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The Ritz variational method was used in this study to solve the lateral torsional buckling 

problem of simply supported thin-walled beam with doubly – symmetric cross-section. 

Two considered cases of loading were uniform bending moments applied at the two 

ends, and a point load applied vertically at the midspan. The problem was presented in 

variational form as the problem of minimizing the total potential energy functional, , 

with respect to the unknown parameters of the generalized displacement modal 

functions. The total potential energy functional was found to be a function of two 

unknown displacement buckling functions v(x) and (x) and their derivatives with 

respect to the longitudinal coordinate axis. Suitable displacement buckling functions 

that satisfy the Dirichlet boundary conditions at the ends were used as trial functions to 

obtain the Ritz variational problem as the minimization of  with respect to the 

generalized buckling modal displacement amplitudes c1n and c2n. The Ritz variational 

equations were obtained as the minimum conditions for  with respect to c1n and c2n. 

The equations were solved for the two cases considered and the buckling moments 

found for the nth buckling mode from solving the resulting system of homogeneous 

algebraic equations. It was found that the expressions obtained for the buckling 

moments in each considered case were the exact expressions obtained by other 

researchers in literature who solved using classical mathematical methods. It was 

further found that for each considered case the critical buckling moment occurred at the 

first buckling mode, and the critical buckling moment expressions for each case agreed 

with exact solutions from the literature. The effectiveness of the Ritz variational method 

was thus illustrated for stability problems of thin-walled beams with Dirichlet boundary 

conditions. 
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1. INTRODUCTION

Thin-walled beams, columns and beam columns which are 

frequently used in bridge structures are prone to lateral 

torsional buckling (LTB). LTB is the stability failure of a thin-

walled beam loaded in the plane of its strong axis, and 

submitted to uncontrolled excessive simultaneous lateral 

deflection and twisting about the weaker axis [1-21]. The load 

at which LTB occurs, can be much smaller than the load that 

causes the development of its full bending moment capacity. 

In order thus to avoid premature and sudden failures of thin-

walled beams, the analysis of lateral torsional load buckling 

capacities of thin-walled beams that have greater major axis 

bending stiffness than minor axis bending stiffness or have 

large laterally unbraced lengths need to be investigated [22-

32]. 

1.1 Methods of solving LTB problems 

Three methods are used to determine the critical elastic LTB 

load of beams and beam – columns. They are (i) closed form 

(mathematical) methods; (ii) numerical methods (approximate 

methods) and (iii) energy or variational methods [22]. 

1.2 Closed form (mathematical) methods 

The mathematical methods involve finding closed form 

solutions to the differential equations of equilibrium for the 

stability problem. The differential equation of equilibrium for 

the lateral torsional buckling problem of a beam or beam – 

column subjected to end moments about its major axis can be 

solved mathematically by considering the boundary conditions. 

However, the mathematical solutions obtained are often too 

complex or involve series with infinite number of terms, and 

closed form solutions are obtained in only a few cases. 

Analytical solutions for the flexural and lateral torisonal 

buckling stability of beams and beam - columns were 

presented by Brown [8], Timoshenko and Gere [1], Vlasov [9], 

Chen and Lui [10] and Bazant and Cedolin [11] for I beams 

under some representative load cases. Sapkas and Kollar [12] 

and Mohri et al. [13] also presented analytical solutions for 

lateral buckling of beams with mono-symmetric cross-sections. 
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1.3 Numerical (approximate) methods 

 

When mathematical/analytical solutions are not possible to 

obtain due to the complicated nature of the governing equation 

of equilibrium introduced by material non homogeneity or non 

linearity, the use of numerical, approximate 

approaches/(methods) become necessary. Some of the 

approximate methods that are used are finite difference 

method, finite element method (FEM), finite strip method and 

finite integral method. 

 

1.4 Energy (variational) methods 

 

Energy methods are based on energy principles for solving 

the governing equation of equilibrium for the stability problem. 

