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Accelerated life testing (ALT), a procedure utilized in reliability analysis, allows testing
units to be subject to increasingly elevated grades of stress during an experiment. Step-
stress tests are a subclass of accelerated tests in which the stress levels rise consecutively
at prearranged cycles, consequently, the researcher might find out results more swiftly
than in ordinary working settings about the parameter of the lifetime distribution.
Moreover, there are frequently multiple fatal causes for a test element's failure, for
instance, technical or electric. These causes are recognized as "competing risks". The
purpose of the analysis is to assess simple step stress accelerated life testing (SS-ALT)
with competing Risks originating from the extension of Weibull distribution by
applying a progressive Type-11I censoring scheme. In this case, under the assumption of
a cumulative exposure model, the authors successfully obtained the Bayes estimates
(BEs) and maximum likelihood estimators (MLEs) of the undetermined average
parameters of the various causes. For Bayesian computations, the squared error loss
functions are considered. Additionally, the estimators' asymptotic variance-covariance
matrix was created. Additionally, credible intervals and asymptotic confidence intervals
(CIs) are provided. For a large sample size, the Cls of the unidentified parameters are
developed. A numerical study is also involved to exhibit the accuracy and variability of
various estimators for several sample sizes. An example is being used to exemplify the
inference method that's also considered here. This study concludes that the mean lengths
of credible intervals and asymptotic confidence intervals get shorter as the number of

failures rises. The credible interval technique is suggested, nevertheless.

1. INTRODUCTION

Due to continual improvement in manufacturing design, it
is more difficult to obtain information about the lifetime of
products or materials with high reliability at the time of testing
under normal conditions. This makes lifetime testing under
these conditions very costive and takes a long time. To get
information about the lifetime distribution of these materials,
a sample of these materials is subjected to more severe
operation conditions than normal ones. These conditions are
called stresses which may be in the form of temperature,
voltage, pressure, vibration, cycling rate, load, etc. This kind
of testing is called an accelerated life test (ALT), where
products are put under stresses higher than usual to yield more
failure data in a short time. Furthermore, it has a wide spread
use in (i) Materials, which include metals, plastics, rubber and

elastics, concrete and cement, ceramics, and building
materials. (ii) Products, which include semiconductors,
microelectronics, capacitors, electrical devices, and

mechanical components. (iii) Degradation mechanism, life
fatigue, creep, and cracking. For more details about the above
uses of ALT, see studies [1-3].

There are mainly three ALT methods. The first method is
called the constant stress accelerated life test (CS-ALT); the
second one is referred to as the step stress accelerated life test
(SS-ALT) and the third is the progressive stress accelerated
life test (PS-ALT). The first method is used when the stress
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remains unchanged so that if the stress is weak, the test has to
last for a long time. But, the other two methods can reduce the
testing time and save a lot of manpower, material sources, and
money.

The major assumption of ALT is that the observable
behavior under accelerated conditions can be related to the
behavior under normal use conditions through a mathematical
model called an acceleration model. Thus, life tests conducted
under accelerated conditions can be used to make inferences
about the behavior of a device in normal use conditions. So, it
is necessary to consider the relationship between one or more
than one parameter of the failure distribution and the
accelerated conditions. The main difficulty of ALT lies in
using the failure data obtained at higher conditions to predict
the reliability, mean life or other quantities under normal use
conditions. The acceleration model is then used to extrapolate
the reliability performance to the normal use conditions.
Where these different types of methods met a lot of researchers
and for more details, you can look at the researches [4-15].

Regarding time and expense reductions, censoring is
commonly utilized in life tests. There are various patterns of
censoring. Type-I and type-II censoring, whose the first is
censored at a particular time and the last is censored at a stable
number, are the two most often used censoring techniques.
Furthermore, at distinct stages of the research, it can be vital
to eradicate a number of test units for a diversity of reasons.
Progressive censoring will be concluded from this. Utilizing
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the resources available is exceedingly efficient and effective
with progressive censoring Type-II. Consistent with the
research [16]. It enables be summarized as putting » identical
units through a life test at zero time. The surviving items ¢, Ry
are randomly omitted when the time of A*(h=1,2,..., m-1)
failure occurs. While waiting for the m th failure ¢, to be
noticed, the test is terminated, and the remaining R,=n-
m— Y1 R, elements are all omitted, where m(m<n) and Rj,
are pre-fixed. Conventional Type-II censoring is a special case
when R=R,==R,.;=0 and R,=n-m. Many authors have
investigated competing risk data under this censoring strategy
from other distributions; for more data [17-19], and others.

Based upon a reliability analysis, more than one fatal risk
factor frequently contributes to a product's failure, as the inner
structure and outer environmental are mutually complex. For
instance, shaft or bearing failures may be linked to a bearing
assembly failure. In actuality, the failure causes could be
dependent or independent. Research [20] indicates that there
is a difficulty with the underlying model's identifiability, even
though a dependent risk temple would be further actual. The
hypothesis of s-independent risks [21, 22], cannot be tested
without the knowledge of the covariates. consequently, the
failure causes are naturally expected to be independent of the
objectives of exploring a competing risk model. One way to
conceptualize a multi-component series system is as a
prototype of an independent competing risk. Many
investigators have explored competing risk models under the
assumption that competing failure causes are independent. The
analysis of ALT when more than one cause of failure is
expressible was stated by Klein and Basu [23, 24]. The SS-
ALT and CS-ALT in part have drawn the consideration of
many researchers in realistic uses by employing life tests of
several types with data from competing risks through different
censored schemes and more clarifications can be seen in
researches [25-41].

The Weibull model is superb at creating real phenomena
with monotonous failure rates. However, the Weibull model
should not be used for data with non-monotonous failure rates.
The bathtub-shaped failure rate is one of the more practical
non-monotonous failure rate functions, and it is used in a
variety of literary contexts. For instance, in reliability
engineering, it is observed that the lifecycle of an electronic
constituent has a failure rate function with a bathtub shape, and
also bio-analysis for the human death rate.

Chen [42] who examined a lifetime distribution with two-
parameter with neither rising nor bathtub-shaped failure rates,
inspected both possibilities. Its cumulative distribution
function (CDF) is

F(t)=1—-exp(9(1-e"));t>0, 0,7>0 (1)
where, >0 is the shape parameter and 9>0 is the scale
parameter. The equivalent survival function is

s@) =exp(9(1-e")); t>0 )
The probability density function (pdf) is
f() = ot exp (9(1 - ef”)); t>0, 9,7>0 (3)

This article could be designed as exhibited further down.
The extension Weibull distribution is presented as a lifetime
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model in Section 2, along with a description of the model. The
ML method is employed in Section 3 to represent point
estimates of the parameters for the expansion Weibull
distribution under simple SS-ALT using progressively
censored competing risks data. The asymptotic variance and
covariance matrix are explored in section 4. In Section 5, the
Bayesian approach for estimating the unknown parameters is
derived. The simulation studies and the illustrative example
used to illustrate the theoretical findings are explained in
Section 6. Finally, section 7 deals with the findings and
conclusions.

2. DESCRIPTION OF THE MODEL

Suppose that Sy points to the normal level of stress. Assume

n identical units starting on SS-ALT beneath the premier level

of stress S1(S1> So). As well as information on which risk factor

triggered each failure, the number of times it occurred
successively is recorded. At a pre-specific time €(0,0), there
is a rise in the level of stress from S up to S and the life test
maintains until the m th (m is pre-determined) failure is noticed.

At the b (1<h<m-1) failure time, R; of the surviving elements

are omitted, where Ry, is pre-specific and R,=n-m-Y. 7 Ry,.

1. Only a single of two independent causes compete for
failures with lifetimes 77 and 7> could cause a product to
fail. Thus, the failure time for products 7=min(71, 7).

2. The lifetime of the ¢ failure cause 7). follows an
extension Weibull distribution with parameter scale 9y,
the recognized shape parameter #ic and /, c=1,2, under the
level of stress S;.

3. Under several levels of stress, the failure mechanisms are
the same, i.e., #1c =H2c =.

4. Following Nelson's cumulative exposure model (CEM)
[3], the cumulative distribution exposure function of
random variable 7T for simple SS-ALTs with one stress
level change appears as the following:

Fi(t)
F,(t—17—1u,)

o<t<rt
t=>7

F(t) = {

Consequently, the pdf and CDF of the lifetime T;. could be
calculated according to the formula:

F.(t)
= {1 _ eltre(1-¢")), 0<t<rt (4)
1— e[azc(1_et"C—T"C)+191c(1—eTnC)]; t>1
and
fe(®©
0<t<t (5)

{ e Oretnetel"won(i=e "],

e 1L9261:175—16[(t’ic—r’lf)+f}z¢(1—ef’”‘f”c)+19lc(1—ef"c)] >t
;=

5. The log-linear accelerated function (AF) of the ¢’ cause
of failure:

logﬂlc =ac+ bc(p(sl) (6)

whereas, a., b0 are unidentified parameters, The provided

decline function of the level of stress s is known as ¢(s). In this
research, the Arrhenius model is applied, so ¢(s)=s.



