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Low probability of intercept (LPI) radar systems is designed "to see and not to be seen." 

Low peak power, low sidelobe antenna pattern, wide bandwidth, and spread spectrum 

waveform are their typical characteristics to prevent detection by noncooperative 

electronic warfare receivers. As a result, in terms of Electronic Warfare systems, the 

detection of an unknown LPI radar has great importance and requires special techniques. 

While a few studies have been done on this subject, many open points still need to be 

managed. This paper presents an LPI radar signal detection algorithm based on 

autocorrelation and time-frequency image-based moments. Detection does not require any 

prior information on radar signals. Detection performance for different types of LPI radar 

signal waveform is studied. The results showed that detection is possible under low SNR. 
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1. INTRODUCTION

As the name implies, the Low Probability of Intercept (LPI) 

radar system's main objective is to escape detection by 

intercept receivers while providing its mission. For various 

reasons, radar designers are now working on waveforms that 

perform the same radar functions but are more difficult to 

intercept. (One reason is the threat of attack Anti Radiation 

Missiles) [1]. In addition, Radar users are concerned about 

Electronic Warfare (EW) technology because transmitted 

signals will leak radar operating parameters to enemy 

ES/ELINT systems. To attack this issue, radar designers 

concentrate on the advanced and revolutionary RF stealth 

concept, LPI [2]. 

LPI radar can find an extensive place in a tactical 

environment. Radar altimeters, LPI landing systems, 

surveillance, fire control radars, and anti-ship capable missiles 

are some of the systems that use LPI technology [3].  

Low antenna side lobes, aperiodic scan pattern, power 

management, and low transmit power are among the LPI radar 

properties. LPI radars, when compared with conventional 

radars, transmit weak signals over a wide frequency band. This 

property makes it difficult for the intercept receiver to detect 

the signals above its threshold. Thus, the LPI radar operation 

creates a scenario for the intercept receiver that looks like a 

noisy signal receiving all the time [2]. The radiated energy 

spread over a wide bandwidth is named a spread spectrum (SS) 

waveform. 

SS also called pulse compression in radar systems, is used 

for several reasons [4]. The simultaneous requirements of 

extensive maximum range, high range resolution, and high 

Doppler resolution have led radar and sonar designers to 

utilize pulse modulation techniques for providing large time-

bandwidth product waveforms known as pulse compression 

waveforms [5]. SS waveform is one of the essential properties 

of an LPI radar system. It was a natural result of the Second 

World War. SS grew in communication and radar technology 

simultaneously. Some of the SS techniques employed to 

achieve wide-band signals are pure noise, direct sequence 

(DS), frequency modulation, frequency hopping (FH), and 

time hopping (TH). DS systems employ pseudorandom 

sequences and phase-shift keying (PSK) onto the carrier for 

spreading. TH to spread the carrier is achieved by randomly 

spacing a narrow transmitted signal. In communication, 

frequency and time hopping were recognized anti-jamming 

concepts during the early 1940s. The DS concept followed the 

FH and TH concepts for several years. SS, for jamming 

avoidance and resolution, was a concept familiar to radar 

engineers by the war's end [6]. 

SS (pulse compression) LPI radar waveform modulation 

techniques are Linear Frequency Modulation (LFM), 

Nonlinear Frequency Modulation (NLFM), Frequency 

Modulation Continuous Wave (FMCW), Phase Shift Keying 

(PSK), Frequency Shift Keying (FSK) or FH, hybrid 

FSK/PSK techniques, and noise technique [7, 8]. Though DS 

Spread Spectrum (DSSS) technique originally grew in 

communication systems, the DSSS waveform for radar 

applications is represented as an LPI technique used for 

various reasons, such as to combine communication and radar 

functions in the same waveform or Multiple Input Multiple 

Output (MIMO) radar technique in the studies [9-12]. 

For LPI radar systems, PSK modulation is managed by 

using binary or polyphase codes. The Barker codes are the 

prevalently used binary code. On the other hand, polyphase 

Barker, Frank, P1, P2, P3, P4 are polyphase codes used in PSK 

modulation of LPI radar waveforms. Polyphase is the most 

frequently used code because of easy digital implementation, 

versatility, high range resolution, and Doppler tolerance [13]. 

There are also T1, T2, T3, and T4 types codes called polytime 

codes used for PSK modulation. 

The LPI radar CW waveform is more popular than PW [14]. 

The advantage of CW usage is that CW radar has low peak 
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power compared to high peak power for pulsed radar for the 

same detection performance. 

As for the subject of non-cooperative LPI radar 

transmission detection, EW receivers such as RWR (Radar 

Warning Receiver), ES/ESM (Electronic Support/Electronic 

Support Measurement), or ELINT (Electronic Intelligence) 

receivers are in question. Because of LPI radars' ever-

increasing and widespread usage in tactical environments, LPI 

radar waveform detection and recognition is a vital problem in 

EW systems. EW system tries to detect a blindly intercepted 

enemy radar signal and analyze its capabilities before 

generating a jamming signal [15]. High-sensitivity digital 

receivers with wide bandwidth are used for LPI radar signal 

interception and analysis [16]. Spectrum sensing techniques 

for Cognitive Radio and Radar systems are categorized as 

matched-filter, energy-detection and feature-detection 

methods [17]. Feature detection refers to extracting features 

from the received signal and performing detection based on 

the extracted features. Typical features are stated as 

correlation-based features. This grouping methodology can be 

taken into account for radar EW receivers. The EW detection 

techniques seen in literature named autocorrelation detection 

for DSSS signals [18], as with cross-correlation based 

detection [19] and Time-Frequency (TF) domain detection 

techniques given in [3] can take place in the feature detection 

techniques. The matched filter requires knowledge of the 

received signal, which is unsuitable for non-cooperative EW 

receivers [20]. On the other hand, energy detection is a simple 

method. It does not require prior knowledge of the signal. It 

computes the signal's energy and compares it to a threshold to 

decide signal presence. This study uses a combination of 

correlation detection and TF detection techniques. 

