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Quadcopters have unstable systems, and one of the main reasons for the irregularity of 

their systems may be the behavior of the output of certain types of control units. But the 

development that an event in the control methods made the control of these systems 

very effective to achieve the maximum stability required. Examples of methods with 

modern controllers we mention here are the linear quadratic regulator (LQR) controller, 

Besides the (MPC) model predictive controller, there is also the integral proportionally 

derivative (PID)which we worked on developing in this research. This paper aims to 

deal with compensation for position tracking error of quadrotor. To address this 

problem, we designed an adaptive PID controller that enhances the tracking 

performance and tests the proposed controller on two different trajectories against the 

performance of the normal PID controller. Through the simulation results using 

MATLAB the suggested strategy was shown to be effective in lowering the errors 

associated tracking of intended trajectories in X and Y orientations. 
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1. INTRODUCTION

The operation of control systems has been extensively 

discussed in the literature during the last two decades. and how 

they can be used to control drones. This has led to the 

development of different techniques and methods. In each 

category the high-level methods are grouped according to the 

algorithmic approach used, which in most cases is related to 

used type of sensors. Main control techniques can be 

categorized as follows:  

A) Learning-based flight controllers:

This category includes several control methods but the most

commonly used are the ones based on, neural networks, 

human-based learning, and fuzzy logic.  

B) Linear flight control systems:

Here we highlight an important approach in this

denomination is proportionally integral derivative (PID) and 

best-known and most extensively utilized control in this area; 

another widely used method is the linear quadratic regulator 

(LQR) controller.  

C) Model-based nonlinear controllers:

Adaptive control tops the methods in this category, while

backstepping, model predictive control MPC and feedback 

linearization are examples of other commonly used ones. 

Figure 1 bellow shows categorization of control techniques. 

Most of these methods are not used alone, usually two or 

even three methods are integrated together to achieve optimal 

control of the drone. In the following lines we review several 

research studies for different control methods. 

A backstepping-based direct-dynamic adaptive controller 

was provided to follow the trajectory of a quadcopter, while 

ensuring global stability using Lyapunov's theory. The 

proposed method has proven feasibility and acceptable 

convergence results [1]. Precise model parameters are required 

for any algorithm based on general backstepping control; this 

control doesn’t perform well when there are external 

disturbances. To solve this problem, a control algorithm based 

on adaptive integral backstepping was developed. The results 

obtained after simulation demonstrated that the developed 

control performs well against model uncertainties [2]. A 

powerful control technique was introduced using adaptive 

neural control to stabilize and track the quadcopter when it is 

assumed that the aerodynamic drag coefficient is unknown. 

Numerical simulation demonstrates the efficiency of the 

introduced control approach [3]. 

Figure 1. Categorization of control techniques 

The strategic way to control a quadcopter is based on active 

fault tolerance and focuses on Gain-Scheduled PID control 

was presented. Effectiveness of the introduced control method 

was proven by simulation [4]. The position tracking error of a 

quadcopter was compensated by an adaptive controller that 

aims to compensate the constant or slow-changing disturbance 

which represents wind and drafts, the system was able to 

reduces tracking error and is feasible for practical quadrotor 

use [5].  

An SMC-based controller was developed for quadcopters to 

help with stability and altitude tracking, numerical simulations 
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show the robustness of the introduced method [6]. A new 

nonlinear approach for adaptive control based on robust fixed-

point was presented to provide remedy to parameters 

uncertainties or outer disturbances. Controller efficiency was 

demonstrated by simulation with multiple trajectories [7]. A 

controller based on improved adaptive SMC was introduced 

aiming to deal with navigation and control of a quadcopter 

when uncertainty and external disturbances existed. The 

obtained results proved the scheme’s robustness in the 

presence of uncertainties and effectiveness in tracking 

trajectories [8].  

The controlling of the quadrotor was proposed using an 

adaptive controller that doesn’t require any information on 

model parameters. The results show effectiveness of the 

system and corroborated the analysis [9]. To control a 

quadcopter a new controller based on emotional learning was 

proposed a novel bidirectional algorithm for emotional 

learning is used in conjunction with an easier fuzzy neural 

network within the confines of this feature technique, the 

outcomes showed that the suggested approach performed 

admirably, as shown by the findings [10]. While in reference 

[11], sliding mode control using neural network 

backpropagation using three alternative paths and numerous 

circumstances with and without external disturbances was 

examined. Simulated results using MATLAB prove the SMC-

NN control system's tracking performance and capacity to 

reach the target trajectory in the face of external disturbances. 

