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The fixed point theory is of great importance as it is used as an application for solving
differential equations for different types of equations and various applications in
physical, engineering, and statistical sciences. This investigation aims to define (A, p) -
firmly nonexpansive multivalued mappings in modular function spaces and to introduce
a new iterative algorithm. Accordingly, some results of approximating fixed points for
these mappings are proved with an example. Further, the concept of stability is
discussed and supported by an example.

1. INTRODUCTION

A lot of academics have worked on the fixed point since it
has numerous applications in a wide range of industries. Over
the years, many researchers have introduced iterative
processes to solve fixed point problems, but the search for
more effective and quick methods continues [1]. Modular
function spaces were first introduced by Nakano in (1950), and
Musielak and Orlicz greatly expanded on them [2]. One of the
most important characteristics of the Modular function spaces
is that considered a space separate from other spaces and is
dealt with by functions.

Khamisi and Kozlowski [3] were the first to discuss the
fixed point in modular function spaces in 1990. Researchers in
this subject, which is thought to be growing, have tried to
approximate the fixed point in modular function spaces. In
Mann and Ishikawa iterative processes, Dehaish and
Kozlowski [4] proved certain conclusions of approximation
fixed point by modular function spaces. For monotone
asymptotically nonexpansive mapping in modular function
spaces, Alfuraidan and Khamsi [5] developed the Fibonacci-
Mann iteration with studding. Hussain Khan [6] developed the
notion of a strongly nonexpansive mapping from Banach
spaces to modular function spaces. Additionally, Panwar [7]
recently presented some findings in this area as shown in
Figure 1. Only the fixed point theory for single-valued
mappings acting in modular function spaces was addressed by
Kozlowski [8]. Berinde [9] introduced and studied a tighter
idea of nearly stability for fixed point iteration algorithms.
Besides, Abed and Abduljabbar [10] demonstrated a general
two theorem for the two step iterative sequence of multivalued
mappings in a complete convex real modular space. In order
to achieve the best approximation in modular spaces, Abed
and Sada [11] used fixed point theorems of compact -
nonexpansive multivalued mapping. For iteration schemes in
multivalued mappings in modular function spaces, Abdul
Jabbar and Abed [12] studied convergence. For shared fixed
points and convergence, Morwal and Panwar [13] presented a
three-step iterative technique in three multivalued -
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nonexpansive mappings and studded approximation. Okeke
and Khan [14] subsequently extended the proof to the class of
multivalued -quasi-contractive mappings with studding of
stability. Abed and Jabbar [15] developed the idea of
normalized duality mapping in actual convex modular spaces.
Then, a few of its characteristics have emerged, enabling the
handling of outcomes connected to the idea of uniformly
smooth convex real modular spaces. In this regards, Abed and
Abduljabbar [16] demonstrated convergence for iteration
algorithms in multivalued mappings in modular function
spaces. Using the Picard-Krasnoselskii hybrid iterative
process in these spaces, Okeke et al. [17] proved theorems for
-quasi-nonexpansive mappings.

There are many iterative schemes presented by researchers,
the aim of the paper to find a new iterative scheme to
approximate the fixed point that is faster than the previous
iterative scheme.

With the introduction of securely multivalued mappings and
a new iterative technique and some comparison, the goal of
this work is to extend the findings of prior studies, The
following Figure in the study [7]:
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Figure 1. Generated of p-converges to the fixed point by
taking different initial values

Here, we construct an iterative sequence of a four-step for
(4, p)- firmly nonexpansive multi-valued mappings and study
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it is convergence and stabile to fixed point in the framework
of modular function spaces confirming the results an example
and tables are provided. Further, we mention to utilize our
proposed algorithm in solve differential equation as an
application.

2. PRELIMINARIES

This section includes some fundamentals, significant
definitions, and certain lemmas. Assume that Q is a nonempty
set and that ¥ is a nontrivial ¢ -algebra of L p subsets.
Considering that p is closed in terms of constructing a finite
union and has countable crossings and differences, let p be
nontrivial ring subsets of Q. Additionally, let us assume that
ENAE€Epforany E € pand A € X, there exists an increasing
series of setsK,, € p such that Q = UK,,. With help from, we
denote by E the linear space of all simple functions. The space
of all extended measurable functions, or all functions, is
denoted by M.

f:Q — [-o,0] Then, {g}<E ., |gnl=<If| and
gn(w) — f forallw € Q, by 1, the characteristic function of
the set A [8].