TF analysis techniques are Wigner-Ville distribution 

(WVD), Choi-Williams distribution (CWD), Quadrature 

Mirror Filter Bank (QFMB), Wavelet transform, Short Time 

Fourier Transform (STFT), and S Transform. Cyclostationary 

Spectral (CS) analysis is a bi-frequency analysis technique that 

is used for LPI radar signal detection and parameter extraction 

[3, 21]. 

A method based on modified Wigner Hough Transform 

(WHT) is applied to detect Frank, P1, P2, P3, P4, and LFM 

types LPI radar signals and detection performance compared 

to Generalized (WHT) [13]. QMFB analysis is used for 

parameter extraction in P1, P2, P3, and P4 type polyphase 

signals [22]. The extracted parameters from the TF image are 

carrier frequency, number of phases, and cycle per phase. Up 

to -4 dB SNR, successful results are presented. Parallel filter 

arrays and higher-order statistics are used to detect FMCW, 

Frank, Costas, and P4-coded LPI radar waveforms [23]. 

FMCW and P4 signal detection performance based on QMFB 

is studied [24]. An algorithm is proposed to detect and identify 

the parameters of the LPI signals like frequency, pulse width, 

pulse repetition interval (PRI), and modulations using STFT 

[25]. Cyclo-stationary (CS) method is used to estimate the 

parameters of polytime-coded LPI signals [21]. The Time-

frequency plane is obtained from the modified S transform 

extracts P1, P2, P3, and P4 type polyphase radar signal 

parameters [26]. Up to -4 dB SNR, parameter extraction can 

be managed except for the carrier frequency. A statistical 

detector of a hypothesis test is given [27]. The test function 

variable is a feature vector based on the intercepted signal's 

first and second moments of WVD. One of the features is the 

orientation of the principal axes. The Radial Basis Function 

Neural network estimates the probability density function of 

the feature vector. An exemplary detection performance at low 

SNR is represented for the FMCW signal. In this study 

orientation angle of WVD is also used as a detection parameter, 

but WVD is handled as an image, and the orientation angle is 

determined by image moments. 

Detection handles like a time series problem, and Recurrent 

Neural Network (RNN) based denoising autoencoder is 

proposed to detect LPI radar signal [28]. Twenty-three types 

of LPI signals are analyzed. Detection occurs up to -5 dB SNR. 

First [29], the signal intercepted by the electronic warfare 

receiver is subjected to wavelet noise reduction preprocessing, 

and its autocorrelation is calculated. After autocorrelation, the 

signal is converted into a Visibility Graphs complex network. 

Then, using the network's average degree, the detection 

threshold is calculated by setting the false alarm probability 

value of the pure Additive White Gaussian Noise (AWGN) 

noise signal, and the real signal is detected. 

LPI radar signal detection based on correlation techniques 

uses the periodic structure of radar waveforms. LPI radar 

waveforms are modulated by a periodic function [3]. 

Additionally, the autocorrelation sequence of a periodic signal 

is also periodic. This property helps the detection of LPI radar 

signals by ES receivers. An LPI airborne radar of LFM 

waveform detection and location process by two passive 

receivers problem is considered [19]. The digital correlation 

method takes advantage of the signal being periodic but noise 

random. The study represented the detection of weak periodic 

signals by digital correlation. The autocorrelation sequence 

will reach every interval of the signal's period. Therefore, 

signal periodicity can be estimated. Mixing product 

(correlation) of intercepted signals by different passive 

receivers also estimates different times of arrival. 

As for the automatic classification task of the EW receiver, 

machine learning algorithms have become apparent in recent 

studies [7, 14, 29-32]. In these studies, the classification is 

based on features obtained from the TF distribution of the 

detected signal. These features are input to the classification 

method. 

The intercepted signal WVD and CWD computation 

performed first, then the combination of the 'single shot multi-

box detector (SSD)' and 'you only look once version 3' 

(YOLOv3) is used for the classification of LPI radar signals 

[14]. Support Vector Machine (SVM) and k-Nearest Neighbor 

(kNN) algorithms are used to classify the extracted features 

[29]. New features based on Wigner and Choi-Williams TF 

distributions are proposed [30]. These features allow a parallel 

classifier structure based on a multilayer perception network 

to classify LFM, Costas, Frank, BPSK, P1, P2, P3, and P4 

waveforms. The received signals are transformed to obtain the 

time-frequency matrix by CWD [31]. Then waveform 

recognition is performed based on dictionary learning. LFM, 

NLFM, Costas, Frank, P1, P2, P3, and P4 coded waveform 

classified. STFT is used to construct entry images. Improved 

GoogLeNet and ALexNet architecture as Convolutional 

Neural Networks (CNN) is utilized to detect and classify LPI 

radar signals [7]. The features are extracted from the Choi-

Williams time-frequency distribution (CWD) image of the 

received data, and Elman Neural Network is selected as the 

classifier [32]. 

Other classification techniques do not include machine 

learning algorithms or TF distribution. The signal is estimated 

using WVD at the first stage [2]. Features required for the 

automatic classification are derived using Radon Ambiguity 

Transform and Radon-WVD and proposed novel features 
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based on the fractional Fourier Transform. The detection 

performances of LPI Radar signals with Wigner Ville 

Distributions are examined by treating each distribution as an 

image [33]. The classification can be performed with an image 

processing algorithm that an eigen image approach over 

Wigner-Ville Distributions. Results were represented for P1 

coded waveforms. Autocorrelation function (ACF) based 

classification is given in the study of [34]. The ACFs of 

analytic radar signals are calculated to magnify the 

discrimination of signals of different categories. A simple de-

noising approach is introduced to purify the ACFs. Four 

features are extracted from the purified ACF. A Directed 

Graphical Model (DGM) is used to represent the joint 

probability distribution of the four features along with the 

category and to classify unknown radar signals. 

