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In this paper, we presented a PYNQ framework Based object recognition implementation 

using Convolution Neural Network (CNN) in Xilinx FPGA. A hardware-software co-

design framework is used to implement the CNN for object recognition. Training CNN 

model on PC, and implementation object recognition under embedded system on PYNQ-

Z1 FPGA. Compare to a single ARM processor core on FPGA, we achieve 43.2 times 

speedup ratio for object recognition implementation. The performance demonstrates that 

this model can be highly improved by exploring the hardware resources of the FPGA. 
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1. INTRODUCTION

Object recognition is a research hotspot in the field of 

computer vision, aiming to use some technique or method to 

obtain the location of the target in the image sequence. And 

determine the category to which the target belongs. Object 

recognition has high engineering application value in the fields 

of intelligent transportation, medical devices, security 

surveillance, etc. With the rapid development of target 

detection technology, many object recognition algorithms 

have been proposed by scholars, among which the target 

detection algorithm implemented using Convolution Neural 

Network (CNN) in deep learning has better detection 

performance compared with the traditional target detection 

algorithm. However, the computational process of CNN 

generally requires hundreds of millions of multiplication and 

accumulation operations, and the extremely large amount of 

computation demands high resources, bandwidth and 

computational speed of the hardware platform for CNN 

implementation. 

To implement CNN-based object recognition algorithms, 

many embedded systems and supporting software 

development tools have emerged. And these systems are 

designed for faster computation, smaller device size, and 

lower operating power. CPUs, which use instruction sets for 

computing, are suitable for running software programs, but are 

not good at multiplying and accumulating operations on a 

large scale. GPUs are good at multiplying and accumulating 

operations and image processing, and are suitable for training 

and inference calculations of CNN. But GPUs’ high power 

consumption makes them impossible to implement in low-

power embedded platforms. Compared with CPU and GPU, 

ASIC has the advantages of both high computing rate and low 

power consumption, and has a small size, but the 

customization cost is too high and the development flexibility 

is poor. FPGA is a high-speed parallel general-purpose device 

with high flexibility, low cost, high integration, low power 

consumption, moderate development cycle and wide 

application. FPGA uses data parallel connection to perform 

various parallel calculations, and is therefore well suited for 

implementing accelerated computation of CNN. 

In this paper, we aim to use the PYNQ framework of Xilinx 

FPGA to accomplish object recognition implementation. We 

take full advantage of the reconfigurable and low power 

consumption of FPGA to quickly implement complex data 

parallelism and large-scale multiplication and accumulation 

operations in CNN based the PYNQ framework. 

The contributions of this paper are: 

(1) Hardware-software co-design scheme to implement

object recognition on Xilinx FPGAs via ARM and FPGAs. 

(2) Fast implementation of CNN acceleration based on the

PYNQ framework. 

This paper is organized as follows: Chapter 2 provides 

related work, Chapter 3 represents a PYNQ framework based 

CNN Accelerator. Testing and analysis is presented out in 

Chapter 4. Finally, gives a conclusion. 

2. RELATED WORK

With the wide application of CNN in image processing and 

the acceleration of FPGA reconfigurable architecture, more 

and more people adopt FPGA to implement CNN accelerator. 

Yahia designed a PYNQ-YOLO-Net based on PYNQ 

framework and YOLO framework, and implemented a mask 

detection application using this net. The experimental results 

is that compared with the software alone, the recognition time 

is reduced to 1/3 of the original time. While the computational 

throughput is more than 30 times of the original and the 

recognition rate is guaranteed to be more than 90% [1]. Wang 

et al. proposed a fast CNN generation model based on PYNQ 

framework. Compared with ARM alone running CNN, the 

computational throughput increased by 20 times and energy 

consumption reduced by 28 times. Those papers demonstrated 

that PYNQ framework can quickly achieve CNN accelerator 

[2]. Hou designed a license plate recognition system based on 

the PYNQ framework, and finally achieved a license plate 

recognition rate of 97.89% with limited CNN network 
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parameters [3]. Maclellan implements radio modulation 

classification by spectral information using Matlab and PYNQ 

[4].  

Many other research works focused on the PYNQ 

framework conjunction with OpenCV [5] framework and 

YOLO [6] framework. In addition to the use of PYNQ 

framework, CNN accelerator has also been implemented using 

FPGA alone [7-9]. The overall indication is that FPGA as well 

as the PYNQ framework are very useful to implement CNN 

algorithms for accelerating and completing object recognition 

implementation. 

 

 

3. PYNQ FRAMEWORK BASED CNN ACCELERATOR 

 

3.1 CNN 

 

Due to the improvement of deep learning theory, CNN have 

been developed rapidly, and a number of new algorithms have 

emerged in speech recognition [10], face recognition [11], 

reinforcement learning [12], and natural language processing 

[13]. In CNN algorithms, neurons in the same convolutional 

layer are not associated with each other, while there are 

computational relationships between neurons in neighboring 

convolutional layers. Five main parts-data input layer, 

convolutional layer, pooling layer, fully connected layer and 

classification output layer, constitute the CNN. The data input 

layer represents the input of the original image data, and the 

input image features are collected through the convolutional 

layer and the pooling layer, and the collected image features 

are input to the fully connected layer and the classification 

output layer to complete the classification and recognition of 

the input image. The structure of the CNN is shown in Figure 

1. 