For c=1,2. Since we will observe only the smaller of 77 and
T, let T =min(7\, T») refer to the overall failure time of a test
unit. Then, its CDF and PDF are easily achieved to be:

Fr®) =1-(1-6,(0)(1-G,(0)

Fr(0)
- elona(1-e" 4012 (1-e4"2)] o<t<t (7)
1— e[1921(1,(3{’11—1:771)+1911(1,er"11)+1922(1,et772—rﬂz)ﬂgu(l,er’h)]. t>1
fr(®)
[7711911tn1_1e(tn1) + Uzﬂlztnz_le(tnz)]
e[1911(lfef"1)+191z(l—et"2)] ; o<t<rt (8)

[7711921tn1_1e(tn1_rn1) + M20;2 tn2mte ™ _Tﬂz)]

[e[1921(1—etn1_rnl)+19u(l—ern1) +1922(1_et712_1712)+1912(1_61712)] S t>T
; =

Let & be the indicator of the failure cause, then we derive the
joint PDF of (7, ¢) as:

fre® =g.0)(1 -G (@)

fre(@®
J ncﬂlctnc—1e(tﬂc)6[1911(1—e‘"1)+1912(1—ef"2)]; O<t<r
9
= ncﬂzctnc_le[tnc_rnC] ( )
Le[1921(1_et771—1711)_'_1911(1_61771)+1922(1_et712—1772)+012(1_er"2)] -

for ¢, ¢'=1,2 and c#£c'.

3. MAXIMUM LIKELIHOOD ESTIMATION

Recognizing that there are N, failures prior to changing the
stress time 7. When we point out #1c and 72 that signifies the
sum of failures associated with a failure caused ¢ under the
level of stress s and s, in turn, so Ni=n;+n, is the sum of
failures under the level of stress s; and m- Ni= N, na1+na; is
the sum of failures under the level of stress s». Given that the
resultant cause of failure takes place contained by each failure
time, let &=(&1,8,. ..,Em )Characterize the observed failure cause
indicator series relating to the recorded failure time =(¢1, ta,.. .,
tm). The likelihood function is then constructed using the
progressively censoring scheme Ri, R, ..., R, and
presupposition 4 as shown by Balakrishnan and Aggarwala
[16].

( ) nfi(th'fh)[l—F(th)]

(10)
[Th=n,+1 fz(th' $n)[1 — F(ty)]Rn
Then
Ny
L(./t) o« U U, exp the (t"” —17)

2 2
+ z 191c(Ulc + UZc) + Z 19ZcU3c
c=1 c=1

where,
n; n -1
Ul = lC 1[77 1019 w] UZ = H‘;ln=1 t;zc >

= Zh=1(1 +Rp) (1 - etZC)>
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2¢ = Zn=n,+1(1 + R(1- eT"”) and
3¢ = Xnen,+1(1 + Ry) (1 _ e(t,’l’f_fnc)).

Utilizing the likelihood function (11), henceforth the MLE
of we=(Y1c, $2c) and ¢=1,2. Thus, to estimate %, we may fairly
presume that $>1(/, c=1,2), i.e., At least one failure must be
observed under each failure caused by each level of stress. The
MLEs of the parameters for Eq. (11) are got by maximizing
the logarithm of the likelihood function stated as:

lOgL S Zzzc 1 nic(log Ne + log 19Lc)
+(ne — 1) Zht log(tn) + pk, 67
+ Zh=1\11+1(t;zC — 1) + 32191 (Usc + Uyp)
+Zg=1192cU3c

(12)

The log-likelihood function's first partial derivative with
respect to the parameters we= (e, $e Joc) and c=1,2
respectively as follows:

dloglL - %
a(:;i =T ! ZzZA n+ Q% + Z?:Ni+1 Qhe (13)
_ﬁlc[Qlc + QZC] — V503 =0
dloglL 41
B =y B+ U + U = 0 (14)
1c
and
dloglL o1
W =Ny05¢ +Usc =0 (15)
c
where, Q* = X7, log(ty) + Xnt, t1¢ log t,

Qne = (t,ﬁf logt, — t7clog r),

Quc = 202, (1 + Ry) (e 6] log (t) ),
Q2c = Xh=n+1(1 + Ry) (e’ncrﬁc logr) and

Qs = Ziin, (1 + Re) (e(tﬁ“’m) (t1c1og t — 7 log f))-

As of (14) and (15), the MLEs of Ji¢ and 9 are easily
acquired as:

7915 = _nlc[Ulc + UZC]_l (16)

(17)

Uy = _nZC[U3C]_1

The nonlinear Eq. (13) have difficult closed-form solutions.
Therefore, a numerical approach ought to be utilized to resolve
these concurrent equations to finding 7j.; c=1,2.

4. ASYMPTOTIC VARIANCE AND COVARIANCE’S
OF ESTIMATION

The asymptotic Fisher information matrix of the parameter's
MLE could be approximated by numerically inverting the
asymptotic Fisher information matrix /. It is made up of the
negative second and mixed partial derivatives of the likelihood
function's actual logarithm as defined by the MLE. It can be
computed utilizing the following matrix:



ICll ICIZ IC13
Ie =21 2z e23
Ic31 Ic32 Ic33

[—0%logl —0%logl —0d?loglL]

6773 ancaﬁlc ancaﬁzc

_|-0%logL —8%logL —d%loglL

| 99,.0m. 092, 091,00,

—0%logL —0%logL —0%loglL

| 09,,0m, 099,,00,. 092

The components of the noticed Fisher information matrix
Leit, L2, 1e33, Ie12, and 113 are obtained as the following:

-02%loglL ) * o
I = an? =1, Yiti—E —E7 +91E1c + 92 E2,
-92 logL __ -9%loglL -2
Iezz = 6192 101915 y Ie33 = 992 - n25192c )
2c
—-0%1loglL _ —0%logL
] =——9"lgL ., ~_
c1z = 5 5n— = lean = 555 = Q1c + Q2
-3%loglL -8%logl
I3 = =3 = = —Q3. and
c13 aMc092¢ c31 99207 Q3C
[ = —-9%loglL — _ —9%logL __
€23 7 9910002c 32 T 00,0001

where, E* = Y7L t1¢ (log t,)?,
E™ = Zh=N1+1(th (log t)* — 77<(log 7)?),
= SN+ Ry) [e 67 Qog £,)? (1 + £7°)
+ Xy, +1(1+ R [e™ T (log )2 (1 + 779)],

Ne_.nc
= ¥y, a1 (1 + Ry {e )¢l 1og t, (log ty, +
10g tnt)c — 1 logt) —logT ™ (log T + t;* log t), —

e logr)] ]

Substitute the MLEs 9, for J1¢, 9,, for 9oc and ¢=1,2. It is
feasible to acquire the noticed Fisher information matrix I..
when this matrix is inverted and symbolized by V. = I7.

One might obtain the convergent Cls of the parameters on
the asymptotic distribution of the MLEs of the units of the
vector of unidentified parameters wc=(%1c,92c), ¢=1,2. The
asymptotic distribution of the MLEs

(t/jc — ./ |var (l,[JAC)>,C =12 is known to Dbe

approximated by a standard normal distribution, whereas
var (l,[JAC) is assessed as the asymptotic variance, then, the
estimated 100(1-y)% two-sided CI for yc=(91c,92c), c=1,2 are
achieved, therefore;

P [lﬁc —Zy/2 ’var (ch) <Y <P+ Zy/2 /var (1,[30)] =q

whereas, zy» is the 100(1-y)% standard normal percentile.

5. BAYESIAN ESTIMATION

In this section, established on data of competing risks, the
Bayesian estimation employing square error loss functions is
obtained based on a simple step-stress model with type II
progressive censoring. One could propose utilizing
independently distributed gamma priors with known
parameters Jic, J2c and nic where ¢=1,2 of the extension
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Weibull distribution (EWD) as:
m() =n:5 0<n. <1
and

T, (ﬁlc) = [F(alc)]_lblcalc ﬁlilc_l exp(_blcﬁlc) ;
191(." alc,blc > 0, l,C = 1,2

where, the hyper-parameters a;., b and /, c=1,2 are elected to
mirror prior knowledge of the unknown parameters and the
parametric space of $1c and J»c should be KglC:{lglc, G1c<F2c},
c=1,2.

Hence, the jointly prior densities of wc= (3¢, 1c, I2c), c=1,2
can then be written as:

n(l/)c) < nglﬁalc_lg;"jc 13( b1c191c—b2c192c)[(191651926); c

212 (18)

For the noticed data t obtained from a life test experiment's
type Il progressive censoring with four independent the
extension Weibull distribution 9. and /, ¢=1,2 and from Eq.
(11) of the likelihood function and Eq. (18) of prior
distribution the equivalent posterior density of wc=(¢, $1c,92c),
c=1,2 and is given by:

T[(l/)c |£) & L(¢c|£) T[(T]l, 772: 1911! 1912! 1921! 1922)
The posterior density function is given by:
m(Pc|t) o
[ A 1"10—1] [Hl L nlc"‘alc—l](l—lm L tflc—l)

EXP[ZNl the + Y N1+1(t - Tnc) + 91Uy +
= bye) + 95, (Usc — =12

(19)
bzc)] 1(191551920) ’

By integrating m(3.|t) with regard to 91 and 9z, the
marginal posterior density function of 7. is displayed to be
proportional to:

m

m(n|t) Uzl 17et (1_[ t,?c_1> I'(ni. + aq.)

h=1
m

Ny

T'(nye + ay.) exp z e + (t]e — 77)
=1 h=N;+1

[(Ulc + U2c - blc)n1C+alc(U3c - blc)n2C+a2C]_1

To achieve the most suitable estimator using Bayes'
technique, one must select a loss function that corresponds
with all of the potential estimators. In this section the estimates
are obtained for two various kinds of loss functions, explicitly,
squared error loss function (SELF) as an illustrative of the first
type, and LINEX loss function (LLF) as an exemplar of
another type. The SELF is improper when there is an
exaggeration or underestimation. In this situation, LLF could
be utilized as an alternate option for an estimate the parameters.
Additionally, it is helpful when exaggeration and
underestimation are both serious issues. The loss functions that
are currently researched could be shown as follows, assuming
that w, is an estimator for the unknown parameter .

e SELF: From “(w.-.)*” and Bayes estimate “Ewc(lpc | g)”.
e LLF: From “exp[u( w, — ¢Y.)] —u(w, —Y.) — 1L, u# 0"

and Bayes estimate “— % In [EIIJC (exp ((—UI,DC) g))]”.




