
PYNQ Framework Based Object Recognition Implementation Using Convolution Neural

Network (CNN)

Jie Wang, Li Xu*

School of Electronics and Information Engineering, Ningbo University of Technology, Ningbo 315211, China

Corresponding Author Email: xuli@nbut.edu.cn

https://doi.org/10.18280/rces.090402 ABSTRACT

Received: 16 October 2022

Accepted: 2 December 2022

In this paper, we presented a PYNQ framework Based object recognition implementation

using Convolution Neural Network (CNN) in Xilinx FPGA. A hardware-software co-

design framework is used to implement the CNN for object recognition. Training CNN

model on PC, and implementation object recognition under embedded system on PYNQ-

Z1 FPGA. Compare to a single ARM processor core on FPGA, we achieve 43.2 times

speedup ratio for object recognition implementation. The performance demonstrates that

this model can be highly improved by exploring the hardware resources of the FPGA.

Keywords:

reconfigurable architecture, convolution

neural network, accelerator

1. INTRODUCTION

Object recognition is a research hotspot in the field of

computer vision, aiming to use some technique or method to

obtain the location of the target in the image sequence. And

determine the category to which the target belongs. Object

recognition has high engineering application value in the fields

of intelligent transportation, medical devices, security

surveillance, etc. With the rapid development of target

detection technology, many object recognition algorithms

have been proposed by scholars, among which the target

detection algorithm implemented using Convolution Neural

Network (CNN) in deep learning has better detection

performance compared with the traditional target detection

algorithm. However, the computational process of CNN

generally requires hundreds of millions of multiplication and

accumulation operations, and the extremely large amount of

computation demands high resources, bandwidth and

computational speed of the hardware platform for CNN

implementation.

To implement CNN-based object recognition algorithms,

many embedded systems and supporting software

development tools have emerged. And these systems are

designed for faster computation, smaller device size, and

lower operating power. CPUs, which use instruction sets for

computing, are suitable for running software programs, but are

not good at multiplying and accumulating operations on a

large scale. GPUs are good at multiplying and accumulating

operations and image processing, and are suitable for training

and inference calculations of CNN. But GPUs’ high power

consumption makes them impossible to implement in low-

power embedded platforms. Compared with CPU and GPU,

ASIC has the advantages of both high computing rate and low

power consumption, and has a small size, but the

customization cost is too high and the development flexibility

is poor. FPGA is a high-speed parallel general-purpose device

with high flexibility, low cost, high integration, low power

consumption, moderate development cycle and wide

application. FPGA uses data parallel connection to perform

various parallel calculations, and is therefore well suited for

implementing accelerated computation of CNN.

In this paper, we aim to use the PYNQ framework of Xilinx

FPGA to accomplish object recognition implementation. We

take full advantage of the reconfigurable and low power

consumption of FPGA to quickly implement complex data

parallelism and large-scale multiplication and accumulation

operations in CNN based the PYNQ framework.

The contributions of this paper are:

(1) Hardware-software co-design scheme to implement

object recognition on Xilinx FPGAs via ARM and FPGAs.

(2) Fast implementation of CNN acceleration based on the

PYNQ framework.

This paper is organized as follows: Chapter 2 provides

related work, Chapter 3 represents a PYNQ framework based

CNN Accelerator. Testing and analysis is presented out in

Chapter 4. Finally, gives a conclusion.

2. RELATED WORK

With the wide application of CNN in image processing and

the acceleration of FPGA reconfigurable architecture, more

and more people adopt FPGA to implement CNN accelerator.

