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 Many distributed controllers for vehicle platoon are designed based on homogeneous 

assumption and full state information. In reality, vehicle platoon may consist of 

heterogeneous vehicles and may have limited information due to sensor constraints. 

Therefore, this paper proposes a distributed model reference adaptive control based on 

cooperative observer for a heterogeneous vehicle platoon with limited output 

information and subjected to uncertain dynamics. Cooperative observer provides a full 

state estimation of the system. Each follower has a reference model that is designed 

based on its nominal model and cooperative state variable feedback. Main control 

system is composed of (i) nominal control that utilized the cooperative state estimation 

tracking error and (ii) adaptive term that adopted an optimal control modification as an 

adaptation law. The tracking error of followers to the reference model is shown 

uniformly bounded and the stability of the platoon is guaranteed through detailed 

analysis. Performance of the proposed controller is verified by using numerical 

simulation. To show the advantage of the proposed control, simulation results are 

compared to the standard distributed model reference adaptive control that is applied 

for heterogeneous vehicle platoon. It is shown that the proposed control eliminated the 

high frequency oscillation in the control input. 
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1. INTRODUCTION 

 

Research on vehicle and transportation technology is 

progressing rapidly, including electric vehicles [1], 

autonomous vehicles [2, 3], connected vehicles [2], traffic 

management [4] and the possibility of collaboration between 

unmanned ground vehicles and unmanned aerial vehicles [5]. 

As we know that the future of transportation is predicted to be 

connected and automated which allows information to be 

exchanged between vehicles, pedestrians and infrastructures 

in the intelligent transportation system (ITS) scheme. With this 

comprehensive information, various features of cooperative 

control between vehicles can be embedded in the vehicle for 

various purposes such as increasing safety, obtaining 

information about emergency situations, receiving weather 

reports, creating eco-friendly driving modes and enhancing 

vehicle mobility. This paper focuses on the aspect of 

enhancing vehicle mobility with a feature known as a vehicle 

platoon. Vehicle platoon is a group of vehicles, consisting of 

1 leader and N-followers connected via a network of sensors 

or wireless communication technology, forms a convoy by 

synchronizing the followers’ velocity and acceleration to the 

leader's state while keeping the desired inter-vehicle distance. 

Vehicle platoon offers many advantages such as to improve 

safety and comfort driving, reduce congestion, maximize road 

capacity, save fuel and reduce air pollution [2]. Therefore, the 

development of vehicle platoon is a promising breakthrough 

in the future transportation technology. 

Vehicle platoon structure, in multi-agent system (MAS) 

perspective, is composed of vehicle longitudinal dynamics, 

information flow topology, spacing policy and distributed 

controller [6]. In linearized third-order vehicle model [7], 

vehicle dynamics is depended on its inertial time lag where the 

value is different from one type vehicle to the others. Vehicle 

platoon that consists of vehicles with identical inertial time 

lags is called as a homogeneous vehicle platoon [8]. While, 

vehicles involved in a heterogeneous vehicle platoon have 

various inertial time lags [9]. Vehicles exchange information 

to the other vehicles via inter-vehicle communication 

technology according to the topology that is used which can 

either be a directed [10] or undirected topology [11]. There are 

some common topologies used by researchers for vehicle 

platoon applications.  In directed topologies, four common 

topologies are used, namely predecessor following (PF) [12], 

two-predecessor following (TPF) [13], predecessor following 

leader (PFL) [14], two-predecessor following leader (TPFL) 

[8]. While, bidirectional (BD) [15] and bidirectional leader 

(BDL) [8] are common for undirected topologies. To achieve 

synchronization, a distributed controller is applied to each 

follower based on specific spacing policy which can either be 

constant spacing policy (CSP) [16] or constant time heading 

(CTH) [12]. 

Since the complexity of real vehicle dynamics, uncertain 

dynamics is inevitable. The uncertain dynamics can be a result 

of modeling error [17] or can also be a result of operating 

condition such as road and vehicle conditions, and 

Mathematical Modelling of Engineering Problems 
Vol. 9, No. 6, December, 2022, pp. 1565-1573 

 

Journal homepage: http://iieta.org/journals/mmep 
 

1565

https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.090616&domain=pdf


 

environmental factors [9]. Therefore, the uncertain dynamics 

should be considered in the distributed controller design. A 

nominal control is a controller that designed based on a 

nominal model without considering its uncertain dynamics. 