Energy method is based on the principle that states that the 

additional strain energy during the LTB is equal to the 

additional work done by the applied forces. In this method an 

approximate buckled shape function which satisfies the 

kinematic boundary conditions and corresponds to the real 

mode shape is assumed and substituted into the energy 

equation in order to determine the stability equation. The 

Rayleigh –Ritz method is a classical method based on energy 

principles widely used for the static, dynamic and buckling 

analysis of structures and the solution of boundary value 

problems [17, 33, 34]. 

 

1.5 Review of previous works 

 

Juliusz [18] used the Ritz method to calculate the critical 

buckling moment of a tapered steel I-beam with simply 

supported ends. In particular, Juliusz [18] considered the 

lateral – torsional buckling of beams with tapered flanges and 

web. 

Soltani and Asgarian [23] used the finite difference method 

(FDM) to solve the lateral – torsional stability problem of 

simply supported thin-walled beams with mono-symmetric 

cross-section subjected to bending loads. They derived the 

differential equations of beams with linear behaviour by 

applying the stationarity condition to the total potential energy 

functional with the effects of initial stresses and load 

eccentricities from the shear centre considered. They used the 

central finite difference expressions for the corresponding 

derivatives to express the governing domain ordinary 

differential equation to a finite difference expression, with the 

boundary conditions also expressed in finite difference form. 

They found the FDM to be a most powerful technique to solve 

the governing differential equations especially for cases with 

variable coefficients. Numerical examples were used to 

illustrate the effectiveness of the FDM. 

Ma et al. [19] presented a study of elastic lateral distortional 

buckling of cantilever monosymmetrical I-beams, using the 

Rayleigh – Ritz method. The Rayleigh – Ritz method has 

advantages over the conventional finite element method 

because it is mesh free and requires only 6  n degrees of 

freedom; hence the solution process is fast. 

Though the problem of LTB of bisymmetric I-beams has a 

well established solution, the same problem with singly 

symmetric I-beam has not [21]. A closed form solution of the 

critical elastic lateral torsional buckling moment for simply 

supported doubly symmetric I-beam loaded by equal and 

opposite end moments was developed by Timoshenko and 

Gere [1]. The formula was adopted by many design codes and 

specifications. At the end supports the beam was free to warp, 

but torsional and lateral deflection were restrained. The 

buckling solution for simply supported singly symmetric 

section with equal and opposite end moments was first 

developed by Goodier [35, 36]. 

Ike et al. [37] have used the Laplace transformation method 

to solve elastic buckling problems of moderately thick beams 

under various boundary conditions. Fourier cosine series 

method has been used by Ike et al. [38] to solve the generalized 

elastic thin-walled column buckling problem for Dirichlet 

boundary conditions. A modified single finite Fourier cosine 

integral transform method has been used by Ike et al. [39] to 

find the critical buckling loads of first order shear deformable 

beams with fixed ends. 

Onah et al. [40] presented closed-form solutions to the 

elastic stability problems of moderately thick beams for 

various boundary conditions. Oguaghamba et al. [41] applied 

the method of finite Fourier sine integral transformation for 

solving the elastic stability problems of thin-walled beams 

with doubly-symmetric cross-sections and Dirichlet boundary 

conditions. 

Oguaghamba and Ike [42] applied the Galerkin-Vlasov 

method to obtain the exact solution to the eigenvalue problem 

of elastic stability of Kirchhoff plate with one free edge and 

three simply supported edges under uniform uniaxial 

compression. Onyia et al. [43] used the Kantorovich variant of 

the Galerkin method to study the elastic buckling problems of 

thin rectangular SCSC plates. 

Onyia et al. [44] presented elastic buckling solutions to the 

eigenvalue problems of SSCF and SSSS rectangular thin 

plates using the one-dimensional finite Fourier sine integral 

transform method. Onyia et al. [45] also applied the Galerkin-

Vlasov method to solve the elastic buckling problems of SSCF 

and SSSS thin plates under uniform uniaxial compressive 

loadings. 