Trajectory tracking of a quadcopter using self-tuning PD-

fuzzy controller was introduced, the simulation proved the 

usefulness of the system for a fixed -gain aircraft as well as a 

control algorithm [12]. 

Gain scheduling SMC controller for quadrotor based on 

adaptive fuzzy was proposed to minimize the chattering of the 

conventional SMC, the results show a significant 

improvement in terms of reduced chattering with improved 

trajectory tracking [13]. An adaptive controller that combines 

a PID controller and According to the findings, the FPID 

controller outperforms the standard PID controller when the 

wind is blowing [14]. An adaptive controller for a quadrotor 

based on Lyapunov stability was introduced, the simulation 

demonstrated that the system provides greater benefits over 

the fixed-gain approach [15]. A quadcopter tracking control 

based on adaptive controller was presented, it enables the 

controller to follow the programmed path without knowing the 

inertia and was able reduce tracking errors when unstructured 

disturbances occur [16]. A decentralized adaptive control 

scheme was introduced to control a quadrotor, the system 

combines PD controller and auxiliary term with variable 

coefficient. The efficiency and robustness of the controller was 

demonstrated by simulation results [17]. Quadrotor trajectory 

tracking was achieved using An L1 adaptive controller based 

on nonlinear feedforward compensation, the simulation 

validated the efficiency of the introduced method [18].  

A quadcopter controller which combines fuzzy logic and 

neural network was proposed tracking a quadrotor's trajectory, 

The data shows the system’s ability to follow a quadrotor’s 

trajectory [19]. An adaptive quadcopter path tracking 

controller was developed. The findings showed that the 

quadrotor control system is capable of producing smooth and 

continuous motions [20]. To enhance path tracking of 

quadrotor, an adaptive controller based on backstepping 

approach was proposed, the simulation results show 

robustness and applicability of the system [21]. 

In the design and implementation of a NARMA-L2 IFC-

based intelligent control method for nonlinear dynamical 

systems. Through simulation results, the accuracy of control 

performance and the resilience of the proposed control 

mentioned above against external disturbances are proven for 

nonlinear plants [22].  

 

 

2. QUADCOPTER KINEMATIC AND DYNAMIC 

MODELS 
 

The quadrotor consists of four propellers in “X” 

configuration, these propellers are divided into two pairs (1, 3) 

and (2, 4) both sets of propellers are rotating counterclockwise, 

and this is to adjust the reactive torque effect by compensating, 

which has an important effect.  

A quadcopter moves vertically by adjusting the speed of its 

four propellers; pitches as well as rolls by varying the speed of 

the front and rear propellers or left and right propellers; and 

yaw by varying the reactive torque of its four fans. 

 

 
 

Figure 2. Physical illustration of a quadcopter 

 

According to the Figure 2, the quadcopter kinematics is 

described by x, y, and z in the E-framework (earth or ground 

inertial frame) and the B-frame (body-fixed framework) by 

𝐵 = (xB, yB, zB) . It is possible to calculate where the 

quadcopter's center of mass is in relation to E-frame x, y, z axis 

with Γ. We can also determine the angular position in E-frame 

with three Euler angles Φ as shown in Eq. (1). There's also a 

yaw angle ψ, a pitch angle θ, and φ an angle of roll. 

 

Γ𝐸 = [
𝑥𝐸

𝑦𝐸

𝑧𝐸
], Φ𝐸 = [

 𝜑 
𝜃
ψ
] (1) 

 

𝑉𝐵 and 𝜔𝐵 are the formulas for calculating linear and 

angular velocities, respectively. 

 

𝑉𝐵 = [
𝑢
v
w
], ω𝐵 = [

 𝑝 
𝑞
r
] (2) 

 

Vector Ψ contains the linear and angular position vectors 

and it is obtained from combining Eqns. (1) and (2): 
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Ψ = [
Γ
Φ
] =

[
 
 
 
 
 
𝑥𝐸

𝑦𝐸

𝑧𝐸
 𝜑 
𝜃
ψ ]
 
 
 
 
 

 (3) 

 

Vector W contains the linear and angular velocities vectors 

and it is obtained from combining Eq. (2): 

 

W = [𝑉
𝐵

ω𝐵
] =

[
 
 
 
 
𝑢
v
w
𝑝
𝑞
r ]
 
 
 
 

 (4) 

 

The following is the rotational matrix for linear velocity 

transfer from the (B to E) framework. 