This controller may decline in performance when the actual 

vehicle dynamics deviates significantly from its nominal 

model. In extreme situation, instability of the system may not 

be avoided [9]. Many literatures have been proposed to handle 

this issue either for general leader-follower problem or vehicle 

platoon applications. In order to solve the unknown matched 

uncertainty and disturbance for general leader-follower MAS, 

Peng et al. [18] designed a distributed model reference 

adaptive control. However, leader state is used as a reference 

model, which will be difficult for followers with no directly 

communication to the leader. For specific vehicle platoon with 

CTH and predecessor-following topology, an augmented 

model reference adaptive control approach was developed by 

Harfouch et al. [12], while Song et al. [19] designed a set of 

robust delay feedback controllers. Recently, distributed model 

reference adaptive control (DMRAC) which has reference 

model based on its follower’s nominal model was proposed by 

Prayitno et al. [20] for vehicle platoons with CSP and can be 

applied to various directed and undirected topologies. 

However, researchers [12, 18, 20] assumed a homogenous 

system where all platoon vehicles share an identical nominal 

model.  

Homogeneous assumption limits the practicality since in the 

road, vehicles have different types and manucfaturers [9, 21]. 

Therefore, a vehicle platoon may consist of passenger cars, 

buses, vans, trucks and container trucks with variation of 

brands. This group of vehicles can be categorized as a 

heterogeneous vehicle platoon. Heavy duty vehicles typically 

have bigger inertial time lag when compared to passenger 

vehicles [10]. Since heterogenous vehicles have variation in 

inertial time lag, each individual vehicle may not perform 

optimally when the controller is designed based on an identical 

nominal model that has significant differences from the actual 

model. Zheng et al. [10] provided controller synthesis and 

analysis of cooperative control of heterogeneous vehicle 

platoon for directed acyclic interactions without considering 

the uncertain dynamics. Applying heterogeneous distributed 

controller for heterogeneous vehicle platoon subjected to 

uncertain dynamics is quite challenging. Recently, DMRAC is 

applied for synchronization of heterogeneous vehicle platoon 

subjected to uncertain dynamics [22]. However, it still has a 

problem of high frequency oscillation in the control input.  The 

problem usually happens when fast adaptation is selected [22, 

23], which may cause vehicle jerk and energy inefficiency. It 

is known that large jerk causing less comfort in the driving 

[24]. However, in certain condition, fast adaptation is required 

to improve the tracking performance especially when 

significant uncertainty occurred in the vehicle due to structural 

damage in the vehicle [25].  

Many existing cooperative controllers for general leader-

follower MAS or vehicle platoon are designed based on the 

assumption that full-state information are available or can be 

measured [10, 18, 20]. This assumption may make difficulty 

when full-state information is not available in each follower 

vehicle. In order to solve this problem, cooperative observer 

was proposed [26, 27] which utilized neighborhood output 

estimation error to provide follower’s full-state estimation. By 

utilizing the cooperative state estimation tracking error, a 

synchronization control to the leader is designed. However, 

work [26, 27] is designed based on nominal model and applied 

for homogeneous system. 

Consequently, this paper proposes DMRAC based on 

cooperative observer to achieve synchronization of 

heterogeneous vehicle platoons subjected to uncertain 

dynamics. Reference model is designed based on 

heterogeneous cooperative state variable feedback control 

(CSVFB). While, main control is composed of a nominal 

control signal and an adaptive term. In order to solve the 

problem of high frequency oscillation control input, an optimal 

control modification (OCM) [28] is adopted as an adaptation 

law which extended the application for cooperative tracking 

problem. The main contributions of this paper are: 

(i) Compared to the references [18, 20, 22], the proposed 

control is designed based on cooperative observer which 

can be applied for vehicle with limited output information. 

Compared to the references [10, 26], the proposed control 

is extended the results to include the uncertain dynamics. 

(ii) Provides the stability analysis of DMARC with OCM 

which derived based on cooperative tracking problem. 

DMRAC with OCM eliminates high frequency oscillation 

in the control input which usually occurred in the standard 

DMRAC [22] with high adaptation rate. 

The rest of the paper presents the problem formulation, 

details of the proposed controller and main result which will 

be followed by stability proof. Finally, the performance of the 

proposed controller is validated through numerical simulations. 