Ike et al. [46] used the Generalized Integral Transform 

Method (GITM) to solve the stability problem of rectangular 

thin plate with two opposite clamped edges and the other edges 

simply supported. Ike [47] used the Variational Ritz-

Kantorovich-Euler-Lagrange method to develop solutions to 

the elastic stability problem of rectangular Kirchhoff plate 

with clamped boundaries. Onah et al. [48] derived elastic 

buckling solutions for uniaxially compressed CCSS thin plate 

by using one-dimensional finite Fourier sine integral 

transformation technique. 

In this work, the Ritz variational method is used as a 

mathematical and numerical analysis tool to solve the 

variational problem of the lateral – torsional buckling analysis 

of simply supported thin-walled beams with doubly symmetric 

cross-sections. Two types of load cases were considered, 

namely: 

• uniform (constant) bending moment applied at the ends, and  

• vertical point load applied at the midspan of the beam. 

 

 

2. THEORETICAL FRAMEWORK 

 

2.1 Variational presentation 

 

The lateral torsional buckling problem of thin-walled beams 

with bisymmetric cross-sections can be presented in 

variational form as the problem of minimizing the total 

potential energy functional . The total potential energy 

functional  for a thin-walled elastic beam buckling problem 

is given as the sum of the strain energy expression due to 
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bending Saint Venant torsion and warping, and the potential 

energy due to applied load and is given by: 

2 2 2

0 0 0 0

1 1 1

2 2 2
( ( )) ( ( )) ( ( )) ( ) ( )

l l l l

z w yEI v x dx EI x dx GJ x dx M x v x dx    = +  +  +     (1) 

Alternatively, 

( )2 2 2

0

1 1 1

2 2 2
( ( )) ( ( ) ( ( ) ( ) ( )

l

z w yEI v x EI x GJ x M x v x dx    = +  +  +  (2) 

where, l is the length of the beam, x is the longitudinal 

coordinate axis, the primes denote derivative with respect to x, 

Iw is the Saint Venant warping constant or the warping constant, 

J is the Saint Venant torsion constant, v(x) is the displacement, 

(x) is the rotational displacement about the longitudinal 

coordinate axis, Iz is the moment of inertia in the weak axis. E 

is the Young’s modulus of elasticity, G is the shear modulus 

or the modulus of rigidity, My is he applied bending moment. 

2.2 Equilibrium presentation 

The equilibrium equations are obtained from the total 

potential energy functional by setting the first variation of  

equal to zero. Thus, 

0( ( ) ( ), ( ), ( ))v x x x x      = (3) 


0 0

( ( ) ) ( ( ) ( ( ) ( ))

l l

z wEI v x M dvdx EI x GJ x Mv x d dx       = +  +  −  +  

      000
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l ll

z z wEI v M dv x EI v M dv x EI x d x      + +  − +  +  

( ) 0 0( ( ) ( )) ( )
l

wEI x GJ x d x  −  −   = 

(4) 

The differential equations of equilibrium are given by the 

first two terms in the expression for the first variation of . 

They are: 

0( ( ) ( ))zEI v x M x +  = (5) 

0( ( )) ( ( )) ( )wEI x GJ x Mv x     −  + = (6) 

where, the primes denote differentiation with respect to x. 

3. METHODOLOGY

3.1 Ritz variational method for thin-walled elastic lateral 

buckling problems for simply supported ends 

A simply supported thin-walled beam with bisymmetric 

cross-section under uniform bending moment, M, applied at 

the ends as shown in Figure 1 is considered. 

Figure 1. Thin-walled beam with bisymmetric cross-sections 

subjected to constant moment at the ends 

The boundary conditions for the displacement v(x) and the 

rotation (x) are: 

0 0 0( ) ( ) ( ) ( )v v v l v l = = = = (7) 

0 0 0( ) ( ) ( ) ( )l l  =  =  =  = (8) 

Suitable displacement functions v(x) and (x) that 

automatically satisfy the boundary conditions are: 

1

1

( ) sinn

n

n x
v x c

l



=


= (9) 

2

1

( ) sinn

n

n x
x c

l



=


 = (10) 

where, c1n is the buckling modal amplitude of v(x) for the nth 

buckling mode, c2n is the buckling modal amplitude of (x) for 

the nth buckling mode. 