Yahia designed a PYNQ-YOLO-Net based on PYNQ

framework and YOLO framework, and implemented a mask

detection application using this net. The experimental results

is that compared with the software alone, the recognition time

is reduced to 1/3 of the original time. While the computational

throughput is more than 30 times of the original and the

recognition rate is guaranteed to be more than 90% [1]. Wang

et al. proposed a fast CNN generation model based on PYNQ

framework. Compared with ARM alone running CNN, the

computational throughput increased by 20 times and energy

consumption reduced by 28 times. Those papers demonstrated

that PYNQ framework can quickly achieve CNN accelerator

[2]. Hou designed a license plate recognition system based on

the PYNQ framework, and finally achieved a license plate

recognition rate of 97.89% with limited CNN network

Review of Computer Engineering Studies
Vol. 9, No. 4, December, 2022, pp. 136-140

Journal homepage: http://iieta.org/journals/rces

136

https://crossmark.crossref.org/dialog/?doi=10.18280/rces.090402&domain=pdf

parameters [3]. Maclellan implements radio modulation

classification by spectral information using Matlab and PYNQ

[4].

Many other research works focused on the PYNQ

framework conjunction with OpenCV [5] framework and

YOLO [6] framework. In addition to the use of PYNQ

framework, CNN accelerator has also been implemented using

FPGA alone [7-9]. The overall indication is that FPGA as well

as the PYNQ framework are very useful to implement CNN

algorithms for accelerating and completing object recognition

implementation.

3. PYNQ FRAMEWORK BASED CNN ACCELERATOR

3.1 CNN

Due to the improvement of deep learning theory, CNN have

been developed rapidly, and a number of new algorithms have

emerged in speech recognition [10], face recognition [11],

reinforcement learning [12], and natural language processing

[13]. In CNN algorithms, neurons in the same convolutional

layer are not associated with each other, while there are

computational relationships between neurons in neighboring

convolutional layers. Five main parts-data input layer,

convolutional layer, pooling layer, fully connected layer and

classification output layer, constitute the CNN. The data input

layer represents the input of the original image data, and the

input image features are collected through the convolutional

layer and the pooling layer, and the collected image features

are input to the fully connected layer and the classification

output layer to complete the classification and recognition of

the input image. The structure of the CNN is shown in Figure

1.

(1) Convolutional layer

The core idea of convolutional layers is to simulate neurons

in the human brain, but unlike information transfer in the brain,

in CNN, information is passed from layer to layer to each other,

from the convolutional layer to the pooling layer, then from

the pooling layer to the convolutional layer, and finally arrives

in the classifier, which outputs the information of recognition

result.

The main role of the convolutional layer is to extract

features from the input feature map, and the parameters of the

optimized convolutional kernel and BIAS can be obtained by

BP (back propagation algorithm). Generally, a single

convolutional layer extracts simple feature parameters, while

a multi-layer convolutional layer can obtain more complex

feature information by iterative methods.

The convolution is mathematically divided into the

convolution of continuous and discrete functions, defined as

follows.

−=

+

−

−=

−=

)()())(*f(

)()())(*f(

ngfng

dngfng

(1)

The convolution formula in CNN is defined as follows.

)))*,*,(*),,,(((),,(f
1

0

1

0

1

0

shjvswiumxvumnwjin
kw

u

xn

m

kh

v

++=
−

=

−

=

−

=
(2)

where, kw and kh stands for width and height, sw and sh

represent the step lengths in the horizontal and vertical

directions. f(n, i, j) represents the n output of the first image at

the point (i, j), w(n, m, u, v) represent w weights.

(2) Pooling layer

The features collected through the convolutional layer can,

in principle, be directly passed into the fully connected layer

for network computation. However, the computational

overhead of this approach is high, and the training and testing

time of the CNN can be seriously increased, thus affecting the

real-time performance of the algorithm. The goal of designing

the pooling layer is to reduce the computational effort of the

convolutional network by reducing the parameters of the

feature map output from the convolutional layer. Therefore,

the pooling layer is usually added after the convolutional layer

to downsample the feature maps. Since a picture contains a lot

of redundant information, the pooling layer can remove the

redundant information to extract the important features.

Pooling layer can also prevent overfitting to a certain extent.