 

 

2. PROBLEM FORMULATION 

 

Information flow between followers involved in the platoon 

can be represented by a graph. Denote a graph as 𝒢(𝒱, ℰ,𝒜), 
where 𝒱 = {𝑣1, 𝑣2, … , 𝑣𝑁} is a set of nodes (followers), ℰ ⊆

𝒱 × 𝒱 is a set of links between the followers and 𝒜 = [𝑎𝑖𝑗] ∈

ℝ𝑁×𝑁 is an adjacency matrix to represent the information 

exchange between followers. aij=1 if and only if follower 𝑖 can 

receive information from follower 𝑗, otherwise aij=0. The in-

degree matrix is defined as 𝐷 = 𝑑𝑖𝑎𝑔{𝑑11, 𝑑22, … , 𝑑𝑁𝑁} , 

where 𝑑𝑖𝑖 = ∑ 𝑎𝑖𝑗
𝑁
𝑗=1 . The Laplacian matrix is represented by 

𝐿 = [ℓ𝑖𝑗] = 𝐷 −𝒜 ∈ ℝ𝑁×𝑁  where ℓ𝑖𝑖 = 𝑑𝑖𝑖 , and the other 

elements, ℓ𝑖𝑗 = −𝑎𝑖𝑗 . A pinning gain matrix is defined as 𝐺 =

𝑑𝑖𝑎𝑔{𝑔11, 𝑔22, … , 𝑔𝑁𝑁}, where 𝑔𝑖𝑖 = 1 means that follower i 

receives direct information from the leader, otherwise 𝑔𝑖𝑖 = 0. 

Let 𝒢(�̃�, ℰ̃) be defined such that �̃� = {𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑁} and 

ℰ̃ ⊆ �̃� × �̃� .  Directed graph (digraph) is a graph where all 

node connections are directed from one node to another node. 

A topology of vehicle platoon contains a spanning tree if from 

the leader (as a root node) all followers can be reached by 

following link arrows.  

 

Assumption 1: 𝒢 of vehicle platoon is directed and has at 

least one spanning tree with the lead vehicle as a root node 

[29]. 

Consider a vehicle platoon, where the followers’ dynamics 

can be described as, 

 

�̇�𝑖 = 𝐴𝑖𝑥𝑖 + 𝐵𝑖Ω𝑖𝑢𝑖 + 𝐵𝑖𝜂𝑖(𝑥𝑖) (1) 

 

𝑦𝑖 = 𝐶𝑖𝑥𝑖  (2) 

 

where, 𝑥𝑖 = [𝑝𝑖 + 𝑖 ∙ 𝑑𝑟 𝑣𝑖 𝑎𝑖]
𝑇 is the ith follower’s state  

and 𝑦𝑖 ∈ ℝ
𝑝 is the ith follower’s output. 𝑢𝑖 ∈ ℝ

𝑚, Ω𝑖 , 𝜂𝑖(𝑥𝑖) 
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are the control input, control effectiveness, unknown matched 

uncertainty of the ith follower respectively. The uncertainty is 

parameterized as 𝜂𝑖(𝑥𝑖) = 𝑊𝑖
𝑇𝜎𝑖(𝑥𝑖) where 𝑊𝑖 ∈ ℝ

𝑠×𝑚 is an 

unknown constant weighting matrix and 𝜎𝑖(𝑥𝑖): ℝ
𝑛 → ℝ𝑠 is a 

known basis vector function [17].  

The leader has a zero input, which can be described as,  

 

�̇�0 = 𝐴0𝑥0 (3) 

 

𝑦0 = 𝐶0𝑥0 (4) 

 

where, 𝑥0 = [𝑝0 𝑣0 𝑎0]𝑇is the leader’s state and 𝑦0 ∈ ℝ
𝑝 

is the leader’s output.  Here, 𝑝𝑖 , 𝑣𝑖  and 𝑎𝑖  for all 𝑖 ∈
{0,1, . . , 𝑁} are the position, velocity and acceleration of the ith 

vehicle respectively. While 𝐴𝑖 , 𝐵𝑖 , and 𝐶𝑖  are the system 

matrix, control matrix, and output matrix of the ith vehicle 

respectively. By defining 𝜏𝑖  as the inertial time lag of the 

powertrain, 𝐴𝑖 and 𝐵𝑖  are represented by 

 

𝐴𝑖 = [

0 1 0
0 0 1

0 0 −
1

𝜏𝑖

], 𝐵𝑖 = [

0
0
1

𝜏𝑖

], 𝑖 ∈ {0,1, . , 𝑁} (5) 