Referring to Eq. (19), one could observe the difficulty of
computing integrals, followed by the incapability to acquire
the closed form for the joint posterior that allows us to
calculate Bayes estimations of the unknown parameters yc=(7c,
1¢,92¢), ¢=1,2. As a result, we will use the MCMC approach
to obtain these estimates, which allows us to generate
simulated samples from the parameter posterior distributions.
These generated samples will be used to calculate the interval
and point estimation of unknown parameters. The mechanism
of this approach is based on the computation of conditional
posterior functions wherein a conditional distribution of
(91¢1m¢) and (9,¢In.) is gamma distribution with respective
PDF:

T[I (ﬁlclnc) = Dy, 19;1516-“115_1 exp [_ﬁlc(blc -
=~ Gamma(n,. + ay¢, by —

Ulc - UZC)]
Ui = Uy )

15 (92cI1c) = Dye 972627  exp[—0,0(bae — Us,)]
= Gamma(nZC + azc,bpc — Use )

where, ch = (blc - Ulc - UZc)n15+alc/F(nlc + alc) and
ch = (bZC - USC)nZC+aZC/F(n2c + a20)~

Gilks and Wild [43] proposed a simple and applies solution
to this problem. We can sample from a full conditional
distribution that ought to be log-concave utilizing technique.
As aresult, we must establish whether the condition is satisfied.
Given Ji¢, J2c and ¢=1,2 the logarithm of the density of
conditional posterior function of #c is:

2

anc - 1)lognc
1

lOgTL’ (nclﬁlcrﬁZC) & <
1=

m Ny
+(M.—1) Z logty, + Z the
h=1 h=1 (20)
m
£ (e-n)
h=N;+1

+ 191c(Ulc + UZC - blc)
+ 1920(U30 - ch)

Compute the second derivative of (20) as:

0% log m(1c|91c, 92¢)/ 002

2
= —n;? (Z Nye — 1) +E +E™

=1
- 191cE1c - 19ZCEZC

It is clear that my(9,.|n.) and m;(I,.|n.) are gamma
distributions. Therefore, employing a gamma generator,
samples of $1c and Jo¢ can be generated. Furthermore, z(sc[1c,
Yy¢) cannot be directly shrunk for drawing samples utilizing
standard techniques. For this type of situation, acquiring Bayes
estimate for ¢, we can employ one of the very well algorithms
in the MCMC approach, the Metropolis-Hastings (MH)
algorithm model, which was published in the study by
Metropolis et al. [44]. To employ this algorithm, we must first
presume a suggestion function for a sample from it.
Throughout this technique, we can choose either to employ a
non-symmetric or a symmetric suggestion distribution to
reduce the rejection rate as much as potential. Because the
marginal distribution of #c is unknown, the normal distribution
is designated as a symmetric proposal distribution. The
Metropolis-Hastings steps are employed by the Gibbs sampler

b}
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to update 7, whereas 91¢c and o are updated directly from their
full conditionals. The following is a hybrid algorithm that
utilizes Gibbs sampling steps to update the parameters $1c and
e with MH steps to update 7 and create the associated HPD
credible intervals. Typically, we select the MLEs 9, 9, and
c=1,2 as primary values.
Step 1: Given Jic, $2c, according to the sampling algorithm
suggested by Gilks and Wild [43] of the adaptive rejection,
generate 7c.
Step 2: Based upon #c from step 1, generate 91 from
Gamma(nictaic, bic-Uie-Use) and $oc from Gamma(nactaze,bac-
Usc).
Step 3: Corroborate that 91c<%2c, if not, return to step 2. If this
is the case, repeat 1,000 times for steps 1 to 3.

Signify the kth Gibbs sampler by (n&, 95,9 k =
12,.., 1000). Before stationary, iterations (N times in total)
are discarded, therefore, the Bayesian estimates of 1., 9;, 95¢

and c=1, 2 are:

Neps = 2a29,, 1% /(1000 — N) , and

Dies = Xh%0,, 99 /(1000 — N), for [, =1, 2.
Step 4: Calculate all conceivable 100(1-y)% credible intervals

of the form [TIC(P)'nc(p+100(1—y))] and [‘916(p)"910(p+100(1—y))]
where [, c=1, 2;p=1, 2, ..., 1000-100(1-y) respectively, by sorting
the Gibbs sampler ngk),ﬁl(f),ﬁz(lg),k =1,2,..,1000
ascending order.

Step 5: Calculate the lengths of each credible interval, then
select the lowest interval to serve as the HPD credible interval

of 7¢, Y1, oc and ¢=1,2.

in

6. SIMULATION STUDY AND ILLUSTRATIVE

EXAMPLE

The goal of this section is to compare the performance of
the different estimation methods introduced in the preceding
sections. A real given dataset is used for illustration purposes;
furthermore, a simulation study is used to evaluate the
behavior of the suggested methods and to test the statistical
performances of the estimators given a Progressive Censoring
Type-1I scheme under step-stress for extension Weibull
distribution in the presence of competing risks. The R
statistical software program was used to accomplish the
calculations. Computing MLEs and HPD intervals in the
program R is done by employing the bbmle and HDInterval
packages.

6.1 Simulation study

In this sub-section, to analyze the accuracy of estimation
methods, including MLE and Bayesian estimation, a Monte
Carlo simulation study is employed, under progressive Type-
IT under step-stress for extension Weibull distribution in
presence of competing causes of risks. For the MLEs, 1,000
observations are generated from the extension Weibull
distribution based on the following assumptions:

1. Parameters are given by: $11=0.5, $1,=0.75, $21=1.25,
922:1.5, 771:1.75, 7’[2:2.

2. Sample sizes of n=40, n=80, and #n=100.

3. The number of stages of progressive censoring: m=30, 40,
60, 80.

4. Removed items R; are assumed at different sample sizes n
and number of stages m as shown in Table 1.



Table 1. Numerous patterns for removing items from life tests at different stages

" m S1 Sz
o 30 (30,0%) (1507 15)
40 (20,0°%) (10, 0"%, 10)
g0 40 (40,0%) (20,0% 20)
60 (20,0™° (10,08 10)
100 60 (40,0™° (20,08 20)
80 (20,0"°) (10,078 10)

Censoring Schemes

S3 S4 Ss
(0"14,15,15,0°14)  (1*¥,0*0)  (0*%, 30)
(0*19,10’101 0*19) (1*20, 0*20) (0*39, 10)
(0"19,20,20, 0°19)  (1*%0, 0*0)  (0*%, 40)
(0*29’10'10‘ 0*29) (1*20’ 0*40) (0*59’ 20)
(0*29’20'20‘ 0*29) (1*40’ 0*20) (0*59’ 40)
(0*39’10'10‘ 0*39) (1*20’ 0*60) (0*79’ 20)

Here, (5*3,0), for instance, implies that the censorship scheme utilized is (5,5,5,0).

Suppose that the levels of accelerated temperature S;=270°F,
S$2=320°F and the utilized temperature is So=210°F. The
lifetime of the two failure causes follows an expansion of
Weibull distribution with recognized shape parameter 71, #2,
respectively. The amount of the parameter was selected to be
911, $12, 21, $22. To clarify a specific scenario underneath each
cause of failure the increase of stress level in our case of the
study with the extension Weibull model will be achieved by
increasing the rate of the scale parameter 9;, which will be
reflected in shrinking the main time to failure.

Before continuing, first, the progressively censored Type-II

is created through competing risks data utilizing the extension
Weibull cumulative exposure model (CEM) for constant m,
(R1, R>..., Ry, n), as shown below:
Step 1: Based on the algorithm proposed by Balakrishnan and
Sandu [45], generating two samples that are progressively
censored Wi, Ws..., W, and U.,U,,...U, from Uniform
distribution (0,1).

Step 2: Calculating #11; and t12; using U, = 1 — exp [1911 (1 -

n n
etlllh)] and W, = 1 — exp [1912 (1 - etlzzh)], the minimum of
(tun, ton) 1s registered as t, , while the corresponding
minimum index comes out of this condition (t;1; < ti2p,
set &, =1;elseset &y =2)forl < h < N;.

Step 3: Let's assume that various values of stress changing
time 7 as follows: T = (mean(t,*l) + median(t,’;))/Z.

Step 4: Find Ny such that ty, <7 <ty 4. Hence, put ¢, =
tpand & = ¢, forl1 < h < N;.

Step 5: Generating t,,j, and t,,, utilizing:

Un=1—exp[8y (1— i) + 615 (1 — e™)| and

Wy =1—exp [0, (1— et ™)+ 93,(1—e™)] . for Ny +
1 < h < m. The minimum values of (tp, t,25) assigned as
tr.

Step 6: Setting the value of t;, =ty and &, =& for Ny +1 <
h <m. Then ty, t,, ..., t,, are the required order observation
and & = [&,&,, ..., &, ] the vector of the indices.

MLEs and related 95% asymptotic confidence intervals
(ACIs) are produced based on the generated data. On deriving
MLESs, be aware that the initial assume values are regarded as
true parameter values.

We compute Bayesian estimates using informative priors
for the Bayesian estimation method using (18) as the value for
all hyperparameters. Such values of informative priors are
plugged-in to evaluate the required estimates. Through
implementing the MH algorithm, the MLEs are used as initial
guess values, as well as the corresponding variance-covariance
matrix /. of ('Lﬁ), where y=($11, 12, 21, $22, 71, 72). In the end,
1500 burn-in samples were deleted from the total of 6,000
generated samples by the posterior density and produced
Bayes estimates under two loss functions, namely: squared
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error loss (SEL) function LINEX at =-1.5, 1.5 Also, HPD

interval estimates have been computed according to the

technique of Chen and Shao [46].

