the diagnosis. The 

diagnosis of the temperature changes to cover all-natural 

physical phenomena can be through conduction, convection, 

or radiation [9, 10]. For the case of temperature change in a 

metal rod to consider a conduction phenomenon. 

Mathematical modeling represents a very effective and 

powerful instrument to solve complex problems in various 

sciences, engineering, and technologies for comprehending 

the world of academic perspectives [11]. The models of 

equations in mathematics with the widespread use of 

differential equations, more specifically partial differential 

equations (abbreviated in the following as PDE in singular 

usage and PDEs in plural usage) can be found in various fields 

of natural, life, and social sciences [12]. A number of 

prominent phenomena in the natural science and particularly 

in physics can be approximated by PDEs [13-19] in (i) the 

change of the distance on the dimensions of space (the axes 

of x, y, and z) and (ii) in the change of the time (t) 

simultaneously, such as the distribution of heat (H) or 
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temperature (T) in all directions of the axes of x, y, and z [20]. 

The PDEs describe the change of a system rather than its state 

over space and time, such changes in more than one 

independent variable, i.e., the variables of t, x, y, and z. A 

change in a system in space and time can be described by 

PDEs [21]. 

For assuming, knowing the solution at the time and all 

directions can be used as a PDE and describes a system to 

analytical and/or numerically estimate the solution after a 

very small change in time and all directions [21]. The law for 

energy conservation in solids and fluids can be described as 

a PDE for expressing the changes in temperature (T) in the 

space, therefore in this case, the temperature (T) is called the 

dependent variable [22]. It is can be selected a position in 

space and time for getting a unique value for the temperature 

by solving the PDEs, therefore-called the temperature 

depends on x, y, z, and t. However, a value of the temperature 

taken from the solution by PDEs, but does not automatically 

give us the position in time and space. In this sense, the 

parameters of x, y, z, and t are independent of temperature 

[20, 23]. 

The general form of a single rectangular fin is guided by the 

description in the book entitled "Transport Phenomena" 

written by Bird et al., in 1962 [23] and in this case specifically 

a single rectangular plate-fin made of copper metal that refers 

to the results of dissemination that written by Goeritno [24, 25]. 

A single rectangular plate-fin with a lengthiness (L) much 

greater than a thickness (B) [23-25] is shown in Figure 1. 

 

 
 

Figure 1. A single rectangular plate-fin with a lengthiness 

(L) much greater than a thickness (B) 

 

A reasonably good description of the system may be 

obtained by approximating the realistic situation and just on a 

model [23-25]. The comparison between the true physical 

situation and the simplified model [23, 24] is shown in Table 

1. 

A thermal energy balance on a segment ∆𝑧 of the bar gives 

the Eq. (1) [23, 24]. 

 

𝑞𝑧|𝑧 ∙ 2BW − 𝑞𝑧|𝑧+∆𝑧 ∙ 2BW − ℎ(2W ∙ ∆𝑧)(𝑇 − 𝑇𝑎)
= 0 

(1) 

 

Divided by 2𝐵𝑊 ∙ ∆𝑧  and taking the limit ∆𝑧 approaches 

zero gives as the Eq. (2) [23, 24]. 

 

−
𝑑

𝑑𝑧
𝑞𝑧 =

ℎ𝑚𝑒𝑡.
B

(𝑇 − 𝑇𝑎) (2) 

 

Assuming PDEs can be used to describe the laws of 

physics, then the solving of PDEs in a mathematical model 

makes it possible to predict the outcome of an experiment 

and helps engineers and scientists understand the phenomena 

that are described by that mathematical model. By making 

mathematical equations based on partial differential equations 

[24], it is shown that temperature change is influenced by time 

and distance (direction in space) [25]. In general, changes in 

the value of parameters as a function of the distance and the 

time through the simulation can be implemented [24]. Once 

validated, the solution of the PDEs, in combination with 

methods for varying model parameters, can also be used to 

optimize the design of a device or the phenomena of 

processes [13-19]. 

Making the mathematical models for implementing a single 

rectangular plate-fin as a passive heat exchanger for a fluid 

cooling process is an application of PDEs to diagnose the 

temperature parameter value per unit of distance and time [24, 

25]. Several descriptions have become the basis [12-16], 

therefore the objectives of this study are (i) to make a 

prototype of the problem based on the one-dimensional (1-

dim) heat conduction equation [26-30], (ii) to process the 

solution of the mathematical equation based on parabolic PDE 

using the separation of variables [13-19], and (iii) to display 

the phenomena of the temperature changes as a function of the 

length in the copper bar and the time [24, 25]. After achieving 

the objectives in this study, it is hoped that the purposes will 

be obtained through the procedures, namely (a) for making 

the 1-dim-based the prototype of problem that used the heat 

conduction equation for a finite segment in the z-axis, (b) for 

processing the solution based on the parabolic PDE in the form 

of a Fourier sine series, and (c) for displaying the temperature 

changes phenomena in the form of curves that used a three-

dimensional curve as an indication of the existence of the 

phenomenon of temperature changes through the calculation 

process on the conditions of these physical phenomena [31]. 