𝑅 = [

𝑐𝑜𝑠(𝜓) 𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜓) 𝑠𝑖𝑛𝑒(𝜃)𝑠𝑖𝑛𝑒(𝜑) − 𝑠𝑖𝑛(𝜓) 𝑐𝑜𝑠(𝜑) 𝑐𝑜𝑠(𝜓) 𝑠𝑖𝑛𝑒(𝜃)𝑐𝑜𝑠(𝜑) + 𝑠𝑖𝑛𝑒(𝜓) 𝑠𝑖𝑛𝑒(𝜑)

𝑠𝑖𝑛𝑒(𝜓) 𝑐𝑜𝑠(𝜃)

− 𝑠𝑖𝑛𝑒(𝜃)

𝑠𝑖𝑛𝑒(𝜓) 𝑠𝑖𝑛𝑒(𝜃)𝑠𝑖𝑛𝑒(𝜑) + 𝑐𝑜𝑠(𝜓) 𝑐𝑜𝑠(𝜑)

𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛𝑒(𝜑)
𝑠𝑖𝑛𝑒(𝜓) 𝑠𝑖𝑛𝑒(𝜃)𝑐𝑜𝑠(𝜑) − 𝑐𝑜𝑠(𝜓) 𝑠𝑖𝑛𝑒(𝜑)

𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜑)
] (5) 

The turnover matrix R is orthonormal where here 𝑅−1 = 𝑅𝑇 , 

and this means that it is the rotation from (E to B)-framework. 

The matrix for changing angular speeds from (E to B)-

framework is 𝑊𝛷, and from (B to E)-framework is 𝑊𝛷
−1. 

 

Φ̇𝐸 = WΦ
−1
ω𝐵 ,   [

𝜑

𝜃
𝜓̇

̇
̇

]

=

[
 
 
 
1 sine(𝜑) tan(𝜃) cos(𝜑) tan(𝜃)

0 cos(𝜑) − sine(𝜑)

0
𝑠𝑖𝑛𝑒(𝜑)

cos(𝜃)

𝑐𝑜𝑠(𝜑)

cos(𝜃) ]
 
 
 

[
𝑝
𝑞
𝑟
] 

(6) 

 

Whereas Φ̇E  indicates the E-framework angular velocity 

regarding the B -framework. 

As a possible consequence, the B-angular frame velocity is 

as: 
 

𝜔𝐵 =

𝑊𝛷𝛷
𝐸̇ ,[
𝑝
𝑞
𝑟
]=[

1 0 − sin(𝜃)

0 cos(𝜑) 𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜑)

0 −𝑠𝑖𝑛(𝜑) 𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜑)
] [

𝜑

𝜃
𝜓̇

̇
̇

] 
(7) 

 

𝑊𝛷 reversible if 𝜃 ≠
(2𝑘−1)𝜑

2
, (𝑘 ∈ 𝑍). 

We presume that the quadcopter is symmetrical, and that 

each propeller has the same length of arm. By aligning the 

arms with the body’s x and y plane coordinates, slant inertia 

matrix is created because of symmetry, Ixx=Iyy. 
 

𝐼 = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] (8) 

 

A thrust force perpendicular to B-frame is generated by the 

angular velocity of each propeller, there is a torque about the 

rotor axis is also generated. As given in Eqns. (9) and (10) as 

follows: 

 

fi = 𝑘wi
2 (9) 

 
τM𝑖 = 𝑏wi

2 + IMwi̇  (10) 

 

where, k is the constant for lift, b is the constant for drag, and 

𝐼𝑀 , the rotors inertial. In most cases, the impact angular 

acceleration wi is thought to be small, so it is left out. When 

we add up the forces of commonality of four propellers, we get 

the thrust T straight the body's airframe z-axis, as shown in Eq. 

(11). 