The total potential energy functional for thin-walled beams 

with bisymmetric cross sections under constant moment for 

the case of simply supported ends is then: 


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(11) 

The Ritz variational equations are obtained by using the 

conditions for minimization of , thus: 

1

0
nc


=


(12) 

2

0
nc


=


(13) 

3.2 Ritz variational method for simply supported beam 

under load at midspan 

The boundary conditions are also given by Eqns. (7) and (8) 

and the displacement functions are given by Eqns. (9) and (10). 

However, 

2
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Px
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2
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Then, 
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(15) 

The extremum conditions Eqns. (12) and (13) are applied to 

obtain a minimum for  in Eq. (15).
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4. RESULTS 

 

4.1 Lateral torsional buckling of thin-walled beams with 

bisymmetric cross-sections – case of constant bending 

moment and simply supported ends 

 

Simplifying Eq. (11), 
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where, 
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where, 
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where, 
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For the nth buckling mode, the homogeneous equation 

obtained is given by: 
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For nontrivial solutions at the nth buckling mode the 

characteristic equation is obtained as: 
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Expansion of the determinant yields: 
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Hence, 
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Simplifying, 
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Further simplification yields: 
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Hence, 
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The critical buckling moment Mcr is obtained as the least 

value of M and this occurs when n = 1. 

Hence, 

 

2
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The critical buckling moment of beams under constant 

moment at the ends is expressed as: 
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Kb1 is a parameter defined in terms of G, E, Iw, and J, as: 
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w
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2
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The values of Kb1 are tabulated in terms of (
𝑙2𝐺𝐽

𝐸𝐼𝑤
)  and 

presented in Table 1 together with values of Kb1 obtained 

previously by Timoshenko and Gere [1]. 

 

Table 1. Values of Kb1 for various values of 
𝐺𝐽𝑙2

𝐸𝐼𝑤
 

 

w

GJl

EI

2

 
Present 

results 

Timoshenko 

and Gere [1] 

0     

0.1 31.3681 31.3681 

1.0 10.3575 10.3575 

2 7.6534 7.6534 

4 5.8499 5.8499 

6 5.1093 5.1093 

8 4.6953 4.6953 

10 4.4284 4.4284 

12 4.2411 4.2411 

16 3.9947 3.9947 

20 3.8393 3.8393 

24 3.7321 3.7321 

28 3.6536 3.6536 

32 3.5936 3.5936 

36 3.5462 3.5462 

40 3.5078 3.5078 

100 3.2930 3.2930 

      

 

4.2 Lateral torsional buckling of simply supported thin-

walled beam with bisymmetric cross-section – case of point 

load P at the midspan 

 

The case of a point load P acting at the midspan of a simply 

supported thin-walled beam with doubly symmetric cross-

section as shown in Figure 2 is considered. 

 

 
 

Figure 2. Lateral – torsional buckling of a thin-walled beam 

with bisymmetric cross-section and simply supported ends 

with point load P acting at the midspan 

 

The simplification of the total potential energy functional  

expressed by Eq. (15) is given as: 
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= =
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(36) 

 

where, 
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(39) 

 

where, 1 2
2

l
I I= =  is obtained from Eq. (18): 

 
4 2 2 2

1 2 2 2
1 1 1

0
2 16 4

n z n

n n n

n l n l l
c EI P c

c l l n

 

= =

        
= − + =               
   (40) 

 
4 2 2 2 2

2 2 1 2 2
2 1 1 1

0
2 2 16 4

n w n n

n n n n

n l n l n l l
c EI c GJ P c

c l l l n

  

= = =

           
= + − + =                   
  

 
(41) 

 

For the nth buckling mode, the equilibrium equations are 

found as: 

 
4 2 2 2

1 2 2 2
0

2 16 4
n z n

n l n l l
c EI Pc

l l n

     
− + =     

     
 (42) 

 
2 4 22 2

1 22 2
0

16 24
n n w

n l l n n l
Pc c EI GJ

l l ln

         
− + + + =        

        

 (43) 

 