Definition 1 [8]:

Let p: My, — [0,0] be a nontrivial, convex, and even
function.

Then, p is a regular convex function pseudo modular if:

(a) p(0)=0.

(b) p is considered as a monotone, and, |f{w)|<|g(w)| for all
w € Q implies p(f)<p(g), where f,g € M.

(c) p is considered as an orthogonally sub additive, and,
p(flAUB) < p(flA) + p(le) for any A B€EX as ANB
nonempty, where f € M.

(d) p has the Fatou property: |f,(W)| T |f(w)| for all w €
Q implies p(fy,) T p(f),where f € M.

(e) p is considered as an order continuous in E, and, g, € E
and |g,(w)| 0 implies p(g,) { 0.

Define M = {f € My: |[f(W)| < o0,p —a.e}
where, each f € M is actually an equivalence class of
functions equal p-a.e. rather than an individual function.

Definition 2 [18]:
Let p:-M—[0,0] possesses the following properties:
1- p(0)=0, f=0, p-a.e
2- p(af)=p(f), for every scalar
3- p(ax+Py)<p(x)+p(y) For every a,f>0 with a+p=1
where: convex modular.

Definition 3 [3]:
According to definition 2 p is considered as a convex
modular in X, as well as is named modular function spaces:

L,={f € M:p(Af) — 0as 1 — 0}

Definition 4 [8]:

Let p € R then p has A,-condition if sup p(2f,, D) — 0 as
k—ow and D — @, and sup p(f,,, D) — 0

Here, p is considered regular convex function modular if
p()=0 then f=0, a-e the class of all nonzero regular convex
function in modular () is denoted by ‘R.
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Definition 5 [8]:

Here, we considered the above definition of p on Q let >0,
e>0 define D(r,e) ={(f,9):f,.g ELp,pf <r,pf —g =
er}.

Let & (r,¢e) = inf{l —%p(%) : (f,g) € D(r, 6)}

IfD(r,e) # @and &, (r,e) = 1,If D(r,e) = @

Also, p satisfy (UC1) if for every r> 0, > 0 &, (r,€) > 0
then D(r,€) # @.

Definition 6 [8]:

Let p be a nonzero regular convex function modular defined
on Q p satisfy (UUC1) § = 0, e > 0 there exists n,(r,€) > 0
depending only on & and € such that & (r,€) > n,(r,e) >0
for any r>¢.

Definition 7 [10, 15]:

Letp eR

1- We say that {f;,} is p-convergentto f if p(f,, — f) — 0.

2- A sequence {f,} is p-Cauchy sequence if p(f,, — fr) —
0 as n, m—oo.

3- Bc L, is named p -closed if for any f, € L, the
convergence p(f, — f) — 0Oand f belongs to B.

4- B & L, is namedp-bounded if p- diameter is finite. p-
diameter define as $,(B) = sup{p(f —g),f € B,g € B} <
0,

5- A set B L, is named strongly p-bounded if § > 1 and
M, (B) = sup{p(B(f —9)).f €B,g € B} < 0.

6- A set B T Ly is called p-compact if every f, € B, there
exists a subsequence {fy, } and f in p(f,, — f) = 0.

7- A set B © L, is called p-a.e, closed if every f,, €B,
whichp — a. e, converges to some f, then f'in B.

8- A set B C L, is called p-a.e, -compact if every f, € B,
there exists a subsequence {fy, } p — a.e -converges to some
fin B.

9- Letfin L, and B = L, , the p-distance between fand B
is defined as:

dist,(f,B) = inf{p(f — g),g € B}.

Note that, p dose note satisfy triangle inequality so p-
convergence dose not p-Cauchy, it is possible that this
relationship can be realized if and only if p satisfies A, -
condition [6].

Definition 8 [6]:

The sequence {t,} is considered to be bounded away from
Oifa>0andtt, > a foralln € N. Also, the sequence {t,} is
considered to be bounded away from 1 if b < 1 and t,, < bfor
all n EN.