𝑇 =∑fi

4

𝑖=1

= 𝑘∑wi
2

4

𝑖=1

, 𝑇𝐵 = [
 0 
0
T
] (11) 

 

By combining the torques of all four propellers we obtain 

the vector τB This represents the torques along each of the main 

body orientations (𝜏𝜑, 𝜏𝜃  and 𝜏𝜓) as shown in Eq. (12):  

 

τB = [

 τ𝜑 
τ𝜃
τψ
] =

[
 
 
 
 
 𝑙𝑘(−w2

2 +w4
2) 

 𝑙𝑘(−w1
2 +w3

2)

𝑘∑τM𝑖

4

𝑖=1 ]
 
 
 
 

 (12) 

 

Whereas l a quadcopter's rotor-to-center-of-mass distance. 
 

 

3. NEWTON-EULER EQUATIONS 

 

Since the quadrotor is rigid body, Newton -Euler formulas 

are used to explain its dynamics. For B-frame, the quantitative 

of acceleration force 𝑚𝑉𝐵̇  with centrifugal force ω𝐵 ×𝑚𝑉𝐵 

are the same as the gravitational force 𝑅𝑇𝐺  as well as the 

thrust produced by the propellers TB. 

 

𝑚𝑉𝐵̇ + ω𝐵 ×𝑚𝑉𝐵 = 𝑅𝑇𝐺 + 𝑇𝐵 (13) 
 

In Earthly-frame, the centrifugal- force is cancelled out, so 

the quadrotor's acceleration comes from gravity and the type 

and direction of all thrust: 
 

𝑚Γ̈ = 𝐺 + 𝑅TB (14) 
 

[
 𝑥̈ 
𝑦̈
z̈

] = −𝑔 [
 0 
0
1
] +

𝑇

𝑚
 

[

cos(ψ) 𝑠𝑖𝑛𝑒(𝜃)𝑠𝑖𝑛𝑒(𝜑) + 𝑠𝑖𝑛𝑒(ψ)𝑠𝑖𝑛𝑒(𝜑)

sine(ψ) 𝑠𝑖𝑛𝑒(𝜃)𝑐𝑜𝑠(𝜑) − 𝑐𝑜𝑠(ψ)𝑠𝑖𝑛𝑒(𝜑)

𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜑)
] 

(15) 

 

In the Body-frame, the inertia's angular acceleration IVḂ, 

centripetal forces ω𝐵 × 𝐼ω𝐵, and gyroscopic forces Θ are all 

equivalent to the external torque τ. 
 

𝐼𝑉𝐵̇ + ω𝐵 × 𝐼ω𝐵 + Θ = 𝜏 (16) 

 

Then, the transformation matrixWΦ
−1  and its temporal 

derivative are used to get angular accelerations in the E-frame 

from accelerations in the B-frame: 
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Φ̈ =
𝑑

𝑑𝑡
(WΦ

−1ω𝐵) =
𝑑

𝑑𝑡
(WΦ

−1)ω𝐵 +WΦ
−1𝑉𝐵̇ 

=

[
 
 
 
 
 0 𝜑̇𝑐𝑜𝑠(𝜑) tan(𝜃) + 𝜃̇

𝑠𝑖𝑛𝑒(𝜑)

cos(𝜃)2
−𝜑̇ sine(𝜑) cos(𝜃) + 𝜃̇

𝑐𝑜𝑠(𝜑)

cos(𝜃)2

0 −𝜑̇ sine(𝜑) −𝜑̇ cos(𝜑)

0 𝜑̇
𝑐𝑜𝑠(𝜑)

cos(𝜃)
+
𝜑̇𝑠𝑖𝑛𝑒(𝜑) tan(𝜃)

cos(𝜃)
−𝜑̇

𝑠𝑖𝑛𝑒(𝜑)

cos(𝜃)
+
𝜑̇𝑐𝑜𝑠(𝜑) tan(𝜃)

cos(𝜃) ]
 
 
 
 
 

 

𝜔𝐵 +WΦ
−1𝑉𝐵̇ 

(17) 

 

 

4. EQUATIONS OF EULER-LAGRANGE 

 

Rotational and translational energies subtract potential 

energy are equal to the total of LaGrange L. 

 

ℒ(q, q̇) = Etrans + Erot − Epot

= (
m

2
) Γ̇𝑇Γ̇ + (

1

2
)ω𝐵

𝑇
𝐼 ω𝐵

= −𝑚𝑔𝑧 

(18) 

 

The Euler-Lagrange formulas with exterior forces and also 

torques are presented in Eq. (10). 