In this study, we focus on a detection technique that is a 

mixture of ACF based detection and WVD image feature-

based detection. The detection performance is shown on 

FMCW and different PSK LPI radar waveforms. Simulation 

results are compared with the energy detection technique and 

superiority of the proposed method are demonstrated. The 

contribution of our study is to provide a robust LPI Radar 

signal detection method. Despite most of the detection in 

literature being based on time-frequency analysis detection, 

this article analyzed a wide variety of waveforms and studied 

autocorrelation-based detection. Wigner-Ville distribution-

based solution was conducted in the receiver structure, and a 

new noise reduction method was performed on the WVD 

image to support the detection decision.  

The rest of the paper is organized as follows: Sections 2 and 

3 introduce the transmitted and received signal model, 

respectively, and Section 4 introduces the existing detection 

methods. Section 5 presents the proposed method and 

simulation results of the method, and a conclusion is presented 

in section 6.  

 

 

2. TRANSMITTED SIGNAL MODEL 

 

In this study, PSK-modulated CW signals and FMCW 

signals are analyzed. In the analysis, signals are used in the 

analytic form. By forming the analytic signal, the negative 

frequency components of a real signal may be eliminated from 

the signal representation without losing information. This 

elimination provides sampling below the Nyquist rate and 

avoids interference terms by the interaction of positive and 

negative components in quadratic TFDs [35], the analytic form 

of the transmitted radar waveform expressed as  

 

𝑠(𝑡) = 𝐴𝑒𝑗(2𝜋𝑓𝑐𝑡+∅𝑘) (1) 

 

The in phase (I) and quadrature (Q) component of s(t) is 

defined as 

 

𝐼 = 𝐴𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡 + ∅𝑘) (2) 

 

𝑄 = 𝐴𝑠𝑖𝑛(2𝜋𝑓𝑐𝑡 + ∅𝑘) (3) 

 

where, A is the amplitude, 𝑓𝑐 is the carrier frequency of the 

transmit signal and ∅𝑘 is the phase of the signal. For FMCW 

signal, phase is constant and carrier frequency changes in a 

symmetric triangular waveform such as: 

 

for the up-ramp of the signal:  𝑓𝑐 −
∆𝐹

2
+

∆𝐹

𝑡𝑚
𝑡 (4) 

  

for the down-ramp of the signal: 𝑓𝑐 +
∆𝐹

2
+

∆𝐹

𝑡𝑚
𝑡 (5) 

 

where, ∆𝐹 is the transmit modulation bandwidth and 𝑡𝑚 is the 

modulation period. 

For PSK signals, the carrier frequency is constant. Instead 

of frequency, phase values are changed by specific codes such 

as binary phase codes, polyphase codes, or polytime codes. 

PSK modulated signal's phase changes after every subcode 

period 𝑡𝑏. Consequently, the code period T and code rate 𝐶𝑅 

are defined as: 

 

𝑇 = 𝑁𝑐𝑡𝑏 (6) 

 

𝐶𝑅 =
1

𝑁𝑐𝑡𝑏

 (7) 

 

where, 𝑁𝑐  represents the number of phase codes and 

represents the code length as well. The duration of the 

transmitted signal is 𝑃 × 𝑇, where 𝑃 is the number of periods. 

If 𝑐𝑝𝑝 is the number of cycles of the carrier frequency per 

subcode, the bandwidth of the transmitted signal is 

 

𝐵 =
 𝑓𝑐

𝑐𝑝𝑝
=

1

𝑡𝑏

Hz (8) 

 

For polyphase-encoded waveforms, using 𝑐𝑝𝑝 = 1 results 

in the maximum bandwidth achievable with any carrier 

frequency. The shorter the duration of the subcode period, the 

greater the bandwidth. On the other hand, for polytime codes 

𝑡𝑏 is not constant. Polytime code sequences use fixed phase 

states with varying periods at each phase state. Polytime coded 

waveforms bandwidth is measured due to the shortest phase 

change duration. Polytime coding has the advantage that 

arbitrary time bandwidth waveforms can be generated with 

only a few phase states. An increase in code lengths of PSK 

waveform does not affect bandwidth but increases the 

processing gain. The processing gain is equal to the 

compression ratio of the signal. For both the frequency 

modulation and phase modulation LPI radar, the transmitted 

CW signal is coded with a reference signal to spread the 

transmitted energy in frequency [3]. The codes with zero 

sidelobes in periodic ACF (PACF) are called perfect codes. 

The low sidelobe levels of the ACF and PACF help quantify 

the LPI waveform's ability to detect targets without interfering 

with sidelobe targets. High sidelobes might be caused nearby 

targets to hide in a sidelobe [36]. Frank, P1, P3, and P4 codes 

have perfect PACF [3, 37]. Polyphase is the most frequently 

used code because of easy digital implementation, versatility, 

high range resolution, and Doppler tolerance [13]. The specific 

codes used in LPI radar waveform PSK modulation is given 

below. 

 

2.1 Binary barker codes 

 

A binary Barker sequence is a finite length, discrete time 

sequence 𝐴 = {𝑎0, 𝑎1, . . . , 𝑎𝑛  }  of +1′𝑠 𝑎𝑛𝑑 − 1′𝑠 of length 

𝑛 ≥ 2, such that the aperiodic autocorrelation coefficients (or 

sidelobes): 
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𝑟𝑘 = ∑ 𝑎𝑗

𝑛−𝑘

𝑗=1

𝑎𝑗+𝑘 (9) 

 

Satisfies |𝑟𝑘| ≤ 1  for 𝑘 ≠ 0  and similarly 𝑟−𝑘 = 𝑟𝑘  . The 

Binary Barker sequences correspond the phase values of 0° or 

180° used for BPSK modulation. 

Binary Barker codes are only known for lengths 𝑁𝑐 =
2, 3, 4, 5, 7, 11 𝑎𝑛𝑑 13  given in Table 1 [38]. 