Definition 9 [6]:

EclL,letT:E — 2F said to be satisfy condition (I) if no
decreasing function @:[0,00) — [0,0) with @(0) =
0,0(r) >0 for all » € [0,0] such that p(f —Tf) =

o(dist, (f, F,,(t))) forall f € E.

Definition 10 [13]:
A set E c L, is named p- proximinal if for each f € L,

there exists an element g in E. And, p(f—g) =
dist,(f,E) =inf{ p(f —h):hinE .



Lemma 1 [6]:

Let p € R satisfy (UUC1) and let {t,,} in (0, 1) be bounded
away from 0 and 1, if m>0 Then, lim sup,_,,p(f,) <
m, lim sup,_,p(g,) <m , and lim,_,p(t.fn + (1 —
tn)gn) = m, thenlim o p(f — gn) = 0.

Lemma 2 [9]:

Let {cy ) me0> {dn}n=o be sequence of nonnegative number
and 0 < r < 1,suchthatc,y; <7c, +d, foralln >0

1-if lim,,_,,d, = 0, then lim,,_,.c, =0

2-if Y gd, < oo, then Yoy C, <

Here, P, (E) denotes the family of nonempty p-proximinal,
p-bounded subset of £, C,,(E) denotes the family of nonempty
p-closed, p-bounded subset of £, and H,(.,.) p- Hausdorff
distance on C,, (E)

H,(A,B) = max{ Supyeq dist, (f,B),
Supgep dist, (9,A)} AB € Cp(Ly)

where, dist,(f,B) = inf{p(f — g), g € B}.

Lemma 3 [13]:
Let p € R and satisfy A, B € B,(L,) for each fin A there
exists g in B such that p(f — g) < H,(4, B).

Definition 11 [13, 14]:

Let T:E — 2F is multivalued mapping said to be p-
nonexpansive mapping if H,(Tf,Tg) < p(f — g) said to be
p- quasi nonexpansive mapping if for s € F,(T) of T in
modular spaces:

Hp(Tf'S) =< p(f - S)

Finally, we can consider to be p-contraction mapping if
there exists constant:

0<k<1
H,(Tf —Tg) < kp(f — g)

Forallf, gin E.

Lemma 4 [13]:

Let T:E — 2F be a multivalued mapping and P, (f) =
{9eT:p(f-9) = dist,(f, Tf)} then:

1- f € E,(T), and f € T(f)

2-P) ={f}and f = g for each g € PJ (f)

- fE€F, (PpT(f)), and f €PI(f) , further F,(T) =

F(By (f)) where F(P; (f)) denotes the set of fixed points of
P ().

3. RESULTS AND DISCUSSION

3.1 Convergence results for (A, p)- firmly nonexpansive
multivalued mappings

Starting with the definition below:

Definition 12:
Let T:E — 2F said to be (4, p)- firmly nonexpansive
multivalued mapping if for 4 in (0,1), H,(Tf,Tg) < p[(1 —
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Df—-—g)+A(u—v)], ueTf,veTg said to be (2, p)-
quasi firmly nonexpansive multivalued mapping if for 1in (0,1)
and s € F,(T) is the set of fixed point of T in modular spaces:

Hy(Tf,s) < p[(A =D(f —5) + A(u —s)]
uerTf

Clearly, (4, p)- quasi firmly nonexpansive mapping is quasi
nonexpansive mapping.

Lemma 5:
Every (4, p) - firmly nonexpansive mapping is p-
nonexpansive mapping:

Proof:
By Definition 12, convexity of p and Lemma 3, obtaining:

H,(Tf,Tg) < plA =D —g) +Au—-v)],ue
By (f).,v € PR (9)
SA-MDp(f—g)+p(u—-v)
<A -Dp(f —9g) + AH,(Tf, Tg)

Hence H,(Tf,Tg) < p(f — g).

Lemma 6:

Let p € R and E be nonempty p-bounded, p-closed and
EclL, let T:E —2F be (4 p)- firmly nonexpansive
multivalued mapping, then the F,(T) is convex and closed.