Overall, pooling layer effectively reduces the amount of data

in the feature map after convolution calculation and improves

the computation speed. As shown in Figure 2, the maximum

pooling method and the average pooling method are the more

common pooling methods.

(3) Fully connected layer

In a CNN structure, after multiple convolutional and

pooling layers, one or more fully connected layers are usually

connected. Each neuron in a fully connected layer is connected

to all the neurons in its previous layer. Fusion of the local

feature information collected in the convolutional or pooling

layers is the main function of the fully connected layers. In

order to reduce the network computation time of the CNN, the

activation function of each neuron in the fully connected layer

is usually a Rectified linear unit (ReLU) function. The output

feature information of the last fully connected layer is fed to

the classifier for data classification.

(4) Activation function

The activation function used Sigmoid function is a function

used for binary classification which maps the input real

numbers between (0, 1). The formula of Sigmoid function is

defined as follows.

xe
x

−+
=

1

1
)(f

(3)

Figure 1. Convolutional neural network structure for object

recognition

Figure 2. Maximum pooling & average pooling

137

3.2 PYNQ framework

Figure 3. PYNQ framework

The PYNQ architecture is shown in Figure 3. From this

figure, we can see that the PYNQ system architecture is

divided into three layers: a hardware layer based on FPGA

design, a software layer based on ARM-based Linux kernel

plus Python, and an application layer based on Jupyter

Notebook.

The hardware layer is designed mainly to realize the

cooperative interaction between PS and PL, the whole FPGA

part of the design is called Overlay also called hardware

library, which is ZYNQ's PL (FPGA) design. overlay is

mainly used to accelerate software applications, also for multi-

user and multi-application to generate different bitstream files,

and can be called through software APIs to the logic functions

on the FPGA can be dynamically switched. The whole process

is based on PYNQ, the C driver software is encapsulated in the

PYNQ framework and provides the user with a Python call

interface. The user can change the access IP of the overlay by

changing the parameters of the Python interface, thus

completing the underlying control of the programmable

hardware.

3.3 Hardware-Software co-design framework

The CNN hardware-software co-design framework based

on the PYNQ framework is shown in Figure 4. The test images

are taken through the hardware, software and application

layers of the PYNQ architecture and thus the test results. The

hardware layer is supported by the PYNQ development

framework, which also encapsulates the driver program,

regulates the underlying hardware of the DMA, burns

bitstream files, and solves tcl files. The software layer mainly

completes the configuration process of encapsulating the

computational tasks of each layer and provides a

parameterized class call interface for designers. The

application layer can automatically deploy the already trained

Tensorflow models and designed to run on configurable CNN

accelerator. During the development of the hardware

architecture-driven control program, the program writer needs

to complete the configuration of the entire DMA channel

transfer using a high-level programming language based

hardware driver. As showed as Figure 4, a large amount of

computation is embedded in the computation of the network

layer based on the PL part. Therefore, the basic model of CNN

needs to be built by PC and passed to the PYNQ framework

for more deep learning as well as practical operation, in order

to meet the design requirements of hardware architecture and

configuration. The ultimate goal is to make it easier and faster

for users to design CNN accelerator based on the PYNQ

framework for object recognition implementation.

Figure 4. Hardware-Software co-design framework

4. TESTING AND VALIDATION

(1) Dataset

The test in this paper uses CIFAR-10 dataset, CIFAR-10 is

a small volume dataset used to recognize common objects,

which includes 10 common objects, such as cat, dog, deer, frog,

horse, ship, truck, airplan, birds and automobile. The images

are RGB color type, size 32*32, and the dataset includes

10,000 test images and 50,000 training images. the images

included in CIFAR-10 are shown in the Figure 5. The CIFAR-

10 dataset is from the real world, and real world objects have

the characteristics of large noise and objects with different

proportions and features, which can make recognition more

difficult and lead to direct linear models does not perform well

on the dataset. In this paper, 10,000 images are used for

training and 50,000 images are used for testing.