The equilibrium equations are expressed in matrix form as: 
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(44) 

 

For non trivial solutions, the characteristic buckling 

equation is obtained as: 
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(45) 

 

Expansion of the determinant yields: 
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 (46) 

 

Thus, 
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 (47) 

 

Simplifying, 
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 (48) 

 

Simplifying further, 
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 (49) 

 

Hence, 
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2 4 22 2 2
2

2 2 4

16 1

44
z w

n l n n
P EI EI GJ

l ln l

       
= +      

      + 
(50) 

Simplifying further, 

2 4 22 2
2

2 2 2

16

4 4

z
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(51) 

Hence, 
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The buckling moments are: 
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 (53) 

Simplifying, 
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Hence, 
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(55) 

The lowest buckling moment in this loading case called the 

critical buckling moment Mcr(p) is obtained at n = 1 and is given 

by: 

( ) ( )cr p z wM M n EI EI GJ
l l
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( ) .cr p z wM EI EI GJ
l l

   
= +   

   

2

1 423199 (57) 

( ) ( ).cr p cr mM M= 1 423199 (58) 

where, Mcr(m) is the critical buckling moment obtained for 

constant bending moment M applied at the beam ends. 
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Pcr is the critical buckling load. 
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P K

l
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(61) 

Kb2 is a parameter expressed in terms of G, E, J and Iw. 

w
b

EI
K

GJl

  
=  +   
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22

2 2

8
1

4
(62) 

Table 2 shows the values of Kb2 for various corresponding 

values of 
w

GJl

EI

2

. 

Table 2. Values of Kb2 for various values of 
w

GJl

EI

2

w

GJl

EI

2

 Present work Timoshenko and Gere [1] 

0.4 
90.62 

(7.12%) 
84.60 

4 
33.303 

(4.40%) 
31.90 

8 
26.729 

(4.41%) 
25.60 

16 
22.741 

(4.32%) 
21.80 

24 
21.246 

(4.66%) 
20.30 

32 
20.457 

(4.37%) 
19.60 

48 
19.637 

(4.45%) 
18.80 

64 
19.214 

(4.99%) 
18.30 

80 
18.956 

(4.92%) 
18.10 

96 
18.781 

(4.41%) 
17.90 

160 
18.428 

(5.30%) 
17.50 

240 
18.248 

(4.87%) 
17.40 

320 
18.158 

(5.57%) 
17.20 

400 
18.10 

(5.23%) 
17.2 

Relative difference between the present results for Kb2 and 

corresponding results by Timoshenko and Gere [1] are 

enclosed in brackets in Table 2. 

5. DISCUSSION

The Ritz variational method was successfully used in the 

work to solve the elastic buckling problems of simply 

supported thin-walled beams with bisymmetric cross-sections. 

Two cases were considered. The first case considered a simply 

supported thin-walled beam with bisymmetric cross-section 

subjected to uniform bending moments applied at the ends. 

The second case considered a simply supported thin-walled 

beam with bisymmetric cross-section subjected to a vertical 

point load P applied at the midspan. 

The elastic buckling problem of thin-walled beam with 

bisymmetric cross-section was presented in variational form 

using the calculus of variations, as the problem of minimizing 

the total potential energy functional , expressed as the sum 
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of the strain energy expressions due to flexure, Saint Venant 

torsion and warping and the potential energy of the applied 

load with respect to the unknown generalised displacement 

amplitudes of the displacement functions. The total potential 

energy functional expressed by Eq. (1) is a function of two 

unknown displacement functions, v(x) and (x) and their 

derivatives. 

For the thin-walled beam with simply supported ends 

considered in the study, the Dirichlet boundary conditions at 

the ends are given by Eqns. (7) and (8). Suitable displacement 

functions that satisfy all the Dirichlet boundary conditions at 

the simply supported ends are given by Eqns. (9) and (10) and 

were used as the trial functions in the Ritz variational 

formulation where the total potential energy functional was 

expressed in terms of the generalised buckling modal 

displacement amplitudes as Eq. (11) for the case of uniform 

bending moment applied at the ends. The Ritz variational 

equations obtained from the conditions for extremum of the 

total potential energy were obtained from extremizing  with 

respect to c1n and c2n which are expressed as Eqns. (12) and 

(13). 