Proof:
Let {f,} is a sequence in fixed point set F,(T) is p -
converges to some f in E, to prove f fixed point.

p(E7) < —p(f f)+3 p(Tf f) <3p(f—f) +
_H (Tf Tfn) p(f fn)+ p(f fn) _pU: fn)_)

0 asn — oo,
=T _ _ :
p(EL) =0, then Tf = f,and f € E,(T), by define p -
closed F,(T) is closed.
To prove F,(T) convex, letf, g in F,(T) and h = [*9

p(f =Th) = p(Th—f) < H,(Th,Tf) < p(h = f)
_ (f—g) ()
P\
p(g —Th) = p(Th — g) < H,(Th,Tg) < p(h — 5
g)=p(’%‘g) @)
p(f =) =p(52) plg -1 =p(52) 3)
h+Thy 1 1
p(f="5) = pG (=W + 5 =)

By h=f% and convexly <— p(f g)+2 p(f%g) =
P(%g)f’(g ") =pG (g - h)+ 2(g —Th)

By h = 2% and convexly < - p(f g)+;p(f‘7g)=p(f-7g)
p(52) <o (7 =00 +3p (222 )

()= (r -4
And by above:




h+Th - h+Th
p(r=557) =p () thenp (r -%57)
f-9
o ()
By (1), (2), (3), (4), and Lemma 1, p(h-Th)=0, h in E,(T),
then F, (T is convex.

Below, we introduce a new iterative algorithm and then

prove convergence results.

Let T: E — 2%, and let E nonempty convex subset of L,
sequence {f,.} by the following iterative process:

(4)

hy = (1 = Bp)fa + Bnln
In = VUn
Jn= (1 - an)gn + apwy
fn+1 =my, neN

)

where, {a,}and {B,} in (0.1), u, € P (f,), v, € By (hy),
wy € PpT(gn)' my € PpTUn)-

Theorem 1:

Let p € R satisfy (UUCL) and A, -condition, let E be
nonempty p -bounded, p-closed and convex E c L, and
T:E — 2E | be (), p)- firmly nonexpansive multivalued
mapping, let {f,} in Edefine by (5) then lim,_.po(f, —s)
exists for all s fixed point.

Proof:

Lets € F,(T). To prove lim,,_,,,p(f, — 5) exists.

By Definitions (11, 12), convexity of p, and Lemmas (3,5),
we get:

p(fps1—5) =p(m, —s) < Hp(PpT(]n): PpT(S))

< pUn — ) ©
p(]n - 5) < P((l - an)gn + aan) - S)
< (1 - an)p(gn - S) (7)
+ aan(PpT(gn): PpT(S))
< p(gn—9)
Also,
p(gn—5) = p(v, —5) < Hp(PpT(hn): PpT(S)) (8)
< p(hn - S)
Similarly,
p(hy —5) = p(Bpu, + (1 — ,Bn)fn —5)
< BnHy (B (), By (5)) )

+ A =BIp(fu —5) < p(fu —9)

By (6), (7). (8) and (9), p(fus1 —5) < p(fu—5), 50,
limy,_,p(f, — s) exists for all s € E,(T).

Theorem 2:

Let p € R satisfy (UUCL) and A, -condition, let E be
nonempty p -bounded, p -closed and convex E c L, and
:E — 2E be (J,p)- firmly nonexpansive multivalued mapping,
let { f, } in E define by (5 then
limp,_o dist,p(fo, By (f)) =0
Proof:

By Theorem 1 lim,,_,..p(f,, — ) exists
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Let
lim, ,.p(f, —s) =k, wherek =0 (10)
By (7), (8), and (9) the following hold:
p(hn —-5) < p(fn - S) = limn—mop(hn - S) <k (11)
limn—mop(gn - 5) <k (12)
limn—»oop(]n - S) <k (13)
p(vp, —s) < Hp(PpT(hn)' PpT(S)) < p(hy —s)
Sp(fa—s) (14)
lim p(v, —s) < lim p(fp —5) <k
p(un - S) < Hp (PpT(fn)' PpT(S)) < p(fn - S), (15)
Then nll_r)réo plu,—s)<k
p(Wn - S) < Hp(PpT(gn): PpT(S)) =< p(gn - 5)
<p(fu—5) (16)
Then nlgrgo p(w,—s)<k
p(mn - S) < Hp(PJ(]n)'PpT(S)) < p(]n - 5)
sp(fa—9) (17)