The rest of this article is organized as follows, i.e., chapter 2 

presents our proposed materials and methods of the studies, 

chapter 3 presents the results and discussion, and chapter 4 

presents the conclusion. 

 

 

Table 1. The comparison between true physical situation and the simplified model 

 
True Physical Situation No. The Simplified Model 

Temperature (T) is a function of the z-axis, which is more important, although it is actually a 

function both axes, i.e., axes of x and z. 
#1 T is a function of the z-axis alone. 

A small quantity of heat is lost from the fin at the end (area of 2BW) and the edges (area of 

2BL+2BL). 
#2 No heat is lost from the end or the edges. 

The coefficient of heat transfer is a function of position. #3 

The heat flux at the surface is given by 

q=h(T-Ta ), which h is constant,  

and T=T(z). 
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2. MATERIALS AND METHODS OF THE STUDIES 

 

2.1 Materials of the study 

 

As is known, the general solution to the ordinary differential 

equation (ODE) involves an arbitrary constant, while the 

general solution to the PDE involves an arbitrary function. The 

PDE is an equation in which there are two terms of partial 

differential, i.e., (i) which in mathematics is defined as a 

relationship that relates to an unknown function, and (ii) which 

is a function of several independent variables, with their 

derivatives through variables that meant [13-19]. The PDE is 

a differential equation in which the unknown function is a 

function of many independent variables, and the equation also 

involves partial derivatives [13-19, 12]. The PDE is used to 

formulate and solve problems involving unknown functions 

[13-19] which are formed by several variables, such as sound 

and heat propagation, electrostatics, electrodynamics, fluid 

flow, elasticity, or more generally all kinds of processes 

distributed in space, or distributed in space, i.e., one of the 

directions axes of x, y, or z and the time (t). The order of the 

equations is defined as in ordinary differential equations, but 

further classification into elliptic, parabolic, and hyperbolic, 

especially for second-order linear differential equations is very 

important [32]. Some PDEs cannot fall into these categories 

and are called mixed types [12]. 

The general linear PDEs of the second order in two 

independent variables are the form as Eq. (3) [33]. 

 

𝐴
𝜕2

𝜕𝑦2
𝑢(𝑦, 𝑧) + 𝐵

𝜕2

𝜕𝑧𝜕𝑦
𝑢(𝑦, 𝑧) + 𝐶

𝜕2

𝜕𝑧2
𝑢(𝑦, 𝑧) 

+𝐷 (𝑦, 𝑧, 𝑢,
𝜕

𝜕𝑦
𝑢,
𝜕

𝜕𝑧
𝑢) = 0 

(3) 

 

where: A, B, and C are functions of y, z, and u. 

The exact transformation to Eq. (3) is the same as 

transforming an equation of the form as Eq. (4) [33]. 

 

𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2 = 0 (4) 

 

By a rotation of axes regarding the sign of B2-4AC which is 

called the value of discriminant, therefore the conversion into 

the standard forms of an elliptic, parabolic, or hyperbolic. 

Following the nomenclature of the geometrical configuration, 

if B2-4AC<0 the PDE is to be elliptic, if B2-4AC=0 is the PDE 

of parabolic type, and if B2-4AC>0 the PDE is called 

hyperbolic [18, 19, 33]. Each category describes through the 

different phenomena and mathematical properties that 

correspond to those phenomena [13-19]. 

A solution to the differential equation may depend on the 

time variable t, i.e., when the form of the function at t=0 is 

known as the initial condition for the differential equation. 

Likewise, it can be given the values of the functions in the 

boundary region as boundary conditions [34]. These two 

conditions can be written as a function with initial and 

boundary conditions and can be written as (i) ψ(0,t)=0, when 

t=0, and (ii) ψ(L,t)=1, when t>0. The completion of a PDE 

cannot be separated from someone's ability to solve an ODE, 

because the completion of a PDE can be brought into the form 

of an ODE in a certain way, for example by using a technique 

or method of variable separation [13-19]. Boundary conditions 

are certain conditions involved in the partial differential 

equation, therefore a solution to the partial differential 

equation can be searched. There are three possible boundary 

conditions, namely finite intervals, semi-finite intervals, and 

infinite intervals. For a finite interval, the value of the interval 

is 0<x<L, therefore it has two boundary conditions, namely at 

the beginning of x=0 and when x=L. For half-infinite intervals, 

the value of the interval is 0<x<∞ and is usually written x>0, 

therefore only the initial conditions are at x>0. For an infinite 

interval, the value of the interval is -∞<x<∞, therefore there is 

no boundary condition [13-19]. 