For the case of thin-walled beam with bisymmetric cross-

section subjected to point load applied at midspan, the Ritz 

formulation of the total potential energy functional presented 

as Eq. (15) was found to depend on the buckling modal 

displacement amplitudes c1n and c2n. For the first case 

considered the total potential energy functional was found to 

be expressible in the simplified form presented as Eq. (16). 

The Ritz equations of equilibrium were found from 

extremization of  as the system of two equations – Eqns. (19) 

and (23). The Ritz equations of equilibrium were expressed in 

matrix form as Eq. (27) which is a homogeneous system of 

algebraic equations. The condition for nontrivial solution 

which is that 1 0,nc   2 0nc   were used to obtain the 

characteristic buckling equation at the nth buckling mode from 

the varnishing of the coefficient matrix as Eq. (28). Expansion 

of the determinant yielded the characteristic buckling equation 

as Eq. (29). Simplification and solution gave the expression 

for the buckling moment as Eq. (34). The critical buckling 

moment for the case of simply supported thin-walled beams 

subjected to uniform bending moment M applied at the ends 

was found to correspond to the first buckling mode and found 

as Eq. (35). 

For the second case considered, which is the elastic 

buckling of thin-walled beam with bisymmetric cross-section 

subjected to a point load applied at midspan, the total potential 

energy functional  obtained from simplifying Eq. (15) was 

found as Eq. (36). The Ritz equations of equilibrium for this 

second case, were obtained by enforcing exteremum of  with 

respect to c1n and c2n as Eqns. (40) and (41) respectively. The 

Ritz variational equations of equilibrium for the nth buckling 

mode were found as the system of equations – Eqns. (42) and 

(43) and presented in matrix form as Eq. (44).

The characteristic buckling equation for the nth buckling

mode obtained from the condition for nontrivial solutions was 

found as Eq. (45). Expansion of the equation resulted in the Eq. 

(46) as the characteristic buckling equation. Solution of Eq.

(46) gave the expression for P2 as Eq. (52). The expression for

the maximum bending moment M which occurs at x =l/2

expressed in terms of the applied point load P was used to

obtain the expression for the square of the buckling moment

M2 for the nth buckling mode as Eqns. (53) or (54) when

simplified. The expression for the buckling moment at the nth

buckling mode was thus obtained as Eq. (55). The lowest

buckling moment was found to occur at the first buckling 

mode when n = 1, and was obtained as Eq. (57). It was found 

that for the same length l, the critical buckling moment for a 

simply supported thin-walled beam with bisymmetric cross-

section subjected to a point load applied at midspan of the 

beam is related to the critical buckling moment for a simply 

supported thin-walled beam with bisymmetric cross-section 

subjected to constant bending moment applied at the ends by 

Eq. (58). 

The closed-form expression obtained for the critical 

buckling moment of the simply supported thin-walled beam 

with doubly symmetrical cross-section for the case of constant 

moment at the ends is given by Eq. (32). The equation is 

identical with the expression previously obtained by 

Timoshenko and Gere [1]. The expression is further expressed 

in terms of the parameter Kb1 defined in terms of G, E, J and 

Iw as Eq. (34). The values of Kb1 are calculated for various 

values of 
2

w

l GJ

EI
 and tabulated as shown presented in Table 1, 

together with previously obtained values from the result from 

Timoshenko and Gere [1]. Table 1 shows excellent agreement 

of the present study and the results from Timoshenko and Gere 

[1]. 

Similarly, the present results for the critical buckling 

moment Mcr(p) of thin-walled beam with doubly-symmetric 

cross-section and simply supported ends for the case of point 

load at midspan is given by Eq. (59). The critical buckling load 

Pcr was calculated from Eq. (59) as the expression given in Eq. 

(60). 