Then lim p(m, —s) <k
n—oo
Let lim a, = a ) P(fns1 — ) = p(my, —s) <
n—oo
Hp(PpTUn): PpT(S)) < p(]n - S) < p(aan + (1 - an)gn -
$) S app(Wy —5) + (1 — ay)p(gn — 5).
So, lim infp(fye1 —s) < lim inf [a,p(w, —s) +
n—oo n—oo
(1 —an)p(gn — )]

Then, k < lim inf a,p(w, —s)+ (1 —a)k =ak <
n—oo
a lim inf p(w, — ).
n—oo
Hence,
k < lim inf p(w, —s) (18)
By (16) and (18),
lim p(w, —s) =k
Jim. pT( n 2 (19)
pwy, —s) < Hp(Pp (gn), Pp () < p(gn—59)
Then,
k<p(gn—s) (20)
By (12) and (20),
1im p(g, —s) =k 1)
Since,
P(gn —5) = p(v, = )50, lim p(v, —5) = k
p(vn - S) < Hp (PpT(hn)v PpT(s)) < p(hn - S) (22)

= lim p(v, —s)
n—oo

< lim p(h, —s)
n—oo

SO,



k < lim p(h, — ) (23)
By (11) and (23), then:
Jim p(h, —s) =k (24)
By (24),
Mim p(h, —s) =k = lim p(Battn + (1 = Bn)fn =
s)=k (25)

nllr;op(ﬂn(un - S) + (1 - ﬁn)(fn - S) =k

By (10), (15), (25) and Lemmal, lim p(f;, — u,) = 0 then

Uy € By (f) . Since dist,p(f By (f)) < Jim p(fy, — ),
limy,_o dist,p(fn, By (f,)) =0. This completes the proof.

Theorem 3:

Let p € R satisfy (UUCL) and A, -condition, let E be
nonempty p-bounded, p-closed and convex E cL,
and T: E — 2E, be (1, p)- firmly nonexpansive multivalued
mapping, let {f,,} in E define by (5), f, unique fixed point in
T, then f,, converge to fixed point in T.

Proof:
By convexity of p, Lemma 3, Definitions (11,12) and
Lemma 5, implies that:

p(hn - fO) = P((l - ﬁn)fn + ﬁnun) - fO)
< (1 - .Bn)p(fn - fo) + .Ban(PpT(fn)'PpT(fO))

< (1= By — fo) + Bup(fo — fo) (26)
< plfn = fo)
Again,
p(gn — fo) < p(wn — fo)
< Hp(PpT(hn)' PpT(fO)) (27)
< p(hn = fo)
< p(fu—fo)
Similarity,
p(]n _fo) = p((l - an)gn + a,wy _fO)
< (1 - an)p(gn - fo) + aan(PpT(gn): PpT(fO)) (28)

< (1 —an)p(gn — fo) + @np(gn — fo)
< p(fn — fo)

Similarity,

p(fus1 — fo) = p(my, — fo) < Hp(PpTUn): PpT(fO))
< pUn—fo) (29)
p(fu = fo) < p(fa-1 — fo)

Since p(fi — fo) < p(fo — fo) » SO, p(fu — fo) < p(fo —
fo), p(fa — fo) < p(0) = 0, then £, — f,.

Theorem 4:

Let p € R satisfy (UUCL) and A, -condition, let E be
nonempty p-compact, p-closed and convex E c L,
and T: E — 2, be (1, p)- firmly nonexpansive multivalued
mapping, let {f,,} n E define by (5) then f,, converge to fixed
point of T.
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Proof:
Since E is p-compact there exists subsequence f, of f;

and p(fn, —f) = 0.
limp—0p(fn, — f) = 0, to prove f fixed point.