The form of the boundary condition equation is given by Eq. 

(5) [18, 19, 33].  

 

(𝛼𝑈 + 𝛽
𝜕

𝜕𝑛
𝑈) = 𝑓(𝑥) (5) 

 

where, α and β are constants and 
𝜕

𝜕𝑛
𝑈 defined as shown in Eq. 

(6) [18]. 

 

𝑔𝑟𝑎𝑑. 𝑢 ∙ 𝑛 = (
𝜕

𝜕𝑥1
𝑈,⋯ ,

𝜕

𝜕𝑥𝑛
𝑈) ∙ 𝑛 (6) 

 

There are three possible types of boundary conditions for a 

second-order differential equation [35, 36], namely: 

#a) Eq. (5) is called the Dirichlet’s condition, if α≠0 and β=0; 

#b) Eq. (5) is called the von Neumann’s condition, if α=0 and 

β≠0; and 

#c) Eq. (5) is called Robin’s condition or also called the mixed 

condition if α≠0 and β≠0. 

Referring to Table 1 that T is a function of the z-axis alone, 

then the simplification of Eq. (5) is obtained the Eq. (7) [26-

30]. 
 

𝐶
𝜕2

𝜕𝑧2
𝑇(𝑧) + 𝐷 (𝑧, 𝑇,

𝜕

𝜕𝑧
𝑇) = 0 (7) 

 

Eq. (7) is called the one-dimensional (1-dim, 1D) of PDE 

[26-30]. 
 

2.2 Methods of the study 
 

Based on the previous research obtained the results [24, 25], 

namely (i) the change in temperature value on a copper bar in 

the form of a single rectangular plate-fin as a function of the 

length (as a function of the distance) and (ii) the change in 

temperature value on fluid as a function of the time. The results 

from the previous research are shown in Eqns. (8) and (9) [24]. 

 

−
𝑑2

𝑑𝑧2
𝑇𝑐𝑢 =

ℎ𝑐𝑢
𝑘𝑐𝑢 ∙ 𝐵

(𝑇𝑐𝑢 − 𝑇𝑓) (8) 

 
𝑑

𝑑𝑡
𝑇𝑓 = −

ℎ𝑐𝑢 ∙ "𝐴"𝑐𝑢
𝑚𝑓 ∙ 𝐶𝑝𝑓

∙ (𝑇𝑐𝑢 − 𝑇𝑓) +
𝑈𝑤 ∙ "𝐴"𝑤
𝑚𝑓 ∙ 𝐶𝑝𝑓

∙ (𝑇𝑓 − 𝑇𝑤) 

(9) 

 

Referring to the Eq. (8), in that case of using copper material 

for the simulation process, then Tcu=T, hcu=hmet., and kcu=kmet., 

therefore the Eq. (8) transformed into the Eq. (10) [24]. 

 

−
𝑑2

𝑑𝑧2
𝑇 =

ℎ𝑚𝑒𝑡.
𝑘𝑚𝑒𝑡. ∙ B

(𝑇 − 𝑇𝑓) (10) 

 

Eq. (10) is used the plate-fin form in fluid, therefore for 

implementation in the air, then the Eq. (10) changes to Eq. (11) 

[24]. 
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−
𝑑2

𝑑𝑧2
𝑇 =

ℎ𝑚𝑒𝑡.
𝑘𝑚𝑒𝑡. ∙ B

(𝑇 − 𝑇𝑎) (11) 

 

In Eq. (11) there is an insertion of Fourier's Law (𝑞𝑧 =

−𝑘
𝑑

𝑑𝑧
𝑇) [23, 24] in which the constant kmet. is k (coefficient of 

thermal conductivity of the metal), therefore Eq. (11) is 

changed like Eq. (2). 

Diagnosing the changes in the value of parameters as a 

function of the distance or the time can be implemented by 

making mathematical equations based on the PDE [12-16]. 

Achieving the research objectives takes a number of stages in 

the research methods which include (a) making the prototype 

of the problem, (b) processing the solution of a mathematical 

equation, and (c) displaying the temperature changes 

phenomena in the form of the curve. Formatting the PDE can 

be implemented by eliminating the constant and function. In 

general, this method is done by eliminating the constants 

contained in a multi-variable function. Based on Eqns. (8) and 

(9), a PDE is made to obtain a one-dimensional (1-dim) heat 

conduction equation or known as the advection-diffusion 

equation as shown in Eq. (12) [26-30]. 