 

[
f
τ
] =

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕q̇
) −

𝜕ℒ

𝜕q
 (19) 

 

We will study the linear and angular components separately 

since they are undependable. The total thrust of the rotors 

constitutes the linear external force. Formulas of a linear 

Euler-Lagrange format equation. 

 

f = RTB = 𝑚Γ̈ + mg [
 0 
0
1
] (20) 

 

which corresponds to Eq. (18). 

 

{
 
 

 
 𝑥̈ =

1

𝑚
(𝑐𝑜𝑠(𝜑)𝑐𝑜𝑠(ψ)𝑠𝑖𝑛𝑒(𝜃) + 𝑠𝑖𝑛𝑒(𝜑)𝑠𝑖𝑛𝑒(ψ))𝑢1

𝑦̈ =
1

𝑚
(𝑐𝑜𝑠(𝜑)𝑠𝑖𝑛𝑒(ψ)𝑠𝑖𝑛𝑒(𝜃) − 𝑠𝑖𝑛𝑒(𝜑)𝑐𝑜𝑠(ψ))𝑢1

z̈ =
1

𝑚
𝑐𝑜𝑠(𝜑)𝑐𝑜𝑠(𝜃)𝑢1 − 𝑔

 (21) 

 

This is the Jacobian matrices 𝐽(𝛷) the regarding from ω𝐵 

to 𝛷̇: 

 

J(Φ) = J = wΦ
𝑇𝐼𝑊Φ = 

[

Ixx 0 −Ixx𝑠𝑖𝑛𝑒(𝜃)

0 Iyy𝑐𝑜𝑠(𝜑)
2 + Izz𝑠𝑖𝑛𝑒(𝜑)

2 (Iyy − Izz)𝑐𝑜𝑠(𝜑)𝑠𝑖𝑛𝑒(𝜑)𝑐𝑜𝑠(𝜃)

−Ixx𝑠𝑖𝑛𝑒(𝜃) (Iyy − Izz)𝑐𝑜𝑠(𝜑)𝑠𝑖𝑛𝑒(𝜑)𝑐𝑜𝑠(𝜃) Ixx𝑠𝑖𝑛𝑒(𝜃)
2 + Iyy𝑠𝑖𝑛𝑒(𝜑)

2𝑐𝑜𝑠(𝜃)2 + Izz𝑐𝑜𝑠(𝜑)
2𝑐𝑜𝑠(𝜃)2

] 
(22) 

Therefore, in the E-framework, rotational energy is as 

specified:  

 

E𝑟𝑜𝑡 = (
1

2
) (VḂ )𝑇𝐼ω𝐵 = (1/2) Φ̈𝑇𝐽Φ̈ (23) 

 

The exterior angular force consists of all rotors torques. The 

angles are described by the Euler-Lagrange equations as 

follows: 

 

𝜏 = τ𝐵 = 𝐽Φ̈ +
𝑑

𝑑𝑡
(𝐽)Φ̇ −

1

2

𝜕

𝜕η
(Φ̇𝑇𝐽Φ̇)

= 𝐽Φ̈ + 𝐶(Φ, Φ̇)Φ̇ 

(24) 

 

Below is a clear visualization of the gyroscope and gravity 

equations. 

This is how the matrix 𝐶(Φ, Φ̇) is written: 

 

𝐶(Φ, Φ̇) [

𝐶11 𝐶12 𝐶13
𝐶21 𝐶22 𝐶23
𝐶31 𝐶32 𝐶33

] (25) 

 

We can obtain the differential equations from Eq. (26) for 

the angular accelerations: 

 

Φ̈ = J−1(τ𝐵 − 𝐶(Φ, Φ̇)Φ̇) 

𝜑̈ =
Iy − Iz

Ix
𝜃̇ψ̇ −

Ir
Ix
Ωr𝜃̇ +

1

Ix
u2 

𝜃̈ =
Iz − Ic
Iy

𝜃̇ψ̇ −
Ir
Iy
Ωr𝜑̇ +

1

Iy
u3 

ψ̈ =
Ix − Iy

Iz
𝜃̇𝜑̇ +

1

Iz
u4 

(26) 

 

From (25) and (26) we can find the equations of motion for 

translational and rotational movement of the quadcopter 

system. 

We will use a simplified model because we will not take the 

influence of aerodynamical effects in consideration since it is 

very complicated and hard to model, and it effects only at high 

speeds. 