Pcr is further expressed in terms of a parameter Kb2 defined 

in terms of E, G, J, Iw and l as Eq. (61). The parameter Kb2 

defined by Eq. (62) is calculated for various values of 
2

w

l GJ

EI

and presented in Table 2, along with previous results of Kb2 

obtained by Timoshenko and Gere [1]. Table 2 shows that the 

relative difference between the Pcr obtained for thin-walled 

doubly symmetric beams under point load at midspan in this 

work and the previous work by Timoshenko and Gere [1] 

varies from 4.32% for 
2

16
w

l GJ

EI
=  to a maximum relative 

difference of 7.12% for 
2

0.40.
w

GJl

EI
=  For 

2
4 240,

w

GJl

EI
   the 

relative difference of Pcr obtained in the present work and the 

work by Timoshenko and Gere [1] is less than 5%, which is 

acceptable. 

The Ritz variational method has thus been shown to be an 

effective analytical technique for solving the elastic buckling 

problems of thin-walled bisymmetric beams with Dirichlet 

boundary conditions. 

6. CONCLUSION

The following conclusions are made from the study: 

(i) The Ritz variational method is a good analytical and

numerical tool for the determination of the elastic buckling

moments of simply supported thin-walled beam with

bisymmetric cross-section for the two cases of uniform

bending moment applied at the ends, and point load applied

at the midspan of the beam.

The lateral torsional buckling problem of thin-walled beam

with bisymmetric cross-section is a variational problem
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presented and formulated as the extremization of the total 

potential energy functional with respect to the generalized 

buckling displacement mode amplitudes. 

(ii) Trial buckling displacement mode shape functions that are

exact shape functions for the displacement functions, and

satisfy all the Dirichlet boundary conditions at the ends lead

to exact solutions of the lateral torsional buckling problem.

The Ritz variational method simplified the variational

problem by transforming the problem to an algebraic

eigenvalue problem represented by a system of

homogeneous algebraic equations.

(iii) The conditions for nontrivial solutions are used to obtain

the characteristic buckling equations as a determinantal

equation from the vanishing of the determinant of the

coefficient matrix.

The eigenvalues of the characteristic buckling equation

were used to obtain the n buckling moments for the n

buckling modes.

(iv) The critical buckling moment in each considered case was

obtained as the least of the n buckling moments and

occurred at the first buckling mode.

The expressions obtained for the nth buckling moments and

the critical buckling moment in each case considered were

the same as exact expressions previously obtained using

various other methods by Timoshenko and other scholars.
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NOMENCLATURE 

 total potential energy functional 

x longitudinal coordinate axis of the beam 

l length of the thin-walled beam 
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Iw Saint Venant warping constant or the 

warping constant 

J Saint Venant torsion constant 

v(x) displacement 

(x) rotational displacement about the 

longitudinal coordinate axis 

Iz moment of inertia in the weak axis 

E Young’s modulus of elasticity 

G Shear modulus or the modulus of 

rigidity 

M constant or uniform applied moment at 

the beam ends 

My applied bending moment 

 first variation of  

( )
( )

d x
x

dx


 =

first derivative of (x) with respect to x 

2

2

( )
( )

d x
x

dx


 =

second derivative of (x) with respect to 

x 

c1n buckling modal amplitude of v(x) for 

the nth buckling mode 

c2n buckling modal amplitude of (x) for 

the nth buckling mode 

1n



=


sum of 

n buckling mode number 

P vertical point load applied at the 

midspan 

I1, I2, I3 integrals defined in the paper 

a11, a12, a21, a22 coefficients of the Ritz equations 

Mcr(m) critical buckling moment for the case of 

thin-walled beam with doubly 

symmetric cross-section and subjected 

to uniform moments at the ends 

Mcr(p) critical buckling moment for thin-

walled beam with doubly symmetric 

cross-section subjected to vertical point 

load P applied at midspan 

LTB lateral torsional buckling 

FDM finite difference method 

FEM finite element method 

 integration notation 

1nc





partial derivative of  with respect to 

c1n 

2nc





partial derivative of  with respect to c2 

2

2

( )
( )

d v x
v x

dx
 =

second derivative of v(x) with respect to 

x 
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