 

𝜕

𝜕𝑡
𝑇 = −

𝜕2

𝜕𝑧2
𝑇 (12) 

 

The heat equation is a PDE describing the distribution of 

heat over time. In one spatial dimension as the temperature 

obeys the relation through a number of steps of completion 

according to the research objectives. A number of methods 

that can be used, especially for analytical solutions to PDEs 

include (i) separation of variables, (ii) method of 

characteristics, (iii) integral transform, (iv) change of variables, 

(v) fundamental solution, (vi) superposition principle, (vii) 

methods for non-linear equations, (viii) lie group method, and 

(ix) semi-analytical methods [12-16]. The further steps for 

solving a 1-dim heat conduction equation are when is used an 

analytical method [26-30]. Firstly, make the prototype of the 

problem based on the 1-dim heat conduction equation. 

Secondly, soluting the PDE when is used the method of 

separating variables. Thirdly as a final, giving the notation and 

displaying the curve. 

 

 

3. RESULTS AND DISCUSSION 
 

3.1 Prototyping the problem 

 

According to Eq. (12) is obtained A=-1, B=0, C=0, therefore 

by referring to Eq. (4), it is obtained the value of discriminant, 

i.e., B2-4AC=0 and the PDE is to be parabolic. Making the 

prototype of the problem based on the 1-dim heat conduction 

equation is the first stage to solve a problematic in the physic 

based on the PDE. Forming the PDE as Eq. (12) is typical 

example of one-dimensional heat conduction equation 

therefore the solution is done with a depiction or illustration. 

A depiction to explain the 1-dim heat conduction equation is 

shown in Figure 2. 

Based on Figure 2, it can be explained that all changes are 

propagated forward in time, i.e., nothing goes backward in 

time. The changes are propagated across space at decreasing 

amplitude. Considering the Figure 2, then a drawing is made 

for the phenomena of heat conduction. A depiction to explain 

further the one-dimensional heat conduction equation is 

shown in Figure 3. 

 
 

Figure 2. A depiction to explain the 1-dim heat conduction 

equation 

 

 
 

Figure 3. A depiction to explain further the one-dimensional 

heat conduction equation 

 

Based on Figure 3, it can be explained that an elongated 

reactor with a single entry and exit point and a uniform cross-

section of area “A”. A mass balance is developed for a finite 

segment. 

∆𝑧 along the tank’s longitudinal axis in order to derive a 

differential equation for “concentration of the temperature”, 

𝑇 = 𝐴 ∙ ∆𝑧.  

The one-dimensional heat conduction can be illustrated in 

the form of a diagram. An illustration of the one-dimensional 

heat conduction is shown in Figure 4. 

 

 
 

Figure 4. An illustration of the one-dimensional heat 

conduction 

 

Based on Figure 4, it can be explained that a diagram has 

been shown by Cengel's explanation in the reference of 26th. 

The phenomenon of one-dimensional heat conduction is 

described as the simplest state of heat flow, so that heat flows 

in one face of the object and exits in the opposite face. The 

one-dimensional heat conduction equation is first used for 

solutions to homogeneous conditions, then the solution is 

substituted into one-dimensional non-homogeneous heat 

conduction. To solve one-dimensional non-homogeneous heat 

conduction by using Green's function with the result expressed 

in double integrals, while using the method of separating the 

variables, the result is expressed in a single integral. 
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3.2 Processing the solution of the mathematical equation 

After obtaining the prototype of the problem based on the 

one-dimensional heat conduction equation, then further 

processing is carried out in the form of proceeding to 

determine the solutions using one of a number of the methods 

of analytical, i.e., it describes the solution process using the 

separation of variables. The equation for the energy balance in 

the heat conduction process is shown in Eq. (13) [18, 19, 33]. 