All the average estimates for methods are reported in Tables

3 to 8 for different combinations of sample size # and number

of stages m. Further, the first column donates the average

estimates (Avg.) and in the second column, related means
square errors (MSEs). For confidence intervals, we have
asymptotic confidence intervals for MLEs and HPD for

Bayesian estimates based on MCMC which are reported in

Tables 9 to 14 for different combinations of sample size n and

number of stages m. Further, the first column represents the

lower bound confidence interval, the second column
represents the upper bound of CI, the third column represents
the average interval lengths (AILs), and in the last column,
related coverage probabilities (CPs) in percentage (%).
According to the tabulated values, one can indicate that:

1. As n raises and m fixed, Avg. estimates for MLE and BE
using MCMC tend to gradually converge for the initial
parameter values.

2. When the sample size increases, the MSE and average of
MLE and BE of the considered parameters decrease.

3. The MLE and Bayesian estimates for Scheme 5 have good
statistical properties than other Schemes.

4. As small as the sample size, Bayesian estimates can be
offered.

5. As n fixed and m increases, AIL for MLE and BE using
MCMC tend to decrease.

6. MSE for BE under LINEX with (z=1.5) is smaller than
other BE methods for all parameters expect.

7. For fixed sample size and m small, the AIL for BE is
shorter than the AIL for MLE using MCMC, but in most
cases, for m increasing and fixed sample size, the AIL for
MLE is shorter than the AIL for BE.

8. For fixed m and n increasing, the AIL for MLE and BE
using MCMC tend to decrease.

9. For the same sample size, the average estimate for MLE
tends to the initial values of the parameter with m small.

10.For fixed n and m small, the MSE of MLE decreases.

11. All most cases, the point estimates of the scale parameters
for BEs are better than for MLEs and the opposite is true
for the shape parameter.

Also, a comparison of Bayesian estimation under MCMC
for all different combinations of samples size #n and number of
stages m in the case of Scheme 3 (S3) can be shown graphically
the graphs of MCMC estimates for 11, $12, $21, $22 using the
MH algorithm and #: and #2 using Gibbs sampling algorithm
in cases of informative priors are the plotting of estimates,
histogram of estimates, and cumulative mean of estimates.
These graphs can be shown in Figure 1 to Figure 3. Also, one
can conclude the convergence of estimates under different
sample sizes n and number of stages m.



6.2 Illustrative example

In this section, we simulate progressive Type-II censored
samples under step stress for extension Weibull distribution in
presence of a competing failure model. The dataset is
generated with the following selections of parameters:
1911:0.75, 312:0.80, 1921:0.65, 1922:0.70, 7’]1:2.0, and
72=2.10 and sample size n=50, number of stages m=30 with
censoring scheme:

R; = (2,0,2,0,2,0,2,0,2,0,0,0,0,0,0,0,0,0,0,0,0,2,0,2,0,2,0,2,0,2).

Also, the assumed stress level is =0.5. The progressively
censored Type-II data are given in the following Table 2.

From this dataset, the estimates (Est.) and standard error
(St.Er) of MLEs and BEs using MCMC of the parameters are
derived. Also, ACIs and HPD intervals are computed. The
results are presented in Table 15 for Est. and St.Ers and in
Table 16 for Cis (lower, upper, interval length (IL)).

The graphs of MCMC estimates for 911, $12, $21, $22, 171 and
n2 using the MH algorithm can be shown in Figures 4 to 6
which indicates the normality of posterior samples generated
using the MH algorithm and utilizing MCMC.

Table 2. Data of the progressively censored Type-I1I for the illustrative example

The first

level of stress | (0.3648599, 1) (0.4635089, 1)

(0.1742090, 2) (0.2031259, 1) (0.2315669, 1) (0.2759920, 1) (0.2877801, 1) (0.3045739, 1) (0.3457952, 1) (0.3508297, 1)

The second
level of stress

(0.7515350, 2) (0.7987907, 2) (0.8096729, 2) (0.8502840, 2) (0.8565298, 1) (0.8593854, 1) (0.8725126, 1) (0.8737639, 1)
(0.8747619, 1) (0.8775376, 1) (0.9101309 1) (0.9281317, 1) (0.9294583, 1) (0.9319161, 1) (0.9823121, 1) (1.0200595, 1)
(1.0678518, 1) (1.0796584, 1) (1.0945277, 1) (1.1951210, 2)

The first element represents failure time and the second element represents the failure cause.

Table 3. Avg. estimated values and MSEs of the ML and BE using MCMC for different schemes of progressive Type-II
censoring step-stress for extension Weibull distribution at n=60 and m=30

Sch. Parm. MLE

BE MCMC: SEL

BE MCMC: LINEX
1=-15 1=1.5

Avg. MSE  Avg.

MSE

Avg. MSE Avg. MSE

% 0.3629 0.0207 0.3357

0.0288

0.3292 0.0309 0.3426 0.0267

%12 0.3730 0.1448 0.3467

0.1652

0.3387 0.1716 0.3552 0.1586

91 1.2385 0.0275 1.1466

Si

0.0350

1.0284 0.0660 1.3410 0.0784

922 1.1036 0.1861 1.0193

0.2560

0.9262 0.3476 1.1575 0.1585

n: 0.9362 0.6697 0.9749

0.6085

0.9481 0.6500 1.0040 0.5649

nz 1.0171 0.9772 1.0603

0.8947

1.0326 0.9465 1.0903 0.8401

%11 0.4409 0.0062 0.4033

0.0120

0.3948 0.0135 0.4124 0.0105

$12 0.4525 0.0917 0.4147

0.1154

0.4055 0.1215 0.4245 0.1091

Y21 2.0345 0.6859 1.9390

S2

0.5395

1.7121 0.2578 2.3654 1.4249

Y22 1.9388 0.2649 1.8426

0.1824

1.6442 0.0663 2.1837 0.6085

n1 1.0923 0.4454 1.1542

0.3686

1.1069 0.4252 1.2082 0.3099

nz 11413 0.7528 1.2050

0.6485

1.1586 0.7224 1.2581 0.5698

Y11 0.3311 0.0294 0.3128

0.0359

0.3082 0.0376 0.3176 0.0342

$12 0.5035 0.0650 0.4777

0.0785

0.4659 0.0847 0.4905 0.0721

921 11781 0.2045 1.1521

S3

0.1849

1.0398 0.1700 1.3411 0.3655

Y22 0.9829 0.4289 0.9456

0.4540

0.8726 0.5033 1.0529 0.4327

n;1.0842 0.4547 1.0801

0.4591

1.0442 0.5076 1.1188 0.4101

n2  1.2664 0.5535 1.2766

0.5375

1.2398 0.5908 1.3157 0.4838

S 0.4002 0.0118 0.3784

0.0234

0.3683 0.0218 0.3997 0.2040

$12 04715 0.0811 0.4965

0.7273

0.4371 0.1385 0.5964 2.2996

Y1 2.0791 0.7487 2.0115

S4

0.6452

1.7817 0.3232 2.4575 1.7950

Y22 1.8916 0.2060 1.8397

0.2331

1.6519 0.0646 2.1967 2.6084

n1.0718 0.4701 1.1064

0.4259

1.0654 0.4793 1.1550 0.3716

n2 1.1806 0.6831 1.2170

0.6304

1.1747 0.6973 1.2753 0.7254

S 0.5518 0.0072 0.5089

0.0043

0.4951 0.0038 0.5236 0.0052

Y12 0.5518 0.0438 0.5081

0.0628

0.4944 0.0692 0.5229 0.0563

Y1 2.8508 2.6734 2.7456

Ss

2.3323

24121 1.4165 2.4604 0.2327

Y22 2.8509 1.9355 2.7525

1.6630

2.4167 0.9036 2.4886 0.3228

n1.0986 0.4385 1.1635

0.3584

1.1076 0.4247 1.2288 0.2897

n2 1.0986 0.8267 1.1604

0.7188

1.1047 0.8133 1.2252 0.6175

Table 4. Avg. estimated values and MSEs of the ML and BE using MCMC for different schemes of progressive Type-II
censoring step-stress for extension Weibull distribution at n=60 and m=40