 

It is assumed that full state information is not available in 

each follower. Therefore, a dynamical output regulator in each 

follower can be designed based on state observers which 

utilize the available output measurements. Observer provides 

a full state estimation of the follower, which will be utilized 

for nominal controller design. Denote the estimation of 𝑥𝑖 as 

�̂�𝑖 , while the estimation of 𝑦𝑖  as �̂�𝑖 = 𝐶𝑖�̂�𝑖 . The state 

estimation error is defined as �̃�𝑖 = 𝑥𝑖 − �̂�𝑖 , while the output 

estimation error is defined as �̃�𝑖 = 𝑦𝑖 − �̂�𝑖 . Inspired by 

reference [27], let the cooperative output estimation error be 

defined as, 

 

𝜓𝑖 =∑𝑎𝑖𝑗(�̃�𝑗 − �̃�𝑖) + 𝑔𝑖𝑖(�̃�0 − �̃�𝑖)

𝑁

𝑗=1

 (6) 

 

The cooperative observer for each follower with uncertain 

dynamics is designed as, 

 

�̇̂�𝑖 = 𝐴𝑖�̂�𝑖 − 𝑐1,𝑖𝐹𝑖𝜓𝑖 + 𝐵𝑖Ω𝑖𝑢𝑖 + 𝐵𝑖𝜂𝑖(�̂�𝑖) (7) 

 

where, 𝑐1,𝑖 > 0 and 𝐹𝑖 is the observer gain matrix, which can 

be defined as in reference [27], 

 

𝐹𝑖 = 𝑃1,𝑖𝐶𝑖
𝑇𝑅𝑖

−1 (8) 

 

where, 𝑃1,𝑖  is solution of the observer algebraic Riccati 

equation (ARE) 

 

0 = 𝐴𝑇𝑃1,𝑖 + 𝑃1,𝑖𝐴 + 𝑄𝑖 − 𝑃1,𝑖𝐶𝑖
𝑇𝑅𝑖

−1𝐶𝑖𝑃1,𝑟 (9) 

 

where, 𝑄𝑖 = 𝑄𝑖
𝑇 ∈ ℝ𝑛×𝑛 > 0 and 𝑅𝑖 = 𝑅𝑖

𝑇 ∈ ℝ𝑚×𝑚 > 0. 

 

Remark 1: By omitting the uncertain part, the 4th term in 

Eq. (7), according to the study [27] by choosing 𝑐1,𝑖 > 0 and 

𝐹𝑖 as in Eq. (8), it is guaranteed that �̃�𝑖 → 0 as 𝑡 → ∞. While, 

the remaining uncertain part will be solved by proposing 

DMRAC with OCM based on the cooperative observer.   

Let the reference model for each follower be defined as 

�̇�𝑖,𝑟 = 𝐴𝑖𝑥𝑖,𝑟 + 𝐵𝑖𝑢𝑖,𝑟 (10) 

 

where, 𝑥𝑖,𝑟 ∈ ℝ
𝑛  is the follower’s reference state and 𝑢𝑖,𝑟 ∈

ℝ𝑚 is the reference control signal. 

The objective of this paper is to design a distributed 

controller 𝑢𝑖 for each follower in Eq. (1) such that observer, 

Eq. (7), can track the reference model, Eq. (10), which imply 

that the followers’ output, Eq. (2), synchronize to the leader’s 

output, Eq. (4), with bounded residual error. 

 

 

3. DMRAC BASED ON COOPERATIVE OBSERVER 

WITH OCM 

 

The proposed DMRAC based on cooperative observer with 

OCM is shown in Figure 1, that consists of two main blocks, 

namely a reference model and a main control system. The 

reference model generates a reference state (𝑥𝑖,𝑟) which will 

be tracked by the estimated state (�̂�𝑖). The main control system 

contains a nominal control signal ( 𝑢𝑖,𝑛 ) that utilizes the 

cooperative state estimation error and an adaptive term (𝑢𝑖,𝑎) 

that utilizes the nominal control signal (𝑢𝑖,𝑛), the estimated 

state ( �̂�𝑖 ), the tracking error to the reference model (𝑒𝑖 ). 

Nominal control is used to track the leader while adaptive term 

is used to depress the effect of uncertainty.  