 

Table 1. Binary codes 

 
Code length (𝑵𝒄) Code elements 

2 -+,++ 

3 ++- 

4 ++-+ 

4 +++- 

5 +++-+ 

7 +++--+- 

11 +++---+--+- 

13 +++++--++-+-+ 

 

2.2 Polyphase barker codes 

 

Polyphase code sequences correspond to more than two 

phase values. Their alphabet size 𝑁𝑐 > 2 . The idea of 

increasing the size of the alphabet for constructing Barker 

sequences was completed in 1965 by Golomb and Scholz. 

Golomb and Scholz introduced the concept of Generalized 

Barker codes, defined as a multiphase sequence [39]. 

Allowing any phase values (nonbinary) can lead to lower 

sidelobes. However, the outermost sidelobe is always 1 [37]. 

Consider the generalized Barker sequences {𝑎𝑗}  of finite 

length n where the terms 𝑎𝑗 are allowed complex numbers of 

absolute value of 1 where the correlation is now Hermetian dot 

product. 

 

𝑟𝑘 = ∑ 𝑎𝑗

𝑛−𝑘

𝑗=1

𝑎𝑗+𝑘
∗  (10) 

 

where, 𝑎∗  represents the complex conjugate of 𝑎 . If all the 

sidelobes of the ACF of any polyphase sequence are bounded 

by 

 
|𝑟(𝑘)| ≤ 1 𝑓𝑜𝑟 𝑘 ≠ 0 (11) 

 

Then the sequence is called generalized Barker sequence or 

polyphase Barker sequence. The binary Barker sequences can 

be regarded as a special case of polyphase Barker sequences. 

If the sequence elements are taken from an alphabet of size 𝑀, 

consisting of the 𝑀𝑡ℎ roots of unity, 

 

𝑎𝑚 = 𝑒𝑥𝑝 {2𝜋𝑖.
𝑚

𝑀
} =: 𝑒𝑥𝑝(𝑖∅𝑚) 0 ≤ 𝑚 ≤ 𝑀 − 1 (12) 

 

The sequence is alternatively named an M-phase Barker 

sequence [40]. Polyphase Barker signal is difficult to intercept 

and correctly classify using the ES system [2]. In many 

applications, the phases are restricted to values that are the kth 

roots of unity (e.g, 𝑘 =  2 gives the original Barker codes or 

𝑘 =  6 for six phase/sextic Barker codes). As for polyphase 

Barker codes, systematic methods to construct polyphase 

Barker sequences have not been found yet. Searches for 

generalized Barker sequences with no restriction on the values 

of the sequence phases have been carried out using numerical 

optimization [37]. 

 

2.3 Frank code 

 

Frank code derived from the phase history of a linearly 

frequency stepped pulse, using 𝑀  frequency steps and  𝑀 

samples per frequency. The number of code elements is equal 

to 𝑀2. The elements of the original Frank code 𝑎(𝑛−1)𝑀+𝑘 =

exp (𝑗∅𝑛,𝑘) , for 1 ≤ 𝑛 ≤ 𝑀  and 1 ≤ 𝑘 ≤ 𝑀 . The phase 

values are expressed as: 

 

∅𝑛,𝑘 =
2𝜋

𝑀
 (𝑛 − 1)(𝑘 − 1), 𝑛 = 1,2, … , 𝑀 𝑎𝑛𝑑 𝑘 = 1,2, … , 𝑀 (13) 

 

where, 𝑛 is the number of the sample in a given frequency and 

𝑘 is the number of the frequency. 

 

2.4 P1, P2, P3 and P4 code 

 

P1 and P2 signals are derived from step approximation to a 

linear frequency modulated waveform. In these codes using M 

frequency steps and M samples per frequency are produced. 

P3 and P4 signals are derived from linear frequency modulated 

waveform. Phase equations of P-codes given in Table 2. 

 

Table 2.  P1-P2-P3-P4 Codes and phase equation 

 
Code type Phase 

P1 
∅𝑖,𝑗 =

−𝜋

𝑀
 [𝑀 − (2𝑗 − 1)][(𝑗 − 1)𝑀 + (𝑖 − 1)], 

 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … , 𝑀 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑀 

P2 
∅𝑖,𝑗 =

−π

2𝑀
 [2𝑖 − 1 − 𝑀][2𝑗 − 1 − 𝑀], 

𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … , 𝑀 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑀 

P3 ∅𝑖 =
𝜋

𝑁𝑐
 (𝑖 − 1)2,   𝑖 = 1,2, … , 𝑁𝑐 

P4 ∅𝑖 =
𝜋(𝑖 − 1)2

𝑁𝑐
− 𝜋(𝑖 − 1) ,   𝑖 = 1,2, … , 𝑁𝑐 

 

2.5 Polytime codes 

 

𝑇1(𝑛) and 𝑇2(𝑛) types of polytime code can be generated 

from the stepped frequency model, 𝑇3(𝑛)  and 𝑇4(𝑛)  types 

are approximations to a linear frequency modulation. 

Phase versus time relation of 𝑇1(𝑛)  and 𝑇3(𝑛)  code 

∅𝑇1(𝑡), ∅𝑇3(𝑡), are expressed as follows, respectively, 

 

∅𝑇1(𝑡) = 𝑚𝑜𝑑 {
2𝜋

𝑛
𝐼𝑁𝑇 [(𝑘𝑡 − 𝑗𝑇)

𝑗𝑛

𝑇
] , 2𝜋} (14) 

 

∅𝑇3(𝑡) = 𝑚𝑜𝑑 {
2𝜋

𝑛
𝐼𝑁𝑇 [

𝑛∆𝐹𝑡2

2𝑡𝑚
] , 2𝜋} (15) 

 

In Eq. (14), 𝑗 = 0,1,2, … , 𝑘 − 1 is the segment number in 

the stepped frequency waveform, 𝑘  is the number of the 

segments in the 𝑇1  code sequence, 𝑡  is the time, 𝑇  is the 

overall code duration, 𝑛 is the number of phase states in the 

code sequence. In Eq. (15), 𝑡𝑚 is the modulation period, and 

∆𝐹 is modulation bandwidth. As more phase states are added 

to the polytime sequence, the agreement in time sidelobe 

behavior improves [3]. 