 

 

5. CONTROLLER DESIGN 
 

5.1 PID control 
 

Many linear and non-linear applications often employ PID 

controllers, which are very strong and helpful. The error signal 

e(t) is calculated as follows: 
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𝑒(𝑡) = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑖𝑛𝑝𝑢𝑡(𝑡) − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑜𝑡 (𝑡) 

By adjustment of a control variable u(t), The goal of the 

controller is to gradually reduce the number of mistakes. PID  

𝑢(𝑡) = kp𝑒(𝑡) + ki∫𝑒(𝑡) + kd
𝑑

𝑑𝑡
𝑒(𝑡) (27) 

PID controller also calculates an error value e(t) on a 

continuous basis then applies the corrections depending on 

proportional, integral, and derivative terms. 

5.2 Adaptive PID control 

To extend our study and optimize the quadrotor control we 

design an adaptive controller that is integrated with the 

traditional PID controller. This adaptive controller is mainly. 

based on a Gaussian function that makes the error value e(t) 

varies and not constant. Figure 3 shows the integrated adaptive 

controller. 

Figure 3. Quadrotor and controller Simulink model 

5.3 Controller objective 

For the purpose of controlling motor speed, a controller PID 

or adaptive PID are used, in a way that the quadrotor able to 

follow the desired trajectory. The control inputs can be 

demonstrated as: 

[

𝑢1
𝑢2
𝑢3
𝑢4

] = [

𝐹
τ𝜃
τ𝜑
τψ

] = [

𝑏 𝑏
0 −𝑙𝑏
−𝑙𝑏 𝑏
𝑑 −𝑑

𝑏 𝑏
0 𝑙𝑏
𝑙𝑏 0
𝑑 −𝑑

]

[
 
 
 
 
ω1

2

ω2
2

ω3
2

ω4
2]
 
 
 
 

(28) 

ω1
2 =

𝑢1
4𝑏
−
𝑢3
2𝑙𝑏

+
𝑢4
4𝑑

ω2
2 =

𝑢1
4𝑏
−
𝑢2
2𝑙𝑏

−
𝑢4
4𝑑

ω3
2 =

𝑢1
4𝑏
+
𝑢3
2𝑙𝑏

+
𝑢4
4𝑑

ω4
2 =

𝑢1
4𝑏
+
𝑢2
2𝑙𝑏

−
𝑢4
4𝑑

(29) 

6. SIMULATION RESULTS

The whole system, including the controller, is represented 

in Figure 4. 

6.1 Rectangular trajectory 

Figure 4 shows the trajectory tracking and comparison 

between desired track (in blue) and actual track (in red). 

Figure 4. Rectangular trajectory: Using PID controller 

(upper left corner), using adaptive PID controller (upper right 

corner), PID vs. adaptive PID (bottom center) 

Figure 5. Comparison between PID (in red) and adaptive 

PID (in blue) of X and Y positions also the yaw angle (ψ) in 

rectangular trajectory 
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Figure 5 above shows comparison between PID (in red) and 

adaptive PID (in blue) of X and Y positions also the yaw angle 

(ψ). 

Figure 6 below here is a look at the difference between the 

use of both controllers (PID and PID adaptive) regarding error. 

 

 
 

Figure 6. Rectangular trajectory controller and the difference 

between the use of both controllers (PID and PID adaptive) 

regarding error 

 

6.2 Circular trajectory 

 

Figure 7 shows the trajectory tracking and comparison 

between desired track (in blue) and actual track (in red).  

 

  
 

Figure 7. Circular trajectory: Using PID controller (upper 

left corner), using adaptive PID controller (upper right 

corner), PID vs. adaptive PID (bottom center) 

 

While Figure 8 shows comparison between PID (in red) and 

adaptive PID (in blue) of X and Y positions also the yaw angle 

(ψ). 

 

 
 

Figure 8. Comparison between PID (in red) and adaptive 

PID (in blue) of X and Y positions also the yaw angle (ψ) in 

circular trajectory 

And when looking at Figure 9 below in terms of error, we 

clearly see the differences that occur when using two different 

controllers (PID and adaptive PID). 