(2) CNN model

The CNN model for this test consists of convolutional layer,

pooling layer and fully-connected layer. As shown in Figure 6,

two convolutional layers and two pooling layers and two fully

connected layers are used. a color map with 32* 32 resolution

of the input image of the CIFAR-10 dataset is added to the first

convolutional layer of the model with the RELU activation

function followed by the maximum pooling layer. The second

convolutional layer is also processed through the RELU

activation function maximum pooling layer. The two

convolutional layers and the pooling layer are followed by a

fully connected layer and finally the output layer. The output

layer outputs 10 numbers, which are used to represent the

classification scores in each of the 10 objects in CIFAR-10

datasets. And the highest value being the final recognition

result.

(3) FPGA Platform

This paper uses the PYNQ-Z1 embedded development

board as the system test platform, which is a heterogeneous

multi-core platform based on the Xilinx ZYNQ-7000,

including an ARM processor and a FPGA. The ARM and

FPGA are associated high-speed communication interfaces. In

addition to inheriting the powerful processing performance of

the traditional ZYNQ platform, the PYNQ-Z1 is also

compatible with Arduino interfaces and standard Raspberry Pi

interfaces, making the PYNQ-Z1 highly scalable and open

source. Figure 7 shows the physical diagram of the PYNQ-Z1

development board. We use Xilinx Vivado tools for the

hardware part and ARM-based Ubuntu 18.04 for the software

138

part. At the same time, the PC is used to extract the weight and

parameters of the convolutional layers and fully connected

layers and download them to the PNYQ Framework for

processing. Finally, the implementation of CNN accelerator is

completed to improve the practicality and real-time

performance of object recognition.

(4) Results and analysis

The object recognition system is mounted on the PYNQ-Z1

development board, and the hardware and software

environments of the board need to be properly configured

before testing and validating. The Python programming

language is used to implement the control operations. CIFAR-

10 dataset was used to test the performance of the system,

verify the design and compare with the only PYNQ-Z1 ARM

processing for CNN acceleration, the test results are shown in

Table 1.

It can be seen that the acceleration ratio of the CNN

accelerator based on the PYNQ framework for object

recognition is about 43.2 times compared to the only ARM for

CNN acceleration. The average power consumption of the

CNN accelerator during the experimental test is only 1.921 W.

The system dynamic power consumption of the accelerator is

only 1.794 W, and the static power consumption of the

accelerator is 0.153W. ARM processor in the PYNQ-Z1

embedded development board accounts for 91% of the

dynamic power consumption of the whole system, but when

system running the power of the FPGA part of the accelerator

circuit is lower.

Figure 5. CIFAR-10 image examples

Figure 6. CNN model

Figure 7. PYNQ-Z1 FPGA Platform

Table 1. Results of the test

Platform Frequency Time per 1 image(ms)

PYNQ-Z1 only

ARM
650Mhz 1.34

PYNQ-Z1 with

FPGA

650Mhz

(ARM)+30Mhz (FPGA)
0.031

5. CONCLUSION

In this paper, we present PYNQ framework Based object

recognition implementation using CNN. A hardware-software

co-design framework is designed for the hardware and

software of the CNN accelerator based on the PYNQ

framework. The experimental results demonstrates that the

computational speed of CNN accelerator designed and

implemented in this paper reached 35.39 fps when testing the

CIFAR-10 dataset. The computational speed is 43.2 times

faster than the only ARM processor on the PYNQ-Z1 with

CNN program. The recognition ratio of the hardware

implementation and software implementation remains

basically the same, both achieving more than 98%. The

average power consumption of the CNN accelerator based on

PYNQ framework in this paper for object recognition

implementation is only 1.921w, which is very suitable for the

rapid deployment and use of low-power embedded devices.

ACKNOWLEDGMENT

This research was supported by Zhejiang Provincial Natural

Science Foundation of China, Grant No.: LY19F020008;

Zhejiang students’ technology and innovation program

(XinMiao program), Grant No.: 2022R428A002.