 

 
 

Figure 1. DMRAC based on cooperative observer 

 

3.1 Controller design 

 

The reference control signal is designed as: 

 

𝑢𝑖,𝑟 = 𝑐2,𝑖𝐾𝑖 {∑𝑎𝑖𝑗(𝑥𝑗,𝑟 − 𝑥𝑖,𝑟) + 𝑔𝑖𝑖(𝑥0,𝑟 − 𝑥𝑖,𝑟)

𝑁

𝑗=1

} (11) 

 

where, 𝑐2,𝑖 is a coupling gain, 𝐾𝑖 ∈ ℝ
𝑚×𝑛 is the feedback gain 

matrix which defined as: 

 

𝐾𝑖 = 𝑅𝑖
−1𝐵𝑖

𝑇𝑃2,𝑖  . (12) 

 

Matrix 𝑃2,𝑖 is a solution of ARE. 

 

0 = 𝐴𝑖
𝑇𝑃2,𝑖 + 𝑃2,𝑖𝐴𝑖 + 𝑄𝑖 − 𝑃2,𝑖𝐵𝑖𝑅𝑖

−1𝐵𝑖
𝑇𝑃2,𝑖 . (13) 

 

The control input for each follower, Eq. (1), and cooperative 

observer, Eq. (7), which composed of a nominal control (𝑢𝑖,𝑛) 

and an adaptive term (𝑢𝑖,𝑎), is designed as: 

 

𝑢𝑖 = 𝑢𝑖,𝑛 − 𝑢𝑖,𝑎 . (14) 
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The nominal control input is designed as 

 

𝑢𝑖,𝑛 = 𝑐2,𝑖𝐾𝑖𝜀�̂� (15) 

 

with 𝐾𝑖 is as given by Eq. (12) and 𝜀�̂� is cooperative tracking 

state estimation error that can be represented as: 

 

𝜀�̂� =∑𝑎𝑖𝑗(�̂�𝑗 − �̂�𝑖) + 𝑔𝑖𝑖(�̂�0 − �̂�𝑖)

𝑁

𝑗=1

 . (16) 

 

By following the procedure [20], the adaptive term is 

derived as by substituting Eq. (14) into Eq. (7), then adding 

and subtracting the term 𝑐2,𝑖𝐵𝑖𝐾𝑖𝜀�̂�, finally yields: 

 

�̇̂�𝑖 = 𝐴𝑖�̂�𝑖 + 𝐵𝑖𝑢𝑖,𝑛 − 𝑐1,𝑖𝐹𝑖𝜓𝑖
+ 𝐵𝑖Ω𝑖[𝜃𝑖

𝑇𝛷𝑖(𝜎𝑖(�̂�𝑖), 𝑢𝑖,𝑛) − 𝑢𝑖,𝑎] 
(17) 

 

where, 

 

𝜃𝑖
𝑇 = [

Ω𝑖
−1𝑊𝑖

𝑇

𝐼 − Ω𝑖
−1]

𝑇

and 𝛷𝑖(𝜎𝑖(�̂�𝑖), 𝑢𝑖,𝑛) = [
𝜎𝑖(�̂�𝑖)
𝑢𝑖,𝑛

] (18) 

 

The adaptive term is constructed as: 

 

𝑢𝑖,𝑎 = �̂�𝑖
𝑇
𝛷𝑖(𝜎𝑖(�̂�𝑖), 𝑢𝑖,𝑛) (19) 

 

where, �̂�𝑖
𝑇
is the estimated value of 𝜃𝑖

𝑇
. For adaptation law, �̇̂�𝑖, 

an optimal control modification [28] is adopted, 

 

�̇̂�𝑖
= 𝛾𝑖𝛷𝑖(𝜎𝑖(�̂�𝑖), 𝑢𝑖,𝑛, 𝜓𝑖)[𝑒𝑖

𝑇𝑃𝑖
+ 𝜇𝑖𝛷𝑖

𝑇(𝜎𝑖(�̂�𝑖), 𝑢𝑖,𝑛, 𝜓𝑖)�̂�𝑖𝐵𝑖
𝑇𝑃𝑖𝐴𝑖,𝑚

−1]𝐵𝑖 

(20) 

 

where, 𝛾𝑖 > 0  is the adaptation rate, 𝜇𝑖 > 0  is a positive 

weighting constant, while 𝑒𝑖 and 𝐴𝑖,𝑚 will be defined later. 