 

 
 

Figure 9. Circular trajectory controller and the difference 

between the use of both controllers (PID and PID adaptive) 

regarding error 

 

 

7. CONCLUSIONS 

 

In this paper we studied the kinematic and dynamic models 

of quadrotor and discussed the Newton-Euler and Euler-

Lagrange equations, we also presented two control method of 

quadrotor which are PID and adaptive PID. We used 

MATLAB Simulink to test the efficiency of those two control 

methods in stabilizing and guiding the quadrotor to follow two 

different trajectories (rectangular and circular). The results of 

the simulation indicated that both controllers were capable of 

guiding the quadrotor along the desired path, with the adaptive 

PID controller reducing position errors more than the normal 

PID controller, particularly in the circular trajectory. 
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APPENDIX 

 

𝐶(Φ, Φ̇) [

𝐶11 𝐶12 𝐶13
𝐶21 𝐶22 𝐶23
𝐶31 𝐶32 𝐶33

] 

𝐶11 = 0  

𝐶12 = (Iyy − Izz) (𝜃̇𝑐𝑜𝑠(𝜑) sine(𝜑) +

ψ̇𝑠𝑖𝑛𝑒(𝜑)2 𝑐𝑜𝑠(𝜃)) + (Izz − Iyy)ψ̇𝑐𝑜𝑠(𝜑)
2𝑐𝑜𝑠(𝜃) −

Ixxψ̇𝑐𝑜𝑠(𝜃)  

C13 = (Izz − Iyy)ψ̇𝑐𝑜𝑠(𝜑)𝑠𝑖𝑛𝑒(𝜑)𝑐𝑜𝑠(𝜃)
2  

C21 = (Izz − Iyy) (𝜃̇𝑐𝑜𝑠(𝜑) sine(𝜑) + ψ̇𝑠𝑖𝑛𝑒(𝜑) 𝑐𝑜𝑠(𝜃)) +

(Iyy − Izz)ψ̇𝑐𝑜𝑠(𝜑)
2𝑐𝑜𝑠(𝜃) + Ixxψ̇𝑐𝑜𝑠(𝜃)  

C22 = (Izz − Iyy)𝜑̇𝑐𝑜𝑠(𝜑)𝑠𝑖𝑛𝑒(𝜑)  

C23 = −Ixxψ̇𝑠𝑖𝑛𝑒(𝜃)𝑐𝑜𝑠(𝜃) +

Iyyψ̇𝑠𝑖𝑛𝑒(𝜑)
2𝑠𝑖𝑛𝑒(𝜃)𝑐𝑜𝑠(𝜃) + Izzψ̇𝑐𝑜𝑠(𝜑)

2𝑠𝑖𝑛𝑒(𝜃)𝑐𝑜𝑠(𝜃)  

C31 = (Iyy − Izz)ψ̇𝑐𝑜𝑠(𝜃)
2𝑠𝑖𝑛𝑒(𝜑)𝑐𝑜𝑠(𝜑) − Ixx𝜃̇𝑐𝑜𝑠(𝜃)  

C32 = (Izz − Iyy) (𝜃̇𝑐𝑜𝑠(𝜑) sine(𝜑)𝑠𝑖𝑛𝑒(𝜃) +

𝜑̇𝑠𝑖𝑛𝑒(𝜑)2 𝑐𝑜𝑠(𝜃)) + (Iyy − Izz)𝜑̇𝑐𝑜𝑠(𝜑)
2𝑐𝑜𝑠(𝜃) +

Ixxψ̇𝑠𝑖𝑛𝑒(𝜃)𝑐𝑜𝑠(𝜃) − Iyyψ̇𝑠𝑖𝑛𝑒(𝜑)
2𝑠𝑖𝑛𝑒(𝜃)𝑐𝑜𝑠(𝜃) −

Izzψ̇𝑐𝑜𝑠(𝜑)
2𝑠𝑖𝑛𝑒(𝜃)𝑐𝑜𝑠(𝜃)  

C33 = (Iyy − Izz)𝜑̇𝑐𝑜𝑠(𝜑)𝑠𝑖𝑛𝑒(𝜑)𝑐𝑜𝑠(𝜃)
2 −

Iyy𝜃̇𝑠𝑖𝑛𝑒(𝜑)
2𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛𝑒(𝜃) −

Izz𝜃̇𝑐𝑜𝑠(𝜑)
2𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛𝑒(𝜃) + Ixx𝜃̇𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛𝑒(𝜃)  
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