REFERENCES

[1] Said, Y. (2020). Pynq-YOLO-net: An embedded

quantized convolutional neural network for face mask

detection in COVID-19 pandemic era. International

Journal of Advanced Computer Science and Applications,

11(9): 100-106.

https://dx.doi.org/10.14569/IJACSA.2020.0110912

[2] Wang, E., Davis, J.J., Cheung, P.Y. (2018). A PYNQ-

based framework for rapid CNN prototyping. In 2018

IEEE 26th Annual International Symposium on Field-

139

Programmable Custom Computing Machines (FCCM),

pp. 223-223. https://doi.org/10.1109/FCCM.2018.00057

[3] Hou, X., Fu, M., Wu, X., Huang, Z., Sun, S. (2018).

Vehicle license plate recognition system based on deep

learning deployed to PYNQ. In 2018 18th International

Symposium on Communications and Information

Technologies (ISCIT), IEEE, Bangkok, Thailand, pp. 79-

84. https://doi.org/10.1109/ISCIT.2018.8587934

[4] Maclellan, A., McLaughlin, L., Crockett, L., Stewart, R.

(2019). FPGA accelerated deep learning radio

modulation classification using MATLAB system

objects & PYNQ. In 2019 29th International Conference

on Field Programmable Logic and Applications (FPL),

Barcelona, Spain, IEEE, pp. 246-247.

https://doi.org/10.1109/FPL.2019.00045

[5] Wang, L.Z., Wang, J.Y., Xu, Y.J. (2022). Design of

contactless intelligent epidemic prevention system based

on PYNQ. Engineering Letters, 30(2): 218-231.

[6] Bao, C., Xie, T., Feng, W., Chang, L., Yu, C. (2020). A

power-efficient optimizing framework FPGA accelerator

based on winograd for yolo. IEEE Access, 8: 94307-

94317. https://doi.org/10.1109/ACCESS.2020.2995330

[7] Wu, D., Zhang, Y., Jia, X., Tian, L., Li, T., Sui, L., Shan,

Y. (2019). A high-performance CNN processor based on

FPGA for MobileNets. In 2019 29th International

Conference on Field Programmable Logic and

Applications (FPL), Barcelona, Spain IEEE, pp. 136-143.

https://doi.org/10.1109/FPL.2019.00030

[8] Bai, L., Zhao, Y., Huang, X. (2018). A CNN accelerator

on FPGA using depthwise separable convolution. IEEE

Transactions on Circuits and Systems II: Express Briefs,

65(10): 1415-1419.

https://doi.org/10.1109/TCSII.2018.2865896

[9] Kala, S., Jose, B.R., Mathew, J., Nalesh, S. (2019). High-

performance CNN accelerator on FPGA using unified

winograd-GEMM architecture. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 27(12):

2816-2828.

https://doi.org/10.1109/TVLSI.2019.2941250

[10] Syed, S.A., Rashid, M., Hussain, S., Zahid, H. (2021).

Comparative analysis of CNN and RNN for voice

pathology detection. BioMed Research International,

2021. https://doi.org/10.1155/2021/6635964

[11] Chavda, A., Dsouza, J., Badgujar, S., Damani, A. (2021).

Multi-stage CNN architecture for face mask detection. In

2021 6th International Conference for Convergence in

Technology (i2ct), IEEE, pp. 1-8.

https://doi.org/10.1109/I2CT51068.2021.9418207

[12] Gu, B., Sung, Y. (2021). Enhanced reinforcement

learning method combining one-hot encoding-based

vectors for CNN-based alternative high-level decisions.

Applied Sciences, 11(3): 1291.

https://doi.org/10.3390/app11031291

[13] Widiastuti, N.I. (2019). Convolution neural network for

text mining and natural language processing. In IOP

Conference Series: Materials Science and Engineering,

IOP Publishing, 662(5): 52010.

https://doi.org/10.1088/1757-899X/662/5/052010

140