 

Remark 2: In order to realize the proposed control, it is 

assumed that full state information of the reference model is 

available or can be calculated. The reference states can be 

treated as virtual state references. All followers exchange 

information, to connected neighbors, that includes: estimation 

state ( �̂�𝑖 ), and output estimation error ( �̃�𝑖 ). The reference 

model uses neighbors’ estimation state as neighbors’ reference 

states, i.e. 𝑥0,𝑟 = �̂�0,𝑟  and 𝑥𝑗,𝑟 = �̂�𝑗 . The leader sends its 

estimated state ( �̂�0 ), and output estimation error ( �̃�0 ) to 

connected followers. It is assumed that 𝑥0 = �̂�0  therefore 

�̃�0 = 0.   

 

3.2 Tracking error dynamics of followers w.r.t the 

reference model 

 

Since the observer guarantees �̂�𝑖 → 𝑥𝑖  as t→∞ and the fact 

that �̂�𝑗 = 𝑥𝑗,𝑟 , �̂�0 = 𝑥0,𝑟, therefore for the purpose of stability 

analysis, the tracking error of each follower w.r.t its reference 

model can be represented by 𝑒𝑖 = 𝑥𝑖 − 𝑥𝑖,𝑟 which resulting the 

tracking error dynamics, 

 

�̇�𝑖 = 𝐴𝑖,𝑚𝑒𝑖 − 𝐵𝑖Ω𝑖 [�̃�𝑖
𝑇
𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛)] (21) 

 

with 

𝐴𝑖,𝑚 = 𝐴𝑖 − 𝑐2,𝑖(𝑑𝑖𝑖 + 𝑔𝑖𝑖)𝐵𝑖𝐾𝑖 . (22) 

 

Here, �̃�𝑖 = �̂�𝑖 − 𝜃𝑖  is the parameter estimation error and 

𝜎𝑖(𝑥𝑖) = 𝑥𝑖  is the known basis function. 

 

3.3 Tracking error dynamics of followers w.r.t the leader 

 

Since the adaptive term suppresed the effects of 

uncertainties such that 𝑥𝑖 → 𝑥𝑖,𝑟  as t→∞, therefore, for the 

purpose of stability analysis, the tracking error w.r.t the 

leader’s state can be expressed by using the reference model 

as: 

 

𝜌𝑖 = 𝑥𝑖,𝑟 − 𝑥0,𝑟 (23) 

 

where, 𝜌𝑖 = [𝜌𝑖,𝑝 𝜌𝑖,𝑣 𝜌𝑖,𝑎]𝑇  is the state tracking error to 

the leader. By following [10], since the leader has zero input 

which means that the leader moves at constant velocity (�̇�0,𝑟 =

0) , the tracking error of follower w.r.t the leader can be 

defined as: 

 

{

𝜌𝑖,𝑝 = 𝑝𝑖,𝑟 + 𝑖 ∙ 𝑑𝑟 − 𝑝0,𝑟    

 𝜌𝑖,𝑣 = �̇�𝑖,𝑟 − �̇�0,𝑟 = 𝑣𝑖,𝑟 − 𝑣0,𝑟
𝜌𝑖,𝑎 = �̈�𝑖,𝑟 − �̈�0,𝑟 = 𝑎𝑖,𝑟      

. (24) 

 

For the purpose of stability analysis, the control signal in Eq. 

(11) can be rewritten as: 

 

𝑢𝑖,𝑟 = 𝑐2,𝑖𝐾𝑖 [∑𝑎𝑖𝑗(𝜌𝑗 − 𝜌𝑖) − 𝑔𝑖𝑖𝜌𝑖

𝑁

𝑗=1

] (25) 

 

Therefore, the tracking error dynamics of each follower 

w.r.t the leader is represented as: 

 

{
 
 

 
 

�̇�𝑖,𝑝 = 𝜌𝑖,𝑣
�̇�𝑖,𝑣 = 𝜌𝑖,𝑎

�̇�𝑖,𝑎 = −
1

𝜏𝑖
𝜌𝑖,𝑎 +

1

𝜏𝑖
𝑐2,𝑖𝐾𝑖 [∑

𝑎𝑖𝑗(𝜌𝑗 − 𝜌𝑖)
−𝑔𝑖𝑖𝜌𝑖

𝑁

𝑗=1

]

 (26) 

 

where, 𝐾𝑖 = [𝑘𝑖,𝑝, 𝑘𝑖,𝑣 , 𝑘𝑖,𝑎] . The global tracking error 

dynamics of vehicle platoon, Eq. (26), can be defined as: 