MLE

BE MCMC: SEL

BE MCMC: LINEX

Sch. Parm. 7=-1.5 1=1.5
Avg. MSE Avg. MSE Avg. MSE Avg. MSE
911 0.3892 0.0136 0.3651 0.0195 0.3590 0.0212 0.3715 0.0179
912 0.3969 0.1263 0.3738 0.1431 0.3669 0.1484 0.3812 0.1377
Si 91 1.3560 0.0344 1.2689 0.0231 1.1497 0.0262 1.4521 0.0844
92 1.2656 0.0783 1.1816 0.1236 1.0795 0.1931 1.3329 0.0666
n;  0.8742 0.7717 0.9108 0.7093 0.8898 0.7446 0.9334 0.6723
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72 0.9193 1.1736 0.9578 1.0927 0.9364 1.1373 0.9807 1.0460
S 0.4091 0.0100 0.3791 0.0163 0.3732 0.0177 0.3852 0.0150
%12 04134 0.1152 0.3837 0.1361 0.3775 0.1406 0.3902 0.1314
g1 1.7902 0.3373 1.6945 0.2392 1.5147 0.0997 1.9987 0.6505
22 1.7244 0.0961 1.6321 0.0595 1.4676 0.0311 1.8979 0.2409
7 0.9821 0.5966 1.0388 0.5136 1.0071 0.5588 1.0736 0.4663
n2 1.0120 0.9841 1.0688 0.8759 1.0373 0.9346 1.1034 0.8137
$11 0.3521 0.0226 0.3353 0.0279 0.3313 0.0293 0.3396 0.0266
%12 0.4592 0.0881 0.4372 0.1030 0.4293 0.1076 0.4455 0.0983
Y21 1.3993 0.2220 1.3528 0.1898 1.2249 0.1284 1.5608 0.4178
22 1.3259 0.2300 1.2686 0.2314 1.1561 0.2466 1.4429 0.3035
n: 0.9734 0.6100 0.9924 0.5803 0.9668 0.6193 1.0196 0.5403
n2 1.0236 0.9614 1.0507 0.9093 1.0240 0.9600 1.0790 0.8570
$11 0.3484 0.0240 0.5273 1.3523 0.3939 0.2632 0.5502 1.2756
$12 0.4201 0.1108 0.7327 3.2772 0.5134 0.5491 0.8500 1.7366
Y1 1.2498 0.0225 1.8732 1.2202 1.1313 1.1070 2.5090 1.0604
J22  1.1521 0.1397 1.6107 0.6030 1.0096 0.5902 2.1884 0.1731
n: 0.9481 0.6478 1.7780 2.5824 1.1314 2.8737 2.0254 2.1397
n2 1.0082 0.9889 1.3636 2.9432 1.0327 2.0952 2.0950 2.08196
$11 0.4570 0.0041 0.4257 0.0078 0.4185 0.0088 0.4333 0.0068
%12 0.4570 0.0881 0.4256 0.1075 0.4185 0.1120 0.4331 0.1028
J21 2.2047 0.9737 2.0990 0.7770 1.8605 0.4113 2.5440 1.8374
2o 2.2047 0.5589 2.0947 0.4124 1.8562 0.1671 2.5273 1.2076
nr1.0184 0.5441 1.0824 0.4553 1.0438 0.5072 1.1255 0.4013
n2 1.0184 0.9725 1.0845 0.8482 1.0457 0.9195 1.1279 0.7722

S2

S3

S4

Ss

Table 5. Avg. estimated values and MSEs of the ML and BE using MCMC for different schemes of progressive Type-II
censoring step-stress for extension Weibull distribution at n=80 and m=40

. BE MCMC: LINEX
Sch. Parm. MLE BE MCMC: SEL 1=-15 =1.5

Avg. MSE  Avg. MSE Avg. MSE Avg. MSE
Y11 0.3694 0.0186 0.3481 0.0246 0.3428 0.0262 0.3537 0.0230
Y12 0.3778 0.1406 0.3571 0.1565 0.3508 0.1614 0.3637 0.1514
Y21 12576 0.0202 1.1842 0.0234 1.0848 0.0416 1.3264 0.0369
Y22 11311 0.1575 1.0620 0.2113 0.9837 0.2815 1.1679 0.1386
ni 0.9228 0.6894 0.9538 0.6393 0.9338 0.6712 0.9752 0.6061
n2 0.9957 1.0162 1.0297 0.9494 1.0094 0.9887 1.0514 0.9084
Y11 0.4429 0.0054 0.4142 0.0095 0.4074 0.0106 0.4213 0.0084
$12 0.4527 0.0909 0.4235 0.1091 0.4163 0.1137 0.4310 0.1043
Y21 2.0347 0.6699 1.9604 0.5531 1.7732 0.3099 2.2637 1.1197
Y22 19470 0.2561 1.8665 0.1866 1.7026 0.0801 2.1173 0.4696
n; 1.0862 0.4507 1.1350 0.3888 1.0989 0.4333 1.1752 0.3427
n2 11303 0.7685 1.1828 0.6806 1.1474 0.7383 1.2220 0.6198
S 0.3239 0.0317 0.3107 0.0365 0.3073 0.0378 0.3142 0.0352
$12 0.4971 0.0666 0.4776 0.0768 0.4685 0.0817 0.4872 0.0718
Y1 11052 0.1151 1.0950 0.1123 1.0132 0.1231 1.2128 0.1386
Y22 0.9101 0.4242 0.8824 0.4530 0.8329 0.5022 0.9466 0.4057
n;  1.0876 0.4456 1.0820 0.4528 1.0541 0.4904 1.1114 0.4148
n2 12773 0.5315 1.2855 0.5196 1.2573 0.5601 1.3152 0.4788
Y11 0.3934 0.0126 0.3711 0.0179 0.3660 0.0192 0.3764 0.0166
Y12 0.4623 0.0852 0.4348 0.1020 0.4274 0.1064 0.4433 0.0991
Y1 2.0810 0.7315 2.0416 0.6693 1.8547 0.3947 2.3692 1.8543
Y22 1.8883 0.1855 1.8397 0.1496 1.6970 0.0649 2.0566 0.3963
n1_1.0663 0.4748 1.0967 0.4460 1.0626 0.4794 1.1267 0.3970
n2 11763 0.6869 1.2087 0.6352 1.1776 0.6847 1.2419 0.5846
$11 0.5493 0.0059 0.5166 0.0037 0.5059 0.0032 0.5278 0.0044
$12 0.5493 0.0438 0.5171 0.0577 0.5065 0.0625 0.5283 0.0528
Y21 2.8325 2.5929 2.7607 2.3644 2.4830 1.5786 3.2832 4.3588
922 2.8325 1.8641 2.7575 1.6595 2.4823 1.0216 3.2661 3.3091
n: 11032 0.4300 1.1529 0.3687 1.1087 0.4217 1.2027 0.3140
n2 11032 0.8159 1.1534 0.7286 1.1095 0.8031 1.2027 0.6496

Si

S2

S3

S4

S’s

Table 6. Avg. estimated values and MSEs of the ML and BE using MCMC for different schemes of progressive Type-II
censoring step-stress for extension Weibull distribution at n=80 and m=60

. BE MCMC: LINEX
Sch. Parm. MLE BE MCMC: SEL 7=-15 =1.5

Avg. MSE Avg. MSE Avg. MSE Avg. MSE

100



S11 0.4043 0.0101 0.3880 0.0136 0.3834 0.0146 0.3927 0.0126
$12 0.4097 0.1169 0.3931 0.1286 0.3880 0.1322 0.3983 0.1249
J21 14104 0.0421 1.3467 0.0264 1.2507 0.0133 1.4762 0.0760
922 1.3470 0.0400 1.2843 0.0630 1.1973 0.1045 1.3998 0.0337
n:_0.8456 0.8209 0.8715 0.7751 0.8575 0.7997 0.8862 0.7498
n2 0.8747 1.2698 0.9017 1.2102 0.8874 1.2415 0.9166 1.1777
Y11 0.4066 0.0097 0.3860 0.0140 0.3818 0.0149 0.3903 0.0131
$12 0.4088 0.1175 0.3877 0.1324 0.3833 0.1355 0.3921 0.1292
J21 17094 0.2353 1.6390 0.1764 1.5076 0.0852 1.8287 0.3794
Y22 1.6664 0.0522 1.5971 0.0340 1.4731 0.0193 1.7733 0.1158
n:0.9361 0.6665 0.9760 0.6038 0.9561 0.6345 0.9971 0.5719
n2 09546 1.0972 0.9947 1.0155 0.9749 1.0554 1.0158 0.9739
$u1 0.3629 0.0194 0.3493 0.0233 0.3462 0.0243 0.3525 0.0224
$12 0.4429 0.0969 0.4265 0.1079 0.4213 0.1112 0.4319 0.1046
91 14474 0.2020 1.4022 0.1637 1.3010 0.1105 1.5459 0.2950
Y22 14307 0.1696 1.3822 0.1600 1.2827 0.1588 1.5221 0.2184
n; 09332 0.6721 0.9529 0.6398 0.9359 0.6669 0.9706 0.6122
n2 09459 1.1161 0.9692 1.0676 0.9518 1.1035 0.9875 1.0307
S 0.3673 0.0183 0.3536  0.0222 0.3500 0.0232 0.3574 0.0211
Y12 0.4108 0.1161 0.3953 0.1269 0.3901 0.1306 0.4007 0.1232
Y1 1.3179 0.0166 1.2731 0.0131 1.1869 0.0139 1.3891 0.0378
22 1.2448 0.0764 1.1992 0.1027 1.1220 0.1525 1.3017 0.0568
n:_ 0.8945 0.7344 0.9150 0.7002 0.8996 0.7259 0.9311 0.6737
n2 0.9325 1.1424 0.9567 1.0919 0.9404 1.1260 0.9737 1.0568
Y11 0.4308 0.0060 0.4087 0.0096 0.4041 0.0104 0.4134 0.0088
Y12 0.4308 0.1031 0.4092 0.1174 0.4046 0.1205 0.4139 0.1142
Y21 1.9786 0.5693 1.8992 0.4587 1.7365 0.2644 2.1466 0.8714
Y22 1.9786 0.2675 1.9056 0.2020 1.7407 0.0858 2.1572 0.4997
n:0.9785 0.6007 1.0244 0.5325 1.0005 0.5674 1.0502 0.4964
n2 0.9785 1.0490 1.0227 0.9613 0.9986 1.0084 1.0484 0.9122

S1

S2

S3

S4

Ss

Table 7. Avg. estimated values and MSEs of the ML and BE using MCMC for different schemes of progressive Type-II
censoring step-stress for extension Weibull distribution at n=100 and m=60