An example of LPI radar signal which is PSK modulated by 

Frank code where 𝑁𝑐 = 64,  fc = 1 kHz , 𝑐𝑝𝑝 = 1 , SNR =
−6 dB shown in Figure 1. 
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Figure 1. Frank coded waveform, SNR = -6 dB 

 

 

3. RECEIVED SIGNAL MODEL 

 

The signal at the output of the receiver filter is expressed as 

 

x(𝑡) = s(𝑡) + n(t) (16) 

 

where, 𝑠(𝑡) is transmitted noiseless radar signal and 𝑛(𝑡) is 

complex zero mean Additive White Gaussian Noise (AWGN) 

with variance 𝜎2. Power spectral density of White Noise is 
𝑁0

2
. 

where, 𝑁0 is watts per Hertz and it may be expressed as 𝑁0 =
𝑘𝑇𝑒  where k is the Boltzmann's constant and 𝑘𝑇𝑒  is the 

equivalent noise temperature of the receiver [41]. For 

Gaussian noise, the filtered White Noise, with a filter 

bandwidth 𝑊 , can be represented by a sequence of 

independent, zero-mean, Gaussian random variables with 

variance 𝜎2 = N0𝑊. The variance of the samples and the rate 

at which they are taken are related by 𝜎2 = N0 fs 2⁄  (fs  is 

sampling rate) [42]. 

 

 

4. EXISTING DETECTION METHODS  

 

4.1 Autocorrelation based signal detection 

 

This section presents spread spectrum DSSS and radar 

signals detection methods. DSSS signal detection by 

autocorrelation is subcategorized as single-channel 

autocorrelation, dual-channel autocorrelation, and 

compounded autocorrelation [18]. Detection results from the 

exploitation of cyclostationary of DSSS signals and similar 

communication transmissions by correlating received signals. 

Detection is performed by analyzing correlation peaks. The 

fluctuation of correlation estimators method is presented to 

detect DSSS signals [43]. This method is the same as 

compounded autocorrelation mentioned in the study of [18]. 

The idea behind this technique is that a DSSS signal's 

autocorrelation is like a noise's autocorrelation. On the other 

hand, the fluctuations of estimators are different. The detection 

is based on the peaks of fluctuations. 

The autocorrelation sequence of a periodic signal is periodic 

too. This property is used for the detection and parameter 

estimation of LPI radar signals [19]. The autocorrelation 

function is also used to filter out the noise. In [44], for LPI 

radar signal detection, autocorrelation processing of the signal 

is used to filter out the noise, and radar signal classification is 

performed based on features obtained from the autocorrelation 

function and directed graphical model. 

Periodic heritage and noise reduction property of the ACF 

explained below: 

When 𝑥(𝑡) is the observable signal at the receiver output is 

given in Eq. (16), the autocorrelation function of 𝑥(𝑡) is 

 

𝑅𝑥𝑥(𝜏) = 𝐸[𝑥(𝑡)𝑥(𝑡 − 𝜏)] 
= 𝐸{[𝑠(𝑡) + 𝑛(𝑡)][𝑠(𝑡 − 𝜏) + 𝑛(𝑡 − 𝜏)]} 
= 𝐸[𝑠(𝑡)𝑠(𝑡 − 𝜏)] + 𝐸[𝑛(𝑡)𝑛(𝑡 − 𝜏)]

+ 𝐸[𝑠(𝑡)𝑛(𝑡 − 𝜏)]
+ 𝐸[𝑛(𝑡)𝑠(𝑡 − 𝜏)] 

= 𝑅𝑠𝑠(𝜏) + 𝑅𝑛𝑛(𝜏) + 𝑅𝑠𝑛(𝜏) + 𝑅𝑛𝑠(𝜏) 

(17) 

 

𝑅𝑠𝑛(𝜏) = 𝑅𝑛𝑠(𝜏) = 0 since the noise is not related to the 

s(t). Hence 

 

𝑅𝑥𝑥(𝜏) =  𝑅𝑠𝑠(𝜏) +  𝑅𝑛𝑛(𝜏) (18) 

 

For zero mean AWGN with wide bandwidth, the 

autocorrelation function 𝑅𝑛𝑛(𝜏) mainly affects the nearby 

position 𝜏 = 0. 

 

𝑅𝑛𝑛(𝜏) = 𝜎2𝑒−𝛼|𝜏| 𝑓𝑜𝑟 |𝜏| ≫ 1 (19) 

 

Hence 𝑅𝑥𝑥(𝜏) ≈ 𝑅𝑠𝑠(𝜏) [19, 34, 44]. 

 

4.2 Time frequency analysis based detection 

 

Time-frequency (𝑡, 𝑓)  methods can be grouped into 

amplitude (linear) "atomic" decompositions and "energy" 

quadratic (or bilinear) distributions. The linear class represents 

a signal as a linear combination of a family of elementary 

signals (called atoms) that are well localized in time and 

frequency. The linear class includes the short-time Fourier 

transform (STFT) and the wavelet transform (WT). The 

bilinear class includes quadratic TFDs (QTFDs) that distribute 

the energy of the signal between two variables, namely time 

and frequency (or time and scale). Wigner Ville Distribution 

(WVD) is a bilinear distribution. All other QTFDs are filtered 

versions of the WVD. Windowed versions of the WVD are the 

pseudo WVD (PWVD), and smoothed pseudo WVD used to 

improve TF representations [35]. The WVD of a signal 𝑠(𝑡), 
denoted by 𝑊𝑧(𝑡, 𝑓), is defined as: 

 

𝑊𝑧(𝑡, 𝑓) = ℱ
𝜏→𝑓

{𝑧 (𝑡 +
𝜏

2
) 𝑧∗ (𝑡 −

𝜏

2
)} (20) 

 

where, 𝑧(𝑡) is complex and defined as the analytic associate 

of 𝑠(𝑡). So, the WVD of signal 𝑠(𝑡) is given as: 

 

𝑊𝑧(𝑡, 𝑓) = ∫ 𝑧 (𝑡 +
𝜏

2
) 𝑧∗ (𝑡 −

𝜏

2
) 𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏 

+∞

−∞

 (21) 

 

WVD is also defined as the Fourier transform of the 

instantaneous autocorrelation function of a signal 𝑧(𝑡, 𝑓) [45]. 