Let g fixed point g € BT (f), gk € BT (fn,.)-
By Lemma 3, Definitions (7, 11), and Lemma 5, we get

p(f;g) :p[f _3fnk +fnk3_gk +gk3—g]
1 1 1
< §p(f — foe) + §p(fnk —gi) + 3Pk
-9)

1 1
< §P(f - fnk) + §di5tp (fnk'PpT(fnk))
1
§Hp(PpT(fnk),PpT(f))
1 1
< gp(f — fa) + §di5tp (e B (four))

1 ) -
+ 5 (fnk - f)dLStp(fnk' Pp (fnk)) =0

+

by Theorem 2, p (f%g) = 0, therefore f=g, then T has unique
fixed point f, f,, converge to fixed point of T.

Theorem 5:

Let p € R satisfy (UUC1) and A, -condition, let E be
nonempty p-bounded, p-closed and convex E c L, and
T:E — 2E, be (4, p)- firmly nonexpansive multivalued
mapping, let {f,,} in E define by (5) then f,, converge to fixed
point s of T if and only if lim inf, ., dist,(f,, F(T)) =0,

where dist,(f,, F(T)) = inf {p(f — 5),s € F,(T)}.

Proof:

Let f, converge to fixed point s of T, to prove
lim inf, o, dist,(f,, F(T)) = 0.

Since f, — s, thenlim ,,_,, dist,(f,,s) = 0.

Since dist,(fn, Fp(T)) < dist,(f, ),
lim inf,_o, dist,(f,, F,(T)) = 0.

Iflim inf, o, dist,(fo, F,(T)) = 0, to prove p(f, —s) =
0.

By Theorem 1 lim,_,.p(fp—5)
lim,,_,p(fn — Fp(T)) exists and s€ F, (T).

Suppose fy, s any subsequence of f,, and u, sequence in
E,(T).

p(foy, — ) < =5 Since, lim infy,_, dist, (f, F,(T)) =

then

exists, then

0
1
p(fuer — ) < (= we) < 7.
1P(uk1r1 - u1k) < p(Uisr = frr) + (s —w) <
2k+1 T ok = k-1
p(Ugyr —u,) — 0,35 k — oo,
uy is p -cauchy in E,(T), since A, condition, so p -
cauchy< p-converge.
uy is p-convergence in F,(T), so p(u, — s) — 0.
NOW! p(fnk - S) < p(fnk - u'k) + p(uk - S) ’ p(fnk -
u,) — 0, and p(u;, —s) — 0., Converges to fixed point s
in E,(T).




Theorem 6:

Let p € R satisfy (UUCL) and A, -condition, let E be
nonempty p-bounded, p-closed and convex E c L,
and T:E — 2E be (4,p)- firmly nonexpansive multivalued
mapping, and T satisfied condition (I), let {f,,} in E define by
(5) then f£;, converge to fixed point s of T.

Proof:
By Theorem 1 lim,, _,..p(f,, — s) exists, s is fixed point.

If lim,_op(f,—s)=0 , nothing to prove, if
lim, _op(f,—5) =k k=0.

By Theorem 1p(fn+1 - S) =< .D(fn - S)

Then , dist,(fus1, B, (T)) < dist,(f, Fy(T)) hence

lim,, o dist,(f,, F,(T)) exists.
By applying condition (I) and Theorem 2
Lty e O(isty, ( frs By (1)) < Limy oo (fs B (f2)) = 0.
Since @(0) =0, so, lim,_dist,(fn, Fp(T)) = 0, by
Theorem 5, £, is p -converge to fixed point s.

3.2 Stability

In this section, firstly we reform the definition of stability
as in the study [9], then give results and an example.

Definition 13 [9]:

Let £ be anon empty convex subset of modular function
space Ly, and T-E—E, let x;in E, and X, 41 = f (T, x,,) define
the iterative schemes which given sequence x,, in E, suppose
that {x, }5-, converge to x € F,(T) # @, let {y,}5~, be any
bounded sequence in E and put €, = p(Vp11 — (T, x))-

1- The iteration scheme {x, };=, define by x,, .1 = f(T, x,)
is displayed to be T-stable on E if lim,,_, &, = 0 implies that
lim, oy = X.

2- The iteration scheme {x, }n—; define by x,, .1 = f(T, x,,)
is displayed to be almost T-stable on E if Yo &, < oo
implies that lim,,_, Yy, = x.