. BE MCMC: LINEX
Sch. Parm. MLE BE MCMC: SEL t=-15 =1.5

Avg. MSE  Avg. MSE Avg. MSE Avg. MSE
Y11 0.3842 0.0144 0.3683 0.0184 0.3642 0.0194 0.3725 0.0173
Y12 0.3901 0.1308 0.3749 0.1420 0.3703 0.1454 0.3797 0.1385
Y21 1.3256 0.0223 1.2668 0.0166 1.1849 0.0172 1.3735 0.0381
S22 12279 0.0915 1.1738 0.1226 1.1047 0.1695 1.2611 0.0785
n: 0.8865 0.7492 0.9111 0.7076 0.8975 0.7304 0.9253 0.6840
72 0.9369 1.1350 0.9619 1.0826 0.9481 1.1112 0.9764 1.0530
Y11 0.4191 0.0077 0.3992 0.0113 0.3949 0.0121 0.4035 0.0105
Y12 0.4236 0.1078 0.4032 0.1216 0.3987 0.1247 0.4078 0.1185
91 1.8622 0.4042 1.8011 0.3339 1.6663 0.1966 1.9919 0.5976
922 17941 0.1170 1.7310 0.0836 1.6098 0.0360 1.8981 0.2041
n: 1.0232 0.5334 1.0614 0.4800 1.0388 0.5112 1.0855 0.4478
n2 1.0548 0.8992 1.0947 0.8261 1.0724 0.8666 1.1186 0.7839
Y11 0.3354 0.0276 0.3258 0.0308 0.3232 0.0317 0.3284 0.0300
Y12 0.4749 0.0775 0.4616 0.0851 0.4556 0.0885 0.4678 0.0816
91 11647 0.0847 1.1473 0.0827 1.0810 0.0866 1.2334 0.0970
922 1.0375 0.2858 1.0158 0.3005 0.9650 0.3400 1.0798 0.2647
7 1.0323 0.5200 1.0374 0.5125 1.0188 0.5392 1.0568 0.4855
n2 11337 0.7566 1.1445 0.7378 1.1250 0.7713 1.1648 0.7039
Y11 0.3392 0.0264 0.3867 0.5193 0.3410 0.0590 0.4260 0.6208
Y12 0.3975 0.1253 0.5161 1.4882 0.4062 0.1539 0.5695 1.5474
J1 16016 0.1443 1.7484 4.4111 1.4686 0.5586 2.0205 5.0282
922 14456 0.0193 1.5201 1.6944 1.2953 0.0800 1.8940 7.3793
n: 09737 0.6056 1.1568 2.3779 1.0243 1.6474 1.5549 1.5995
n2 1.0666 0.8745 1.2143 2.8129 1.0548 0.9438 1.4546 0.7479
Y11 0.4859 0.0019 0.4642 0.0030 0.4586 0.0033 0.4700 0.0026
Y12 0.4859 0.0715 0.4647 0.0831 0.4591 0.0863 0.4705 0.0799
Y1 2.3918 1.3499 2.3262 1.2039 2.1391 0.8254 2.6164 1.9514
922 2.3919 0.8416 2.3335 0.7397 2.1437 0.4488 2.6248 1.3447
n:  1.0562 0.4877 1.0986 0.4313 1.0705 0.4681 1.1290 0.3934
72 1.0562 0.8971 1.0966 0.8229 1.0683 0.8743 1.1272 0.7694

Si

AY)

S4

Ss
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Table 8. Avg. estimated values and MSEs of the ML and BE using MCMC for different schemes of progressive Type-II
censoring step-stress for extension Weibull distribution at n=100 and m=80

. BE MCMC: LINEX
Sch. Parm. MLE BE MCMC: SEL 7=-15 =15

Avg. MSE  Avg. MSE Avg. MSE Avg. MSE
$11 0.4098 0.0088 0.3971 0.0113 0.3934 0.0121 0.4008 0.0106
Y12 0.4134 0.1140 0.4008 0.1228 0.3968 0.1255 0.4048 0.1200
Y21 14411 0.0513 1.3911 0.0346 1.3103 0.0156 1.4939 0.0792
Y22 1.3924 0.0265 1.3427 0.0396 1.2682 0.0658 1.4365 0.0238
n;  0.8334 0.8426 0.8538 0.8059 0.8431 0.8250 0.8649 0.7862
n2 0.8548 1.3143 0.8754 1.2675 0.8647 1.2917 0.8866 1.2427
Y11 0.4054 0.0097 0.3894 0.0130 0.3861 0.0137 0.3927 0.0123
Y12 0.4067 0.1187 0.3905 0.1301 0.3871 0.1325 0.3939 0.1276
Y21 1.6607 0.1870 1.6058 0.1449 1.5033 0.0790 1.7418 0.2679
22 1.6295 0.0352 1.5744 0.0255 1.4769 0.0166 1.7014 0.0683
n: 09111 0.7066 0.9409 0.6578 0.9267 0.6809 0.9558 0.6341
n2 0.9243 1.1603 0.9551 1.0954 0.9409 1.1251 0.9700 1.0647
S 0.3702 0.0173 0.3590 0.0204 0.3565 0.0211 0.3616 0.0197
Y12 04316 0.1036 0.4175 0.1130 0.4137 0.1154 0.4214 0.1106
$21 1.5007 0.1988 1.4619 0.1679 1.3759 0.1152 1.5740 0.2679
22 15065 0.1342 1.4603 0.1228 1.3737 0.1134 1.5733 0.1680
n:0.9055 0.7164 0.9234 0.6863 0.9109 0.7069 0.9362 0.6653
n2 0.9053 1.2014 0.9268 1.1548 0.9142 1.1818 0.9398 1.1271
$11 0.3807 0.0148 0.3694 0.0177 0.3664 0.0185 0.3726 0.0169
$12 04101 0.1163 0.3982 0.1246 0.3942 0.1274 0.4023 0.1217
Y21 1.3603 0.0232 1.3193 0.0166 1.2466 0.0097 1.4110 0.0416
Y22 1.3018 0.0498 1.2626 0.0674 1.1952 0.1020 1.3475 0.0378
n:0.8706 0.7757 0.8888 0.7442 0.8774 0.7638 0.9005 0.7242
n2 0.8989 1.2150 0.9181 1.1733 0.9061 1.1993 0.9305 1.1466
Y11 0.4195 0.0073 0.4029 0.0103 0.3995 0.0109 0.4064 0.0096
$12 0.4195 0.1100 0.4029 0.1213 0.3995 0.1237 0.4064 0.1189
Y1 1.8658 0.4024 1.8097 0.3372 1.6862 0.2095 1.9791 0.5673
Y22 1.8658 0.1570 1.8071 0.1185 1.6837 0.0530 1.9755 0.2621
n0.9501 0.6431 0.9833 0.5915 0.9664 0.6174 1.0011 0.5648
n2 0.9501 1.1056 0.9842 1.0357 0.9673 1.0701 1.0020 1.0001

S1

S2

S3

S4

S5

Table 9. Interval estimates, AlLs, and CP(%) values of the ML and BE using MCMC for different schemes of progressive Type-
Il step-stress for extension Weibull distribution at n=60 and m=30

Asy-Cl HPD
Lower Upper AIL CP (%) Lower Upper AIL CP (%)
Y11 0.2768 0.4490 0.1723 97.2 0.2433 0.4134 0.1701 96.6
Y12 0.2710 0.4750 0.2040 97.6 0.2480 0.4445 0.1964 973
91 09142 1.5628 0.6485 953 0.8733 1.4830 0.6097 97.5

Sch. Parm.

S Y22 0.7699 1.4373 0.6673 96.2 0.6950 1.3074 0.6124 95.7
n 0.7683 1.1040 0.3357 97.1 0.8192 1.1567 0.3375 97.8
n2 0.8104 1.2239 0.4135 96.6 0.8582 1.2615 0.4033 96.8
Y11 0.3386 0.5433 0.2047 96.7 0.3040 0.5088 0.2048 97.2
Y12 0.3415 0.5636 0.2220 96.4 0.3051 0.5189 0.2138 96.5
5 Y21 15141 2.5550 1.0409 96.9 1.4686 2.4419 0.9733 973
Y22 14114 2.4662 1.0548 97.4 1.3600 2.3445 0.9845 97.2
n;  0.8703 1.3143 0.4440 97.1 0.9270 1.3741 0.4471 96.9
n2 0.8984 1.3842 0.4858 96.7 0.9442 1.4268 0.4826 96.0
Y11 0.2734 0.3888 0.1154 959 0.2624 0.3730 0.1105 96.8
Y12 0.3762 0.6308 0.2546 97.2 0.3306 0.5897 0.2590 95.8
S5 J21 0.3027 2.0535 1.7508 90.0 0.7458 2.3516 1.6057 95.1
922 0.1950 1.7708 1.5758 90.0 0.6290 2.0645 1.4355 95.5
ni  0.8742 1.2942 0.4200 984 0.8644 1.2708 0.4065 96.8
n2 1.0235 1.5094 0.4859 98.3 0.9992 1.4775 0.4783 96.7
Y11 03161 0.4842 0.1681 96.4 0.2886 0.4689 0.1804 96.7
$12 0.3543 0.5887 0.2344 96.3 0.3250 0.5653 0.2403  96.6
S Y21 15932 25649 0.9717 96.1 1.5706 2.4748 0.9042 97.0

922 14417 2.3415 0.8998 96.0 1.3673 2.2548 0.8875 95.9
nr 0.8741 1.2695 0.3954 96.9 0.8999 1.2975 0.3976 96.8
72 0.9690 1.3922 0.4233 97.0 1.0096 1.4586 0.4490 97.7
$u1 04199 0.6838 0.2639 95.7 0.3956 0.6484 0.2528 97.1
Ss $12 04199 0.6838 0.2639 95.7 0.3912 0.6392 0.2480 96.8
J21 2.1985 3.5032 1.3046 95.8 2.1178 3.3580 1.2402 96.0
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Y2 21985 3.5032 1.3046 95.8 2.1797 3.3652 1.1855 96.6
nr  0.8652 1.3319 0.4667 96.8 0.9401 1.4123 0.4722 978
n2 0.8652 1.3319 0.4667 96.8 0.9559 1.4233 0.4675 98.0

Table 10. Interval estimates, AlLs, and CP(%) values of the ML and BE using MCMC for different schemes of progressive
Type-11 step-stress for extension Weibull distribution at n=60 and m=40

Asy-CI HPD
Lower Upper AIL CP (%) Lower Upper AIL CP (%)
Y11 0.3182 0.4601 0.1419 97.3 0.2953 0.4378 0.1425 97.6
Y12 0.3186 0.4752 0.1566 97.4 0.3007 0.4580 0.1573 98.1
Y1 1.0577 1.6542 0.5965 97.1 0.9923 1.5594 0.5671 97.2

Sch. Parm.