The marginal integration of TFD of WVD over frequency and 

time gives instantaneous power and energy spectrum of the 

signal respectively that are given Eqns. (22) and (23). 

 

∫ 𝑊𝑧

+∞

−∞

(𝑡, 𝑓)𝑑𝑓 = |𝑧(𝑡)|2 (22) 
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∫ 𝑊𝑧

+∞

−∞

(𝑡, 𝑓)𝑑𝑡 = |𝑍(𝑓)|2 (23) 

 

The integration of the WVD over the entire (𝑡, 𝑓)  plane 

yields the signal energy 𝐸𝑧. 

 

∫ ∫ 𝑊𝑧

+∞

−∞

(𝑡, 𝑓)𝑑𝑡𝑑𝑓 =
+∞

−∞

𝐸𝑧 (24) 

 

The discrete WVD expressed as: 

 

𝑊(𝑙, 𝑤) = 2 ∑ 𝑧(𝑙 + 𝑛)𝑧∗(𝑙 − 𝑛)𝑒−𝑗2𝑤𝑛

+∞

−∞

 (25) 

 

Windowing the data results in the pseudo-WVD and is 

defined by: 

 

𝑊(𝑙, 𝑤) = 2 ∑ 𝑧(𝑙 + 𝑛) 𝑧∗(𝑙 − 𝑛) …

𝑁+1

𝑛=−𝑁+1

 

                                …𝑤(𝑛)𝑤(−𝑛)𝑒−𝑗2𝑤𝑛  

(26) 

 

where, 𝑤(𝑛) is a length 2𝑁 − 1 real window function with 

𝑤(0)  =  1. The two drawbacks of WVD are negative values 

and cross terms. Because of its bilinear structure WVD has 

cross terms appear in the middle of every pair of signal 

components. WVD can have large negative values. Most 

TFDS used in practical applications can take negative values 

as they are not necessarily positive definite, so they do not 

represent and instantaneous energy spectral density at any 

arbitrary (𝑡, 𝑓) location [35]. One of the features that can be 

extracted from the Time-frequency distributions is joint time 

frequency moments. The two-dimensional moment of order 

(𝑝 +  𝑞) of a time frequency distribution 𝑇𝐹𝐷(𝑡, 𝑓) is defined 

as: 

 

𝑀𝑝𝑞 = ∫ ∫ 𝑡𝑝𝑓𝑞𝑇𝐹𝐷(𝑡, 𝑓)𝑑𝑡𝑑𝑓
+∞

−∞

+∞

−∞

 (27) 

 

The central moments of 𝑇𝐹𝐷(𝑡, 𝑓) is defined as: 

 

𝜇𝑝𝑞 = ∫ ∫ (𝑡 − 𝑡̅)𝑝

+∞

−∞

+∞

−∞

(𝑓 − 𝑓)̅
𝑞

𝑇𝐹𝐷(𝑡, 𝑓)𝑑𝑡𝑑𝑓 (28) 

 

where, 𝑡̅ and 𝑓a̅re defined as: 

 

𝑡̅ =
𝑀10

𝑀00

 ,   𝑓̅ =
𝑀01

𝑀00

 (29) 

 

4.3 Energy detector 

 

The energy detector computes the energy in the received 

data and compares it to a threshold. The energy detector (ED) 

for an unknown deterministic signal 𝑥[𝑛] is expresses as  

 

𝑇(𝑥) = ∑ 𝑥2

𝑁−1

𝑛=0

[𝑛] > 𝛾 (30) 

 

where, 𝑥[𝑛] is signal pluse noise under hypothesis H1, only 

noise signal under hypothesis H0. 𝑇(𝑥)  is called the test 

statistics. ED decides H1 if 𝑇(𝑥) is greater than the threshold. 

Under H0, the received signal is chi-squared distributed which 

probability density function given as [28, 46]. 

 

𝑝(𝑥) = {

1

2
𝑣
2

−𝛤(
𝜈
2

)
𝑥

𝜐
2

−1𝑒𝑥𝑝(−
1

2
𝑥)       𝑥 > 0

 0                                        𝑥 < 0

 (31) 

 

where, 𝜐 is degree of freedom. 

The threshold determined by a given probability of false 

alarm rate (𝑃𝐹𝐴). 

It is given that if the number of sampled signals (N) is large 

enough and the channel is nonfading [47], the chi-square 

distribution with N degrees of freedom can be considered as a 

normal distribution by using the central limit theorem, and 𝑃𝐹𝐴 

written as 

 

𝑃𝐹𝐴 = 𝑄 (
𝛾 − 𝑀𝑁𝜎2

𝜎2√2𝑀𝑁
) (32) 

 

where, 𝜎2 is the noise variance and M is antenna number. 

 

 

5. PROPOSED METHOD 

 

The proposed solution consists of cooperation of two 

modules as given Figure 2. First, the intercepted signal passes 

through an RF filter, and IF conversion occurs. Then to get 

analytic signal form Hilbert Transform (HT) is performed. The 

analytic signal's ACF and WVD are calculated after HT. 