3- The iteration scheme {x, }n=, define by x,,,1 = f(T, x,)
is considered to be summably almost T-stable on E if and only
if Yo &, < oo implies that Y01 p(3, — Xx) < .

Theorem 7:

Let p € R satisfy (UUCI1) and A, -condition, let E be
nonempty p-bounded, p-closed and convex E c L,
and T: E — 2E, be (1, p)- firmly nonexpansive multivalued
mapping, and T satisfied condition (I), let {f,,} in E define by
(5) then f;, is summably almost T-stable.

Proof:

Let s is fixed point of T, and €, = p(f,41 — My), by (5),
convexity of p, Lemma 3, Definitions (11, 12), and Lemma 5,
implies that:

=5) = p((fp+1 — Mp) + (M, —5))
= p(fn+1 - mn) + p(mn - S)
<&t Hp(PpT(]n): PpT(S))
Séept p(]n - S)

p(frs1

Substituting J,, and similarity above:

<&+ p((l - an)gn + aan) —5))
S &+ (1= a)p(gn — 8) + anHy (P (gn), By (5))
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< €n+p(gn _S)

Substituting g,, and similarity above:

=é&n +p(Uy —5)
< & + Hy (B (o), By (5))
<é&, +plh,—5)

Substituting h,, and similarity above:

<& + p(ﬁnun + (1 - ﬁn)fn - S)
<&t p(fn - S)
p(fn+1 - 5) < &n + p(fn - S)

So, by Lemma 2 and Definition 13, implies that f, is
summably almost T-stable.

Example 1:
The set of real number R by the space p(f)=|f], p is satisfy
(UUC1) and A, -condition, E={f €L,:0=<f <o },

T:E—E (4, p)- firmly nonexpansive mapping and Tf = E,
with E,(T) = {0}, and let a,, B, = 0.5 for all n.

hy=Q =B )fa+ BuTh

n=Thy
]n = (1 - an)gn + anTgn
foer =Tl
n+1
bt fn1_ nez 1 _5 (n+1) 5(n+1)
n+1 n+1 n+ n+
hn = 2n+2 | 24(n+2) 8( +2)° then Thy, = 32(n+2)
_ 1 5(n+1) 1 5(n+1) _ 25(n+1)
fn“ - T(z (32(n+2)) 2 (128(n+2))’ S0 fu+1 = 1024(n+2)
= p(fo+1 — F(T, f))
n+2 25(n+1) n+2 25(n+1) 25
o e ) o)
n+3 1024(n+2) n+3 1024(n+2) 1024
(L SR O - S Y
1024(n+2) n+3 - 1024 1024(n+2) n+31 7 In+2
-t _ 1
m _n+2 n+3
Since 27010=1 &n < Zn 1(n+2 n+3) SO Zn 1&p <

Yooy p(fn — S) s fixed point
=y, n_+1_0| =y 1n+1_21l (-

n+2
The iterative scheme in (5) is summably almost T-stable.

Example 2:
The set of real number R by the space p(f)=|f|, p is satisfy
(UUC1) and A,-condition, E=/0, 3] define T:E—FE a mapping,

9:[0,00) — [0,%0), 8(r) =~
And Tf = fj , B, (T) ={1}, to prove p(f —Tf) =
@(dist, (f, K (T)) for all fin E.

4f+4

p(f—Tf)=p( -0 = ,
O(dist, (f, Fy(T)) = B(dist, (f, (1)) = ¢[p(f - D] = =

Now, prove T is (4, p)- firmly nonexpansive mapping

pf ~19) = p (T~ 57) = [ ~a)| < 50 -
D <rCr-9+:GF-9) . (G, p)-firmly

. . 1
nonexpansive mapping when A = =

while

T is

Tables 1, 2, and 3 represent the corresponding results as
shown below.