S 922 09662 1.5649 0.5987 975 0.9167 1.4872 0.5705 98.0
n: 07419 1.0064 0.2646 97.4 0.7672 1.0448 0.2776 96.4
n2 07703 1.0683 0.2980 97.0 0.8061 1.1148 0.3088 97.1
Y1 0.3279 0.4903 0.1624 97.0 0.3006 0.4627 0.1622 96.9
%12 0.3278 0.4990 0.1712 97.0 0.2998 0.4672 0.1674 97.0
S5 91 1.3722 2.2083 0.8361 96.3 1.3296 2.1015 0.7720 974
922 1.3048 2.1440 0.8392 96.3 1.2701 2.0452 0.7751 97.2
n 08181 1.1462 0.3282 975 0.8738 1.2168 0.3430 97.3
n2 0.8376 1.1864 0.3488 97.3 0.8982 1.2549 0.3567 97.9
Y11 0.2990 0.4053 0.1063 96.7 0.2836 0.3921 0.1085 97.3
%12 0.3427 0.5757 0.2330 99.1 0.3185 0.5382 0.2197 97.0
S5 91 0.5230 2.2757 1.7527 96.1 0.8883 2.2028 1.3145 95.9
Y22 04495 2.2023 1.7528 96.4 0.7913 2.0283 1.2370 95.3
n 0.8101 1.1368 0.3267 98.3 0.8380 1.1465 0.3086 98.0
n2 0.8487 1.1984 0.3498 98.3 0.8716 1.2199 0.3483 974
Y1 0.2873 0.4095 0.1222 97.2 0.0017 0.8938 0.8921 95.1
%12 0.3328 0.5075 0.1747 979 0.0048 1.5740 1.5692 95.1
S Y21 0.9554 1.5443 0.5889 95.2 0.0032 5.1306 5.1274 95.1
Y22 0.8841 1.4202 0.5361 95.9 0.0049 3.8354 3.8305 95.1
n: 0.8143 1.0818 0.2675 97.7 0.0055 3.9074 3.9019 95.0
72 0.8670 1.1494 0.2825 98.0 0.0081 2.0450 2.0370 95.2
Y11 0.3642 0.5498 0.1855 96.7 0.3380 0.5225 0.1844 974
$12 0.3642 0.5498 0.1855 96.7 0.3395 0.5225 0.1830 97.1
S5 Y21 1.7150 2.6943 0.9793 96.8 1.6774 2.5784 0.9010 974

Y22 1.7150 2.6943 0.9793 96.8 1.6525 2.5848 0.9322 97.3
n: 0.8341 1.2026 0.3686 97.2 0.8860 1.2688 0.3828 96.7
72 0.8341 1.2026 0.3686 97.2 0.9076 1.2952 0.3876 98.2

Table 11. Interval estimates, AlLs, and CP (%) values of the ML and BE using MCMC for different schemes of progressive
Type-11 step-stress for extension Weibull distribution at n=80 and m=40

Asy-Cl HPD
Lower Upper AIL CP (%) Lower Upper AIL CP (%)
Y11 0.2917 0.4471 0.1553 97.0 0.2737 0.4246 0.1509 97.1
Y12 0.2880 0.4676 0.1796 96.6 0.2774 0.4561 0.1788 98.4
91 09792 1.5361 0.5569 97.1 0.9196 1.4466 0.5270 96.8

Sch. Parm.

S Y22 0.8439 1.4183 0.5744 974 0.8034 1.3408 0.5374 974
n 0.7829 1.0627 0.2798 96.2 0.8153 1.0954 0.2801 96.8
n2 0.8252 1.1662 0.3410 96.8 0.8602 1.1981 0.3379 96.6
Y11 0.3516 0.5342 0.1826 96.4 0.3295 0.5063 0.1768 97.1
Y12 0.3548 0.5505 0.1957 96.4 0.3289 0.5202 0.1913 96.3
5 Y21 15788 2.4906 0.9118 97.0 1.5448 2.3890 0.8442 97.1
Y22 14819 2.4122 0.9303  97.1 1.4224 2.2947 0.8723 96.8
n;0.8897 1.2827 0.3930 97.1 0.9461 1.3340 0.3879 97.1
n2 09154 1.3451 0.4297 96.5 0.9773 1.4157 0.4383 97.3
Y1 0.2738 0.3741 0.1003 96.1 0.2666 0.3631 0.0965 97.1
Y12 0.3960 0.5983 0.2023 97.1 0.3789 0.5921 0.2132 98.6
S5 $21 0.5037 1.7068 1.2031 955 0.8083 1.3053 0.4970 95.4

922 0.3688 1.4513 1.0825 955 0.6460 1.0450 0.3989 95.3
nr 09251 1.2501 0.3249 98.7 0.9141 1.2268 0.3127 97.2
n2 1.0891 1.4656 0.3765 98.8 1.1183 1.4931 0.3749 99.7
Y11 0.3242 0.4626 0.1385 96.4 0.3091 0.4439 0.1347 97.2
%12 0.3658 0.5588 0.1930 96.7 0.3503 0.5334 0.1831 97.2
S4 Y21 1.6843 2.4777 0.7934 97.0 1.6679 2.4458 0.7778 97.2
22 15230 2.2536 0.7307 96.8 1.4982 2.2085 0.7103 97.2
n:0.8980 1.2346 0.3366 96.9 0.9424 1.2898 0.3474 98.3
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72 0.9957 1.3570 0.3613 96.7 1.0290 1.3914 0.3624 97.2
$11 04330 0.6656 0.2325 954 0.4121 0.6347 0.2226 96.6
%12 0.4330 0.6656 0.2326 954 0.4126 0.6383 0.2257 96.7
91 22489 3.4161 1.1671 96.7 2.1897 3.3144 1.1246 96.4
922  2.2489 3.4161 1.1671 96.7 2.2537 3.3410 1.0873 97.2
n:0.8914 1.3150 0.4236 97.2 0.9392 1.3607 0.4214 96.9
n2 0.8914 1.3150 0.4236 97.2 0.9497 1.3780 0.4283 97.9

Ss

Table 12. Interval estimates, AlLs, and CP (%) values of the ML and BE using MCMC for different schemes of progressive
Type-11 step-stress for extension Weibull distribution at n=80 and m=60

Asy-ClI HPD
Lower Upper AIL CP (%) Lower Upper AIL CP (%)
Y11 0.3431 0.4655 0.1224 97.3 0.3250 0.4516 0.1266 97.7
Y12 0.3445 0.4749 0.1304 97.6 0.3306 0.4614 0.1308 97.9
921 11599 1.6610 0.5012 97.1 1.1062 1.6044 0.4982 97.1

Sch. Parm.

S 922 1.0941 1.6000 0.5059 975 1.0377 1.5204 0.4827 96.2
. 0.7390 0.9523 0.2133 97.6 0.7713 0.9891 0.2179 98.0
n2 0.7584 0.9910 0.2325 97.2 0.7895 1.0305 0.2410 98.3
Y11 0.3447 0.4685 0.1238 975 0.3273 0.4495 0.1222 97.9
%12 0.3446 0.4731 0.1285 975 0.3209 0.4508 0.1298 97.1
S5 91 1.4038 2.0149 0.6111 96.8 1.3480 1.9411 0.5931 97.1
Y22 1.3595 1.9733 0.6137 97.1 1.3127 1.9008 0.5881 97.5
n0.8119 1.0602 0.2483 97.7 0.8482 1.1180 0.2698 97.7
n2 0.8252 1.0841 0.2589 97.5 0.8622 1.1350 0.2728 975
%1 0.3161 0.4097 0.0936 96.1 0.3044 0.4004 0.0960 96.8
%12 0.3430 0.5427 0.1997 98.6 0.3263 0.5162 0.1899 96.8
S Y21 0.6557 2.2392 1.5835 945 0.9218 2.1655 1.2437 95.2
’ Y22 0.6347 2.2267 1.5920 945 0.9025 2.1642 1.2617 95.2
n10.7945 1.0720 0.2776 98.1 0.8174 1.0772 0.2598 975
n2 0.8067 1.0852 0.2785 98.3 0.8147 1.0960 0.2813 97.1
%11 0.3142 0.4205 0.1063 96.0 0.3004 0.4098 0.1095 96.9
$12 0.3464 0.4752 0.1288 96.2 0.3355 0.4693 0.1338 98.7
S Y21 11030 1.5328 0.4298 95.6 1.0799 1.5179 0.4380 975
922 1.0365 1.4532 0.4167 954 0.9915 1.4196 0.4282 96.7
n: 07946 0.9944 0.1998 97.8 0.8174 1.0304 0.2130 98.7
7z 0.8259 1.0392 0.2133 97.7 0.8389 1.0643 0.2254 97.1
Y11 03625 0.4991 0.1366 97.2 0.3411 0.4786 0.1375 97.1
Y12 03625 0.4991 0.1366 97.2 0.3388 0.4762 0.1373 97.0
S5 Y21 15941 2.3631 0.7690 96.4 1.5291 2.2705 0.7414 96.7

Y22 15941 2.3631 0.7690 96.4 1.5310 2.3108 0.7798 96.8
n;  0.8330 1.1239 0.2909 979 0.8688 1.1747 0.3059 97.6
n2 0.8330 1.1239 0.2909 979 0.8577 1.1688 0.3112 96.7

Table 13. Interval estimates, AlLs, and CP (%) values of the ML and BE using MCMC for different schemes of progressive
Type-Il step-stress for extension Weibull distribution at n=100 and m=60

Asy-ClI HPD
Lower Upper AIL CP (%) Lower Upper AIL CP (%)
S 0.3212 0.4473 0.1261 98.0 0.3073 0.4318 0.1245 975
$12 0.3206 0.4595 0.1389 97.6  0.3043 0.4406 0.1364 975
Y1 1.0732 15779 0.5047 96.7 1.0013 1.5056 0.5043 96.0

Sch. Parm.