 

 
 

Figure 2. Block diagram of proposed solution 

 

In the Autocorrelation Calculator block, autocorrelation is 

performed on the obtained signal, then an empirical threshold 

value set for denosing, and then search periodic peaks, which 

will occur if the signal has a periodic structure and does not 

occur if there is only a noise signal. At least two peaks are 

required to determine the radar signal. Also, one can determine 

the code period from the number of data points between 

periodic peaks. 

While performing ACF and peak extraction simultaneously, 

PWVD transform occurs in the second block of the receiver. 

The signal decision is given according to the PWVD image 

orientation angle. The pre-processing stage requires binary 

image transformation of the PWVD of the intercepted signal. 

Pre-processing steps are: 

1. The negative values of WVD returned to zero 

2. Set a threshold that is determined empirically for 

noise reduction 

3. Perform intensity image transformation 

4. Perform Connected Component Labeling (CCL) to 

eliminate noise 

5. Calculate the orientation angle 

Connected-component labeling is a fundamental task 

common to virtually all image processing applications in two- 

and three-dimensional. For a binary image, represented as an 
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array of d-dimensional pixels or image elements, connected 

component labeling assigns labels to the black image elements 

so that adjacent black image elements are assigned the same 

label. Here adjacent may mean 4-adjacent or 8-adjacent. 

Connected-component labeling can be characterized as a 

transformation of a binary input image, B, into a symbolic 

image, S, such that [48] 

1. All image elements that have value White will remain 

so in S; and, 

2. Every maximal connected subset of Black image 

elements in B is labeled by a distinct positive integer in S. 

For an 𝑁𝑥𝑁-sized binary image, the pixel at the coordinate 

(𝑥, 𝑦) , where 0 ≤ 𝑥 ≤ 𝑁 − 1  and 0 ≤ 𝑦 ≤ 𝑁 − 1 , in the 

image is denoted as 𝑏(𝑥, 𝑦). For pixel 𝑏(𝑥, 𝑦), the four pixels, 

the four pixels 𝑏(𝑥 − 1, 𝑦) , 𝑏(𝑥, 𝑦 − 1) , 𝑏(𝑥 + 1, 𝑦)  and 

𝑏(𝑥, 𝑦 + 1)  are called the 4-neighbors of the pixel; the 4-

neighbors together with the four pixels 𝑏(𝑥 − 1, 𝑦 − 1) , 

𝑏(𝑥 + 1, 𝑦 − 1),  𝑏(𝑥 − 1, 𝑦 + 1). ; and 𝑏(𝑥 +  1, 𝑦 + 1)  are 

called the 8-neighbors of the pixel [49]. 

In this study, CCL is used to denoise the WVD binary image 

of the received signal. 8-connected labeling is used. If the 

received signal is an LPI radar signal, the WVD image would 

have a specific pattern and the pixels would have connectivity 

characteristics different from noise. Noise signal exhibits 

dispersed pixel distribution, and there is no continuing 

connectivity. This characteristic is used to eliminate noise 

pixels. 

After pre-processing, image orientation angle is calculated. 

Image orientation angle helps to distinguish between noise 

only and signal plus noise data. If there is noise, the data point 

in the image will disperse homogeneously all over the image; 

as a result, a 90-degree image orientation angle is expected. 

However, after performing CCL, the noise will be removed, 

and if there is only noise, no angle is identified, but if there is 

signal plus noise, the radar signal's data points cause an angle 

different from the noise. So the detection decision is 

performed according to this orientation angle. Also, the 

number of data points is considered in the decision. 

Image orientation angle is determined by the ellipse fitting 

method. The general two-dimensional (𝑝 +  𝑞) th order 

moments of a grey-level image 𝑓(𝑥, 𝑦) are defined as 

 

𝑚𝑝𝑞 =  ∫ ∫ 𝑥𝑝𝑦𝑞𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦  
+∞

−∞

+∞

−∞

 

𝑝, 𝑞 = 0,1,2, … 

(33) 

 

In the case of digital image, double integral in the above 

equation must be replaced by summation. The central 

moments are defined as: 

𝜇𝑝𝑞 = ∑(𝑥 − 𝑥𝑐)𝑝

 

𝐴

(𝑦 − 𝑦𝑐)𝑞 (34) 

 

where, 𝑥𝑐  and 𝑦𝑐  are coordinates of the center of the given 

object. Using the moments of the second degree 𝑚11, 𝑚02 and 

𝑚20 together, the orientation of the object in the image can be 

calculated. The coordinates of the centroid 𝑐 = (𝑥𝑐 , 𝑦𝑐), the 

orientaion angle 𝜃 between the longer edge and the x-axis, are 

calculated as follows: 

 

𝑥𝑐 =
𝑚10

𝑚00

, 𝑦𝑐 =
𝑚01

𝑚00

   (35) 

 

𝜃 =
𝑡𝑎𝑛−1(

𝑏
𝑎 − 𝑐

)

2
     

(36) 

 

where, 𝑎, 𝑏 and 𝑐 are defined as: 

 

𝑎 =
𝑚20

𝑚00

− 𝑥𝑐
2 (37) 

 

𝑏 = 2(
𝑚11

𝑚00

− 𝑥𝑐𝑦𝑐) (38) 

 

𝑐 =
𝑚02

𝑚00

− 𝑦𝑐
2 (39) 

 

Using these parameters we can infer the equivalent ellipse, 

where, c will be its center [50]. 

At the final stage, existence of a signal decision is given if 

one of the blocks returns with a detection. 

 

5.1 Simulation results 

 

All simulations are performed by using MATLAB 

programming language of version 2018b. In simulations 

FMCW and various PSK waveform LPI radar signals 

generated. Signal parameters used in simulations are given in 

Table 3. 2048 data points are used for ACF calculation, and 

512 data points are used for WVD image analysis. 𝑓𝑐  is 

consider a center frequency equal to 1 kHz and sampling 

frequency of 7 kHz. Different SNR values are taking into 

consideration. 45-phase Barker code phase values are taken 

from [37].  