𝑉
∆

∆𝑡
𝑇 = 𝑄 ∙ 𝑇(𝑧) − 𝑄 [𝑇(𝑧) +

𝜕

𝜕𝑧
𝑇(𝑧) ∙ ∆𝑧] 

−𝐷 ∙ 𝐴 ∙
𝜕

𝜕𝑧
𝑇(𝑧) + 𝐷 ∙ 𝐴 ∙ [

𝜕

𝜕𝑧
𝑇(𝑧) +

𝜕

𝜕𝑧
∙
𝜕

𝜕𝑧
𝑇(𝑧) ∙ ∆𝑧] 

−𝑘 ∙ 𝑉 ∙ 𝑇(𝑧)

(13) 

where, 

# 𝑄 ∙ 𝑇(𝑧) is flow in; 

# 𝑄 [𝑇(𝑧) +
𝜕

𝜕𝑧
𝑇(𝑧) ∙ ∆𝑧] is a flow out; 

# 𝐷 ∙ 𝐴 ∙
𝜕

𝜕𝑧
𝑇(𝑧) is dispersion in; 

# 𝐷 ∙ 𝐴 ∙ [
𝜕

𝜕𝑧
𝑇(𝑧) +

𝜕

𝜕𝑧
∙
𝜕

𝜕𝑧
𝑇(𝑧) ∙ ∆𝑧] is a dispersion out; and 

# 𝑘 ∙ 𝑉 ∙ 𝑇(𝑧) is decay reaction. 

As is well known, when ∆𝑡  and ∆𝑧  are close to zero, 

consider the 𝑇 ∈ ℝ(𝑛) which is open and can be founded set,

therefore the temperature change in the heat equation is given 

as shown in Eq. (14) [18, 19, 33]. 

∆

∆𝑡
𝑇 =

𝜕

𝜕𝑡
𝑇 (14) 

where, T is a function of z, (one of the three spatial vectors), 

and t which is denoted as the time. The coefficient of thermal 

diffusivity is not considered, it can be set to 1. On the right side 

of Eq. (12) is the Laplacian equation which is defined as the 

second derivative, whereas the 𝑡 takes value in the interval of 0 

to ∞, and z is within the area of T, therefore is obtained the 

following boundary condition as shown in Eqns. (15) and (16) 

[18, 19]. 

𝑇|𝑡=0  =  𝑇(𝑧, 0)  = 𝑓(𝑧) (15) 

T=0 on the boundary of T (16) 

It means on the edge of the object, the temperature, in the 

beginning, is zero, and the temperature at each point is given 

by function 𝑓: 𝑇 → ℝ. 

Substituting Eq. (14) into Eq. (13), then Eq. (13) changes to 

Eq. (17) [18, 19]. 

𝜕

𝜕𝑡
𝑇 = 𝐷 ∙ 𝐴 ∙

𝜕2

𝜕𝑧2
𝑇 −

𝑄

𝐴
∙
𝜕

𝜕𝑧
𝑇 − 𝑘 ∙ 𝑇 (17) 

As the name suggests, this method is a way of separating x 

and t variables and placing them on different sides of the 

equation. This is possible because z and t are independent 

variables meaning that z is a function of t or vice versa. The 

first step in this method is to assume that the solution has the 

following form as shown in Eq. (18) [18]. 

𝑇 (𝑧, 𝑡) = 𝛿(𝑧) ∙ 𝜃(𝑡) (18) 

Substituting Eq. (18) into Eq. (12) obtained an equation as 

shown in the Eq. (19) [18]. 

𝜕

𝜕𝑡
[𝛿(𝑧) ∙ 𝜃(𝑡)] =

𝜕2

𝜕𝑧2
[𝛿(𝑧) ∙ 𝜃(𝑡)] (19) 

Eq. (19) is simplified to be shown as Eq. (20) [18]. 

𝛿(𝑧) ∙  
𝜕

𝜕𝑡
𝜃 =

𝜕2

𝜕𝑧2
𝛿 ∙ 𝜃 (20) 

Further simplification of Eq. (20) is obtained as Eq. (21) 

[18]. 

𝜕2

𝜕𝑧2
𝛿 ∙  

1

𝛿(𝑧)
=  

𝜕

𝜕𝑡
𝜃 ∙  

1

𝜃(𝑡)
(21) 

Changes to the left and right sides of Eq. (19) are obtained 

in a simpler form such as Eq. (23) [18]. 

∆𝛿

𝛿(𝑧)
=

𝜃′

𝜃(𝑡)
(22) 

Now the two variables are separated, i.e., on the left side, 

there is only variable z, while on the right side, there is only 

variable t. The only condition with possible equations in Eq. 

(22), is that both the left and right sides have the same constant 

as shown in Eq. (23) [18]. 

∆𝛿

𝛿(𝑧)
=

𝜃′

𝜃(𝑡)
=  𝜇 (23) 

Referring to Eq. (23) has gotten two ODE, but only one 

variable is considered in the equation, i.e., as shown in Eq. (24) 

or Eq. (25) [18, 19]. 

∆𝛿 = 𝜇 ∙  𝛿(𝑧) (24) 

𝜃′ =  𝜇 ∙  𝜃(𝑡) (25) 

The general solution to Eq. (25) as shown in Eq. (26) [18]. 