(1) Convolutional layer 

The core idea of convolutional layers is to simulate neurons 

in the human brain, but unlike information transfer in the brain, 

in CNN, information is passed from layer to layer to each other, 

from the convolutional layer to the pooling layer, then from 

the pooling layer to the convolutional layer, and finally arrives 

in the classifier, which outputs the information of recognition 

result. 

The main role of the convolutional layer is to extract 

features from the input feature map, and the parameters of the 

optimized convolutional kernel and BIAS can be obtained by 

BP (back propagation algorithm). Generally, a single 

convolutional layer extracts simple feature parameters, while 

a multi-layer convolutional layer can obtain more complex 

feature information by iterative methods. 

The convolution is mathematically divided into the 

convolution of continuous and discrete functions, defined as 

follows. 
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The convolution formula in CNN is defined as follows. 
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where, kw and kh stands for width and height, sw and sh 

represent the step lengths in the horizontal and vertical 

directions. f(n, i, j) represents the n output of the first image at 

the point (i, j), w(n, m, u, v) represent w weights. 

(2) Pooling layer 

The features collected through the convolutional layer can, 

in principle, be directly passed into the fully connected layer 

for network computation. However, the computational 

overhead of this approach is high, and the training and testing 

time of the CNN can be seriously increased, thus affecting the 

real-time performance of the algorithm. The goal of designing 

the pooling layer is to reduce the computational effort of the 

convolutional network by reducing the parameters of the 

feature map output from the convolutional layer. Therefore, 

the pooling layer is usually added after the convolutional layer 

to downsample the feature maps. Since a picture contains a lot 

of redundant information, the pooling layer can remove the 

redundant information to extract the important features. 

Pooling layer can also prevent overfitting to a certain extent. 

Overall, pooling layer effectively reduces the amount of data 

in the feature map after convolution calculation and improves 

the computation speed. As shown in Figure 2, the maximum 

pooling method and the average pooling method are the more 

common pooling methods. 

(3) Fully connected layer 

In a CNN structure, after multiple convolutional and 

pooling layers, one or more fully connected layers are usually 

connected. Each neuron in a fully connected layer is connected 

to all the neurons in its previous layer. Fusion of the local 

feature information collected in the convolutional or pooling 

layers is the main function of the fully connected layers. In 

order to reduce the network computation time of the CNN, the 

activation function of each neuron in the fully connected layer 

is usually a Rectified linear unit (ReLU) function. The output 

feature information of the last fully connected layer is fed to 

the classifier for data classification. 

(4) Activation function 

The activation function used Sigmoid function is a function 

used for binary classification which maps the input real 

numbers between (0, 1). The formula of Sigmoid function is 

defined as follows. 
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Figure 1. Convolutional neural network structure for object 

recognition 

 
Figure 2. Maximum pooling & average pooling 
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3.2 PYNQ framework 

 

 
 

Figure 3. PYNQ framework 

 

The PYNQ architecture is shown in Figure 3. From this 

figure, we can see that the PYNQ system architecture is 

divided into three layers: a hardware layer based on FPGA 

design, a software layer based on ARM-based Linux kernel 

plus Python, and an application layer based on Jupyter 

Notebook. 

The hardware layer is designed mainly to realize the 

cooperative interaction between PS and PL, the whole FPGA 

part of the design is called Overlay also called hardware 

library, which is ZYNQ's PL (FPGA) design. overlay is 

mainly used to accelerate software applications, also for multi-

user and multi-application to generate different bitstream files, 

and can be called through software APIs to the logic functions 

on the FPGA can be dynamically switched. The whole process 

is based on PYNQ, the C driver software is encapsulated in the 

PYNQ framework and provides the user with a Python call 

interface. The user can change the access IP of the overlay by 

changing the parameters of the Python interface, thus 

completing the underlying control of the programmable 

hardware. 

 

3.3 Hardware-Software co-design framework 

 

The CNN hardware-software co-design framework based 

on the PYNQ framework is shown in Figure 4. The test images 

are taken through the hardware, software and application 

layers of the PYNQ architecture and thus the test results. The 

hardware layer is supported by the PYNQ development 

framework, which also encapsulates the driver program, 

regulates the underlying hardware of the DMA, burns 

bitstream files, and solves tcl files. The software layer mainly 

completes the configuration process of encapsulating the 

computational tasks of each layer and provides a 

parameterized class call interface for designers. The 

application layer can automatically deploy the already trained 

Tensorflow models and designed to run on configurable CNN 

accelerator. During the development of the hardware 

architecture-driven control program, the program writer needs 

to complete the configuration of the entire DMA channel 

transfer using a high-level programming language based 

hardware driver. As showed as Figure 4, a large amount of 

computation is embedded in the computation of the network 

layer based on the PL part. Therefore, the basic model of CNN 

needs to be built by PC and passed to the PYNQ framework 

for more deep learning as well as practical operation, in order 

to meet the design requirements of hardware architecture and 

configuration. The ultimate goal is to make it easier and faster 

for users to design CNN accelerator based on the PYNQ 

framework for object recognition implementation. 