S Y22 0.9685 1.4873 0.5188 97.7 0.9281 1.4168 0.4887 96.8
n0.7697 1.0032 0.2335 979 0.7887 1.0205 0.2319 96.5
n2 0.8008 1.0730 0.2721 97.3 0.8415 1.1042 0.2627 97.8
Y11 0.3537 0.4845 0.1308 96.6 0.3412 0.4697 0.1285 97.9
$12 0.3548 0.4923 0.1375 96.8 0.3343 0.4767 0.1424 97.2
S5 J21 1.5254 2.1989 0.6735 96.7 1.4651 2.1332 0.6681 96.1
Y22 14520 2.1363 0.6843 96.9 1.4264 2.0823 0.6559 98.0
n:0.8830 1.1634 0.2804 97.7 0.9210 1.2102 0.2892 97.8
n2 09043 1.2054 0.3010 97.6 0.9588 1.2633 0.3046 98.2
S 0.2916 0.3792 0.0875 96.3 0.2821 0.3685 0.0865 96.4
$12 0.3917 0.5582 0.1665 97.7 0.3643 0.5430 0.1787 97.9
S5 Y21 0.6190 1.7104 1.0913 93.8 0.8651 1.9844 1.1193 95.2

Y22 05120 1.5630 1.0510 93.8 0.7837 1.8617 1.0780 95.7
n:  0.8940 1.1707 0.2767 98.2 0.8973 1.1658 0.2684 97.6
n2 09810 1.2863 0.3053 98.5 0.9910 1.2898 0.2988 98.0
S4 $11 0.2937 0.3846 0.0909 96.0 0.2615 0.4839 0.2223  96.6
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Y12 0.3339 0.4612 0.1273 95.8 0.2868 0.6525 0.3656  95.7
Y1 1.3194 1.8837 0.5643 96.7 1.1930 1.9534 0.7604 96.7
922 11946 1.6966 0.5020 96.6 1.0525 1.8074 0.7549 97.2
7 0.8670 1.0805 0.2134 ///97.7 0.8111 1.1666 0.3555 95.7
n2 0.9539 1.1794 0.2255 97.6 0.8409 1.2991 0.4581 974
Y11 0.4054 0.5663 0.1609 96.7 0.3909 0.5517 0.1607 98.1
$12 0.4054 0.5663 0.1609 96.7 0.3912 0.5516 0.1604 97.9
$21 19706 2.8131 0.8425 96.9 1.9024 2.7379 0.8356 96.8
$22 19706 2.8131 0.8425 96.9 19181 2.7482 0.8301 97.0
n:0.8997 1.2127 0.3131 97.6 0.9319 1.2515 0.3196 96.7
n2 0.8997 1.2127 0.3131 97.6 0.9262 1.2503 0.3242 96.6

Table 14. Interval estimates, AlLs, and CP (%) values of the ML and BE using MCMC for different schemes of progressive
Type-II step-stress for extension Weibull distribution at n=100 and m=80

Asy-Cl HPD
Lower Upper AIL CP (%) Lower Upper AIL CP (%)
Jun 0.3583 0.4613 0.1029 97.2 0.3446 0.4520 0.1074 978
$12 0.3593 0.4676 0.1083 97.6 0.3427 0.4576 0.1149 975
Y1 1.2029 1.6792 0.4763 96.5 1.1373 1.6201 0.4828 96.3

Sch. Parm.

S 22 1.1533 1.6315 0.4782 96.6 1.0956 1.5755 0.4799 96.6
7 0.7368 0.9299 0.1931 97.2 0.7602 0.9601 0.1998 97.6
72 0.7521 0.9574 0.2053 96.9 0.7730 0.9885 0.2155 974
%1 0.3520 0.4589 0.1069 97.3 0.3364 0.4447 0.1083 97.2
%12 0.3518 0.4615 0.1097 97.1 0.3268 0.4396 0.1128 96.1
S 921 1.3953 1.9262 0.5309 96.4 1.3579 1.8758 0.5180 97.2
22 1.3632 1.8958 0.5326 96.6 1.2933 1.8440 0.5506 96.3
7 0.8060 1.0162 0.2102 97.1 0.8294 1.0478 0.2184 97.0
72 0.8158 1.0327 0.2169 96.8 0.8363 1.0663 0.2300 97.0
% 0.3284 0.4120 0.0836 96.7 0.3186 0.4059 0.0872 97.2
$12 0.3390 0.5242 0.1852 99.2 0.3345 0.5006 0.1661 98.3
S5 91 0.7778 2.2237 1.4459 934 1.0286 2.1988 1.1702 95.4
22 0.7882 2.2249 1.4366 934 1.0504 2.2068 1.1564 95.7
nr 0.7944 1.0166 0.2223 98.7 0.8127 1.0251 0.2124 97.5
nz 0.7972 1.0133 0.2161 985 0.8235 1.0312 0.2077 97.9
S 0.3324 0.4289 0.0965 96.6 0.3208 0.4174 0.0966 96.6
%12 0.3545 0.4657 0.1112 96.6 0.3452 0.4584 0.1132 974
S J21 1.1546 1.5660 0.4114 96.6 1.1225 1.5279 0.4054 97.2
22 1.1005 1.5032 0.4027 96.4 1.0727 1.4812 0.4085 97.8
7 0.7766 0.9645 0.1880 98.1 0.7912 0.9778 0.1866 97.0
72 0.8002 0.9975 0.1972 98.1 0.8190 1.0153 0.1964 97.6
Y 0.3642 0.4748 0.1106 97.3 0.3435 0.4567 0.1132 96.9
%12 0.3642 0.4748 0.1106 973 0.3476 0.4609 0.1133 97.9
S5 §1 15671 2.1644 0.5973 969 15175 2.1039 0.5865 96.5

22 15672 2.1644 0.5973 96.9 1.5225 2.1222 0.5997 974
7 0.8366 1.0637 0.2270 98.5 0.8704 1.1006 0.2301 97.4
72 0.8366 1.0637 0.2270 985 0.8705 1.1098 0.2394 98.0

Table 15. Est. and St.Ers of the ML and BE using MCMC for the illustrative example

Parm MLE BE MCMC: SEL BE MCMC: LINEX
" Est. St.Er Est. StEr Est:v=-1.5 Est.v=1.5
911 0.37645 0.11855 0.34314 0.09630 0.33636 0.32027
912 0.40752 0.12840 0.37572 0.11769 0.36586 0.36269
91 1.90398 0.56882 2.11279 0.71536 1.83632 1.63905
92 1.75120 0.47933 1.80192 0.57464 1.61408 1.60377
n:  1.26986 0.35908 1.20095 0.33957 1.12060 1.02945
n2 141021 0.35270 1.40928 0.34697 1.32175 1.30302

Table 16. Interval estimates and ILs values of the ML and BE using MCMC for the illustrative example

Par Asy-Cl HPD

m. Lower Upper AIL  Lower Upper AL
$11 0.14410 0.60880 0.46470 0.16710 0.53427 0.36716
%12 0.15587 0.65918 0.50331 0.16813 0.62265 0.45452
921 0.78911 3.01884 2.22973 1.01234 3.00616 1.99382
922 0.81172 2.69068 1.87896 0.82916 2.00659 1.17743
71 0.56609 1.97364 1.40755 0.53728 1.82395 1.28667
n2 0.71893 2.10150 1.38257 0.71233 2.08963 1.37730
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Figure 1. Convergence of MCMC estimates for 911 and 912
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Nonetheless, the CIs of HPD is better than ACIs for MLE,
this is because, the AIL of HPD is less than AIL for MLE. in
addition to The BEs of the considered parameters based on
LINEX loss function (7=1.5) are smaller than that based on SE

loss function.
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7. CONCLUSION

In this article, established on a cumulative exposure model

— T T T
2000 4000 6000

a

noex

under several progressively censoring type II, we studied a
simple SS-ALT model with two independent failures
competing for risks from extension Weibull distribution. We
have derived MLEs and asymptotic confidence interval



estimates for the unknown parameters of extension Weibull
distribution. Also, we computed BEs and the corresponding
HPD interval estimates under informative priors based on two
different types of loss functions LINEX and squared error loss
functions. We have then performed a simulation study to
assess the performance of all these procedures and an
explanatory instance has been offered to demonstrate all the
methods of inference developed in this paper. An approximate
CI and Bayesian credible interval for the unknown parameters
are discussed when the sample size increases. Established on
the outcomes of the simulation study, our recommendation for
the BEs performs better than MLEs in terms of Average
estimate and MSE. The MLEs and BEs for fixed sample size
and pre-fixed number of failures increase, the MSEs and
Average estimate for unknown parameter decrease. The MLE
and Bayesian estimates for Scheme 5 have best properties than
other Schemes. Nevertheless, MSE for BE under LINEX with
(r=1.5) is smaller than other BE methods for all parameters
expected. Our recommendation for credible/confidence
intervals, the average lengths of ACIs and credible intervals
become smaller as the pre-fixed number of failures increases.
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