𝜃(𝑡) = 𝑐 ∙  𝑒  𝜇 ∙ 𝑡;     𝑐 ∈ ℝ (26) 

The solution to Eq. (24) cannot be considered trivial, 

therefore it is necessary to solve the following differential 

equation as shown in Eq. (27) [18, 37]. 

∆𝜕(𝑧) = 𝜆 ∙ 𝛿(𝑧) = 0

𝛿(𝑧) = 0 on the boundary of 𝑇

𝛿(𝑧, 0) = 𝑓(𝑧) }

(27) 

where, 

# δ(z) is defined for all T; 

# λ=μ∙δ(z)=0 is a boundary condition that the heat at the edges 

is zero and the heat at each point in T is given by f(z), the same 

as in Eq. (15) [18, 19]. 

The problem stated in Eq. (27) is known as the Sturm-

Liouville problem, but with the additional note, that it is not 

necessary to know this for a solution to Eq. (27) which has a 

solution of the general form as shown in Eq. (28) [18, 37]. 

ℒ[𝑦] + 𝜆 ∙ 𝑟(𝑧) ∙ 𝑦 = 0 (28) 
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where: 
 

ℒ[𝑦] =
𝑑

𝑑𝑧
[𝑝(𝑧) ∙

𝑑

𝑑𝑧
𝑦] + 𝑞(𝑧) ∙ 𝑦. 

 

The functions of p, q, and r are continuous functions on [a, 

b] and p and r are non-negative functions with boundary 

conditions as shown in Eqns. (29) and (30) [18, 37]. 
 

𝑎1𝑦(𝑎) + 𝑎2𝑝(𝑎) ∙ 𝑦
′(𝑎) = 0 (29) 

 

𝑎1𝑦(𝑎) + 𝑎2𝑝(𝑎) ∙ 𝑦
′(𝑎) = 0 (30) 

 

where, 𝑎1
2 + 𝑎2

2  ≠ 0  and 𝑏1
2 + 𝑏2

2  ≠ 0  are boundary 

conditions of the Sturm-Liouville problem. 

The Sturm-Liouville problem does not always have a non-

trivial solution. If the non-trivial solution persists, then the λ is 

the eigenvalue of the boundary-value problem, and the 

solution is the eigenfunction. Returning to the heat equation, 

the characteristic function of Eq. (27) and the solution is Eq. 

(31) [18, 37]. 
 

𝑟2 +  𝜆 = 0 or 𝑟 =  ±√𝜆 (31) 

 

Solutions of the differential equations that fit characteristic 

roots, e.g., the roots of different, repeated, and imaginary are 

absolutely understood.  

Keep in mind, that the limit value which has been talked 

about is δ(z)=0 at the boundary T, if consider the simplest case 

of the thermal conduction in a one-dimensional bar, therefore 

T can be an interval for example [0, L], therefore there are three 

cases for λ, i.e. when the λ<0, λ=0, and λ>0. 
 

#Case-1, the λ<0 

In this case, both the roots are real numbers and the solution 

is of the form shown in Eq. (32) [18, 37]. 
 

𝛿(𝑧) = 𝐴 𝑒  √−𝜆 ∙𝑧 +  𝐵 𝑒−√−𝜆 ∙ 𝑧 (32) 

 

When plugged δ(0) = δ(L)= 0 into the boundary conditions, 

it is shown that A and B must be zero, because the number e to 

the power of something is always positive, and then positive 

is not an eigenvalue. 
 

 #Case-2, the λ=0 

This is the simplest case, therefore a solution for Eq. (27) in 

the form δ(z)=Az+B [18, 37]. After substituting into the 

boundary conditions, it has gotten the result, that in this case 

there is only a trivial solution, then zero is not an eigenvalue. 
 

#Case-3, the λ>0 

In this case, there is no real root and the solution looks like 

Eq. (33) [18, 37]. 
 

𝛿(𝑧) = 𝐴 cos√𝜆  ∙ 𝑧 + 𝐵 sin √𝜆  ∙ 𝑧 (33) 

 

Plugging δ(0)=0 into Eq. (33), it is immediately apparent 

that the constant of A must be zero. Then we put δ(L)=0, now 

it has the form of Eq. (34) [18, 37]. 

 

𝐵 sin√𝜆  ∙ 𝐿 = 0 (34) 

Keep in mind, that √𝜆  ∙ 𝐿 = 𝑛 ∙ 𝜋, where n=1,2,3,⋯, then 

simplification of the equation √𝜆  ∙ 𝐿 = 𝑛 ∙ 𝜋 is carried out, it 

becomes √𝜆 =
𝑛∙𝜋

𝐿
, therefore obtained Eq. (35) [18, 37]. 