Table 1. Results of f;,, h,,, g, and J,, where a,= 8,= 0.5, with f; = 2

Step fn hy In Jan
1 2 1.6 112 1.072
2 1.0144 1.00864 1.001728 1.0010368
3 1.00020736  1.000124416  1.00024883  1.00001493
4 1.000002986 1.000001701  1.00000034  1.000000204
5 1.000000041 1.000000025 1.000000005 1.000000003
6 1.000000001 1 1 1
7 1 1 1 1

Table 2. Results of f,,, h,, g, and J, where a,= 3,,=0.2, with f; = 2

te fﬂ. hn gn ]Tl

1 2 1.84 1.168 1.14112

2 1.028224 1.02370816 1.004741632 1.003982971
3 1.000796594 1.000669138 1.000133828 1.000112415
4 1.000022483 1.000018885 1.000003777 1.000003173
5 1.00000635 1.000000533 1.000000107 1.000000090
6 1.000000018 1.000000014 1.000000003 1.000000002
7 1 1 1 1

Table 3. Results of f;,, h,,, gn, and J,, where a,= 8,=0.8, with f; = 2

te fn hn gn ]n
1 2 1.36 1.072 1.02592
2 1.005184 1.00186624 1.000373248 1.000134369
3 1.000026874 1.0000009674 1.000001935 1.00000696
4 1.000000139 1.00000050 1.00000010 1.00000003
5 1.00000001 1 1 1
6 1 1 1 1
Through our study of the above tables, it becomes clear that Also,

the closer the value of a,, and f5,, o the fixed point, the faster

h roximation to the fix int. n-1

the approximation fo the fixed point S.OO = ). (i~ )"0 (e) (33)

1=

4. APPLICATION

Since fixed point theory provides useful tools to solve many
problems that have applications in different fields of sciences,
the studying of iterative algorithms to approximate the
solution of differential equations be one of most active studies
area. Therefore, this section is devoted to applying the above
results to differential equations in way similar to what is
presented in the study [3]. In the following, we deal with
especial case of algorithm (5):

Let p € R, consider the initial value problem v: [0, B] —E
and £ in Ly,:

v(0)=g
NE) + (I = TYu(t) = 0 (30)

where, g € E, B>0, and T: E—E such that P is (4, p)-firmly
nonexpansive mappings, and by define:

t

Qt)=1—-et =f es7tds (31)

0
For any u: [0, B] — L, and B > 0 then:

t

Sw)(t) =J es~tu(s)ds (32)
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The following Lemma and Theorem in the study [3]:

Lemma 6:

Let p €R be separable let m,l:[0,B] — L, by two
Bochner-integrable |[|. ||,,-bounded functions where B>0 for
t € [0, B] then:

p (e‘tl(t) + jtes‘tm(s)ds)
0

< e tp(l(®)) + Q1) sup p(m(s))
s € [0,t]

Theorem 8:

Let p € R be separable, let D in L, be nonempty, convex,
p-bounded, and p-closed set with vitali property. Let T: D —
P,(D) be multivalued mapping such that P, is nonexpansive
mappings. Let fixed g € E define sequence of functions
1,:[0,B] = E by the following formula vy,(0) =g ,
Vyar () = e78g + f, 57T (v, (5))ds.

Then t € [0, B] there exists v(t) € E such that p(v,(t) —
v(t)) — 0 and by the function v: [0, B] — E the p(v,(t) —
v(t)) — 0 is solution to (30), moreover p(g — v,,(t)) <
Q"M H(B)S,(E).



5. CONCLUSIONS

The modular type conditions are more natural as
assumptions of modular type can be checked more easily than
their metric or modular counterparts especially in applications
for differential operators, approximations and fixed point
results. In the current investigation, the concept of (A, p)-firmly
nonexpansive mapping and its relationship with (A, p)- quasi
firmly nonexpansive mapping and nonexpansive mapping
have been discussed. In addition, some convergence and
stability results by using an iterative scheme in four steps of
multivalued mapping in modular function space have been
proved. The study suggests to the authors using the iterative
scheme in other styles in modular function spaces or another
spaces. This study is important as the iterative scheme that was
presented is faster in reaching the fixed point than other
iterative (see the research [19]). Lastly, we apply this
algorithm to solving of a differential equation.

6. FUTURE WORK

We look forward to employing our results (which relate to
the convergence of algorithm 5 and equation 30) in practical
application in one of the anther branches of sciences such as
physical engineering or control. This aim may require
cooperation with some colleagues.
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