 

 
 

Figure 4. Hardware-Software co-design framework 

 

 

4. TESTING AND VALIDATION 

 

(1) Dataset 

The test in this paper uses CIFAR-10 dataset, CIFAR-10 is 

a small volume dataset used to recognize common objects, 

which includes 10 common objects, such as cat, dog, deer, frog, 

horse, ship, truck, airplan, birds and automobile. The images 

are RGB color type, size 32*32, and the dataset includes 

10,000 test images and 50,000 training images. the images 

included in CIFAR-10 are shown in the Figure 5. The CIFAR-

10 dataset is from the real world, and real world objects have 

the characteristics of large noise and objects with different 

proportions and features, which can make recognition more 

difficult and lead to direct linear models does not perform well 

on the dataset. In this paper, 10,000 images are used for 

training and 50,000 images are used for testing. 

(2) CNN model 

The CNN model for this test consists of convolutional layer, 

pooling layer and fully-connected layer. As shown in Figure 6, 

two convolutional layers and two pooling layers and two fully 

connected layers are used. a color map with 32* 32 resolution 

of the input image of the CIFAR-10 dataset is added to the first 

convolutional layer of the model with the RELU activation 

function followed by the maximum pooling layer. The second 

convolutional layer is also processed through the RELU 

activation function maximum pooling layer. The two 

convolutional layers and the pooling layer are followed by a 

fully connected layer and finally the output layer. The output 

layer outputs 10 numbers, which are used to represent the 

classification scores in each of the 10 objects in CIFAR-10 

datasets. And the highest value being the final recognition 

result. 

(3) FPGA Platform 

This paper uses the PYNQ-Z1 embedded development 

board as the system test platform, which is a heterogeneous 

multi-core platform based on the Xilinx ZYNQ-7000, 

including an ARM processor and a FPGA. The ARM and 

FPGA are associated high-speed communication interfaces. In 

addition to inheriting the powerful processing performance of 

the traditional ZYNQ platform, the PYNQ-Z1 is also 

compatible with Arduino interfaces and standard Raspberry Pi 

interfaces, making the PYNQ-Z1 highly scalable and open 

source. Figure 7 shows the physical diagram of the PYNQ-Z1 

development board. We use Xilinx Vivado tools for the 

hardware part and ARM-based Ubuntu 18.04 for the software 
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part. At the same time, the PC is used to extract the weight and 

parameters of the convolutional layers and fully connected 

layers and download them to the PNYQ Framework for 

processing. Finally, the implementation of CNN accelerator is 

completed to improve the practicality and real-time 

performance of object recognition. 

(4) Results and analysis 

The object recognition system is mounted on the PYNQ-Z1 

development board, and the hardware and software 

environments of the board need to be properly configured 

before testing and validating. The Python programming 

language is used to implement the control operations. CIFAR-

10 dataset was used to test the performance of the system, 

verify the design and compare with the only PYNQ-Z1 ARM 

processing for CNN acceleration, the test results are shown in 

Table 1. 

It can be seen that the acceleration ratio of the CNN 

accelerator based on the PYNQ framework for object 

recognition is about 43.2 times compared to the only ARM for 

CNN acceleration. The average power consumption of the 

CNN accelerator during the experimental test is only 1.921 W. 

The system dynamic power consumption of the accelerator is 

only 1.794 W, and the static power consumption of the 

accelerator is 0.153W. ARM processor in the PYNQ-Z1 

embedded development board accounts for 91% of the 

dynamic power consumption of the whole system, but when 

system running the power of the FPGA part of the accelerator 

circuit is lower. 

 

 
 

Figure 5. CIFAR-10 image examples 

 

 
 

Figure 6. CNN model 

 

 
 

Figure 7. PYNQ-Z1 FPGA Platform 

 

Table 1. Results of the test 

 

Platform Frequency Time per 1 image(ms) 

PYNQ-Z1 only 

ARM 
650Mhz 1.34 

PYNQ-Z1 with 

FPGA 

650Mhz 

(ARM)+30Mhz (FPGA) 
0.031 

 

 

5. CONCLUSION 

 

In this paper, we present PYNQ framework Based object 

recognition implementation using CNN. A hardware-software 

co-design framework is designed for the hardware and 

software of the CNN accelerator based on the PYNQ 

framework. The experimental results demonstrates that the 

computational speed of CNN accelerator designed and 

implemented in this paper reached 35.39 fps when testing the 

CIFAR-10 dataset. The computational speed is 43.2 times 

faster than the only ARM processor on the PYNQ-Z1 with 

CNN program. The recognition ratio of the hardware 

implementation and software implementation remains 

basically the same, both achieving more than 98%. The 

average power consumption of the CNN accelerator based on 

PYNQ framework in this paper for object recognition 

implementation is only 1.921w, which is very suitable for the 

rapid deployment and use of low-power embedded devices.  
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