 

𝜆 =  (
𝑛 ∙ 𝜋

𝐿
)
2

 (35) 

 

So δ(z) is given by Eq. (36) [18, 37]. 

 

𝛿(𝑧) = sin (
𝑛 ∙ 𝜋 ∙ 𝑧

𝐿
) (36) 

 

A number of these are eigenfunctions and the conclusion 

stage has been reached that there is only a positive eigenvalue. 

This indicates that the condition is very close to the final 

settlement. By combining with the solution of θ(t) which has 

been obtained previously as Eqns. (18) and (26), also the value 

of μ=-λ. It can write the nth solution as shown in Eq. (37) [18]. 

 

𝑇𝑛 (𝑧, 𝑡) = 𝛿(𝑧) ∙ 𝜃(𝑡) = 𝐺𝑛 ∙ sin (
𝑛 ∙ 𝜋 ∙ 𝑧

𝐿
) ∙ 𝑒

−(
𝑛∙𝜋
𝐿
)
2
 ∙ 𝑡

 (37) 

 

Referring to the principle of superposition, the linear 

combination of all the solutions described in Eq. (37) is also a 

solution. This means if sum it up as shown in Eq. (38) [18]. 

 

𝑇𝑛 (𝑧, 𝑡) = ∑𝐺𝑛 ∙ sin (
𝑛 ∙ 𝜋 ∙ 𝑧

𝐿
) ∙ 𝑒−

(
𝑛∙𝜋
𝐿
)
2
 ∙ 𝑡

∞

𝑛=1

 (38) 

 

Eq. (38) is the final complete solution, and it is in the form 

of a Fourier sine series, where finding the constant Gn is a 

simple problem in finding a coefficient in the Fourier series. It 

can be found with the help of an equation as shown in Eq. (39) 

[18]. 
 

𝐺𝑛 =
2

𝐿
∫ 𝑓(𝑧)
𝐿

0

∙ sin (
𝑛 ∙ 𝜋 ∙ 𝑧

𝐿
) ∙ 𝑑𝑧 (39) 

 

The final stage is an indication of the phenomenon of 

temperature changes based on Eqns. (38) and (39). First, the 

solution to Eq. (39) [18] is carried out, where: n, L, and π are 

constants, with the stages, i.e., 
 

𝐺𝑛 =
2

𝐿
∫ 𝑧
𝐿

0

∙ sin (
𝑛 ∙ 𝜋 ∙ 𝑧

𝐿
) ∙ 𝑑𝑧 

 

𝐺𝑛 =
2

𝐿
(

𝐿

𝑛2∙𝜋2
) ∙ [𝐿 sin (

𝑛∙𝜋∙𝑧

𝐿
) − 𝑛𝜋𝑧 cos (

𝑛∙𝜋∙𝑧

𝐿
)]|

0

𝐿

, 

 

so that the solution is obtained as shown in Eq. (40) [18]. 
 

𝐺𝑛 =
2

𝑛2 ∙ 𝜋2
∙ [𝐿 sin(𝑛 ∙ 𝜋) − 𝑛𝜋𝐿 cos(𝑛 ∙ 𝜋)] (40) 

 

These integrals can on occasion, be somewhat messy 

especially when it used a general L for the endpoints of the 

interval instead of a specific number. Now, taking advantage 

of the fact that n is an integer it knows that sin(n∙π)=0 and 

cos(n∙π)=(-1)n. It is obtained in the form of an equation, i.e., 
 

𝐺𝑛 =
2

𝑛2∙𝜋2
∙ [−𝑛𝜋𝐿(−1)𝑛]. 

 

Obtained further results such as Eq. (41) [18]. 

 

𝐺𝑛 =
(−1)𝑛+1 ∙ 2𝐿

𝑛𝜋
𝑣 (41) 

 

where n=1,2,3, ⋯. 
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Based on this, a Fourier sine series is obtained, i.e., 
 

𝑧 = ∑
(−1)𝑛+1∙2𝐿

𝑛𝜋

∞
𝑛=1 ∙ sin (

𝑛∙𝜋∙𝑧

𝐿
). 

 

The final form of a Fourier sine series is shown in Eq. (42) 

[18]. 
 

𝑧 =
2𝐿

𝜋
∙∑

(−1)𝑛+1

𝑛

∞

𝑛=1

∙ sin (
𝑛 ∙ 𝜋 ∙ 𝑧

𝐿
) (42) 

 

3.3 Displaying the phenomena of the temperature changes 

 

Referring to previous research related to a single rectangular 

plate-fin which Goeritno has implemented for making 

assumptions and according to a number of mathematical 

equations that have been obtained to diagnose the existence of 

the phenomenon of temperature changes, application-based 

simulations can be carried out. MATLAB application with an 

online facility is used for simulation purposes. A three-

dimensional curve as an indication of the existence of the 

phenomenon of temperature changes is shown in Figure 5. 