An example of ACF graph of FMCW and Frank coded 

waveform of five period at 0 dB SNR is given in Figure 3a and 

3b. WVD graph before and after image preprosessing with 

ellipse fitting performing of the signals are showed in Figure 

4 and 5. 

 

Table 3.  P1-P2-P3-P4 codes and phase equation 

 
Signal Parameters FMCW BPSK Polyphase Barker Frank T1 T3 P1 P3 

Number of Phase Code (𝑁𝑐) n/a 2 45 64 n/a n/a 64 64 

Number of Phase States n/a n/a n/a n/a 2 2 n/a n/a 

Cycle per phase (cpp) n/a 1 1 1 n/a n/a 1 1 

Segment Number n/a n/a n/a n/a 4 n/a n/a n/a 

Modulation Bandwidth (Hz) 250 n/a n/a n/a n/a 250 n/a n/a 

Modulation period (ms) 20 n/a n/a n/a n/a 16 n/a n/a 

Bandwidth (Hz) 250 1000 1000 1000 1750 467 1000 1000 

Code Period (T) (ms) 40 7 45 64 16 16 64 64 

Period number of 2048 data point 7 41 6 4 18 18 4 4 
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(a) ACF of FMCW Waveform                                         (b) ACF of Frank Waveform 

 

Figure 3. ACF Graph of LPI Radar Signals, SNR = 0 dB 

 

 
(a) FMCW WVD                                                           (b) FMCW WVD Image 

 

Figure 4. FMCW WVD and Image Transformation, SNR=0 dB 

 

 
(a) Frank WVD                                                        (b) Frank WVD Image 

 

Figure 5. Frank coded waveform WVD and image transformation, SNR = 0 dB 

 

Simulations are performed for 8 types of LPI radar signal 

waveforms. 1000 Monte-Carlo simulations are performed and 

detection is decided both for ACF peak determination and the 

orientation angle value. At least two peak determination is 

necessary, and orientation angle needs to be in the range 

−60°  <  𝜃 <  60° . Simulation results based on ACF are 

given in Table 4. Detection probability based on orientation 

angle is given in Table 5. Energy detection (ED) performance 

is also analyzed to compare the results. The threshold value of 

energy detection is calculated by the formula given in Eq. (32) 

for 𝑝𝑓𝑎 = 0.05  and antenna number 𝑀 =  1 . Simulation 

results of (ED) are given in Table 6. 
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Table 4. Detection probability of proposed method with ACF 
 

Signal SNR (dB) FMCW BPSK Polyphase Barker Frank T1 T3 P1 P3 

0 100 100 100 100 100 100 100 100 

-3 100 100 100 100 100 100 100 100 

-5 100 100 100 100 100 100 100 100 

-6 100 100 100 100 100 100 100 99.7 

-7 100 100 99.6 94.9 100 100 96.1 95.3 

-8 99.8 100 86 33.8 99.8 100 35 34.8 

-9 84.9 97.5 22.3 2.1 80.1 92.9 1.5 2.2 

-10 35.4 70.8 2.2 0.1 29.2 56.5 0.1 0.1 

 

Table 5. Detection probability of proposed method with orientation angle 

 

Signal SNR (dB) FMCW BPSK Polyphase Barker Frank T1 T3 P1 P3 

0 100 100 100 100 100 100 100 100 

-3 100 95.7 89.2 100 74.7 100 100 100 

-5 100 34.3 15.2 95.9 7.1 95.4 100 97.5 

-6 95.4 11.2 3.9 67.8 1.7 67 97.3 81.3 

-7 74.5 2.6 0.6 27.8 0.5 26.6 80.8 39.7 

-8 29.4 0.2 0.1 5.2 0.1 5.3 43.3 9.8 

-9 4.1 0 0.1 0.6 0 1 12 1.3 

-10 1.6 0 0 0 0 0.1 3.8 0.4 

 

Table 6. Energy detection probability with pfa=0.05 

 
Signal SNR (dB) FMCW BPSK Polyphase Barker Frank T1 T3 P1 P3 

0 100 100 100 100 100 100 100 100 

-1 100 100 100 100 100 100 100 100 

-2 100 100 100 100 100 100 100 100 

-3 100 100 100 100 100 100 100 100 

-4 95.5 97.5 97.1 97.8 96.2 96.9 95.9 97 

-4.5 0 0.1 0 0 0.1 0.2 0 0.2 

-6 0 0 0 0 0 0 0 0 

-7 0 0 0 0 0 0 0 0 

 

 

6. CONCLUSIONS 

 

In this paper, a non-cooperative detection technique for LPI 

radar waveforms has been represented. FMCW and seven 

different types of PSK-modulated LPI waveforms (including 

BPSK, Polyphase Barker, Frank, P1, P3, T1, and T3) are 

considered in the analysis. The detection algorithm uses both 

the autocorrelation function characteristics and extracted 

features from the Wigner-Ville Distribution of the intercepted 

signal. The ACF-based detection takes advantage of the 

periodic structure of continuous wave LPI radar signals. On 

the other hand, in the WVD analysis, the orientation angle of 

WVD based image is used as a detection decision criterion. 

Connected Component Labeling algorithm used to eliminate 

noise pixels in the WVD image. The generation of LPI radar 

signals and the fundamental analysis are carried out using 

MATLAB for different SNR conditions. Energy detection 

method simulations were also carried out to compare detection 

performances. Simulation results show that both methods in 

the proposed solution give good results under low SNR 

conditions. Until -7 dB SNR, detection is possible for all LPI 

waveforms with an ACF-based detection algorithm. 

Compared with the energy detection, simulation results show 

that the proposed solution performs better. 

We plan to extend time-frequency analysis to the 

application of radar signal parameter extraction and 

classification of waveforms for the future work. Also, this 

provides intelligent jamming techniques for the EW systems. 

Thus, jamming methods against LPI radars will be studied as 

a second future projection. 
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