Based on Figure 5, it can be explained that the formation of 

the three-dimensional curve is based on the arrangement of 

syntax lines that are carried out in the command window of the 

MATLAB application which is accessed online. 

A phenomenon of temperature change that occurs is 

observed along the length of the copper rod which is assumed 

to be 15 cm long in the form of a sinusoidal curve with the 

selected observation time range of up to 3,600 seconds. The 

assumption of the length of the copper rod for a single 

rectangular plate-fin and the assumption of the time span is 

based on previous studies by Goeritno [reference of 24th]. 

Based on this, it can be determined that the creation of a PDE-

based mathematical model for observing the phenomenon of 

temperature changes that are influenced by distance and time 

variables based on the form of the one-dimensional heat 

conduction equation can be solved by the method of separating 

variables. 

The syntax structure of the program for the formation of the 

three-dimensional curve is shown in Figure 6. 

 

 
 

Figure 5. A three-dimensional curve as an indication of the existence of the phenomenon of temperature changes 
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Figure 6. The syntax structure of the program for the 

formation of the three-dimensional curve 

 

Based on Figure 6, it can be explained that the syntax 

structure for programming based on MATLAB application 

consists of (i) initial condition, (ii) boundary condition, (iii) 

solving the equations, and (iv) plotting the 1-dim heat 

conduction equation. 

 

 

4. CONCLUSIONS 

 

Based on results and discussions can be concluded 

according to the research objectives. Making the prototype of 

the problem based on the one-dimensional heat conduction 

equation obtained a mass balance that developed for a finite 

segment ∆𝑧  along the tank’s longitudinal axis in order to 

derive a differential equation. Processing the solution of the 

mathematical equation based on parabolic PDE using the 

separation of variables obtained the final complete solution in 

the form of a Fourier sine series. Displaying the temperature 

changes phenomena in the form of curves is obtained as a 

three-dimensional curve as an indication of the existence of the 

phenomenon of temperature changes. 

The research contribution is presented in this article 

explained by a clear description of the phenomenon of 

temperature change based on differences, that the phenomena 

observed through the use of the same materials and basic 

equations, also the observed phenomena are the same, namely 

observations of changes in temperature but solved in a 

different way. The previous solutions are based on ordinary 

differential equations because each independent variable is 

solved independently. This research is based on partial 

differential equations because the two independent variables 

are solved simultaneously by the method of separating the 

variables. 

Suggestions for further research in the future can be used in 

several methods grouped in analytical methods for solving 

parabolic type partial differential equations in one-

dimensional heat conduction cases, including the use of 

several methods grouped in numerical methods, especially the 

method of finite difference or grid. 
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NOMENCLATURE 

 

PDE partial differential equation 

PDEs partial differential equations 

ODEs ordinary differential equations 

x 
independent variable; 𝑥-axis; 

the interval value of the lengthiness 

y independent variable; 𝑦-axis 

z independent variable; 𝑧-axis 

t time 

H heat 

T temperature 

B fin thickness 

L fin lengthiness 

W fin widths 

d differentiating with one variable 

𝛥 the segment of a 

𝛥𝑧 distance between 𝑧𝑖 and 𝑧𝑖+1 

q heat flux at the surface 
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h heat transfer coefficient 

A, B, C, D, V constants 

∂  differentiating with two or more variables 

u,f functions 

L lengthiness 

α,β constants of the boundary condition 

U 
variable of the boundary condition; 

over-all heat transfer coefficient 

h heat transfer coefficient 

k thermal conductivity, W.m-1. K-1 

Cp specific heat, J. kg-1. K-1 

Q 
the energy balance in the heat conduction 

process 

ℝ the set of real numbers 

∈ a member of 

→ implies 

δ variable of distance 

θ variable of temperature 

𝑝, 𝑞, 𝑟 continuous functions 

a1,a2,c,n contants 

e exponential number = 2.71828… 

G a coefficient in the Fourier series 

“A” area, m2 

IC initial conditions 

BC boundary conditions 

 

Greek symbols 

 

ψ function 

μ the same constant 

λ interval of temperature 

π pi number 

 

Superscripts 

 

1, 2, n sequence to  

(n) n-th derivative 

 

Subscripts 

 

1, 2, n sequence to  

met. metal 

cu copper 

a air 

f fluid 

w wall 

z in z-axis 
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