 

�̇� = �̂�𝜌, (27) 

 

where, 𝜌 = [𝜌𝑝, 𝜌𝑣, 𝜌𝑎]
𝑇 with 𝜌𝜋 = [𝜌1,𝜋, 𝜌2,𝜋, . . , 𝜌𝑁,𝜋]

𝑇  for 

𝜋 ∈ {𝑝, 𝑣, 𝑎}. Here, 

 

�̂� = [

0𝑁 𝐼𝑁 0𝑁
0𝑁 0𝑁 𝐼𝑁

−𝛼𝑝𝐻 −𝛼𝑣𝐻 −𝛼𝑎𝐻 − 𝜗
], (28) 

 

where, 𝛼𝜋 = 𝑑𝑖𝑎𝑔(𝛼1,𝜋, 𝛼2,𝜋, . . , 𝛼𝑁,𝜋)  with 𝛼𝑖,𝜋 =
1

𝜏𝑖
𝑐𝑖𝑘𝑖,𝜋 

for 𝜋 ∈ {𝑝, 𝑣, 𝑎}, 𝜗 = 𝑑𝑖𝑎𝑔(
1

𝜏1
,
1

𝜏2
, . . ,

1

𝜏𝑁
) and H=L+G. 

 

 

4. MAIN RESULT 

 

Theorem 1. Consider a vehicle platoon with network 

topology satisfying Assumption 1. Lead vehicle has dynamics 
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as in Eq. (3), followers have dynamics as in Eq. (1) with the 

observer as in Eq. (7) with observer gain 𝐹𝑖 as in Eq. (8) and 

reference model as in Eq. (10). If each follower applied a 

distributed controller, Eq. (14), with feedback gain 𝐾𝑖 as in Eq. 

(12) and selecting 𝑐2,𝑖 such that: 

 

𝑐2,𝑖 ≥
1

2(𝑑𝑖𝑖 + 𝑔𝑖𝑖)
 (29) 

 

along with the adaptation law, Eq. (20), then it will result in 

stable and uniformly bounded tracking error w.r.t reference 

model, in compact set 𝒞,  

 
𝒞

= {𝜃𝑖
𝑇
𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛): ‖𝜃𝑖

𝑇
𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛)‖  > 𝛽

=
2�̅�(𝐵𝑖

𝑇𝑃𝑖𝐴𝑖,𝑚
−1𝐵𝑖)‖𝜃𝑖𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛)‖

𝜎(𝐵𝑖
𝑇𝐴𝑖,𝑚

−𝑇𝑄𝑖𝐴𝑖,𝑚
−1𝐵𝑖)

} 

(30) 

 

and guarantee the stability of vehicle platoon, Eq. (27). Here, 

𝜎(∙) and 𝜎(∙) are the minimum and maximum singular values, 

respectively. 

 

Proof. For stability proof, it will be shown that the tracking 

error w.r.t the reference model is uniformly bounded in 

compact set 𝒞, and following by the stability of the closed loop 

dynamic, Eq. (27). 

 

Proof of the uniformly bounded of 𝑒𝑖.  
Lyapunov candidate function is chosen as: 

 

𝑉𝑖(𝑒𝑖, �̃�𝑖) = 𝑒𝑖
𝑇𝑃𝑖𝑒𝑖 + 𝛾𝑖

−1𝑡𝑟 (Ω𝑖
1
2�̃�𝑖

𝑇

�̃�𝑖Ω𝑖
1
2). (31) 

 

The first derivative of Eq. (31) along Eq. (21) yields: 

 

�̇�𝑖 = 𝑒𝑖
𝑇[𝑃𝑖𝐴𝑖,𝑚 + 𝐴𝑖,𝑚

𝑇𝑃𝑖]𝑒𝑖 − 

2𝑒𝑖
𝑇𝑃𝑖𝐵𝑖Ω𝑖�̃�𝑖

𝑇
𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛) +  

2𝛾−1𝑡𝑟 (Ω𝑖�̃�𝑖
𝑇
�̇̂�𝑖) 

(32) 

 

Substituting Eq. (20) and re-arranging yields: 

 

�̇�𝑖 = 𝑒𝑖
𝑇[𝑃𝑖𝐴𝑖,𝑚 + 𝐴𝑖,𝑚

𝑇𝑃𝑖]𝑒𝑖 − 

2𝑒𝑖
𝑇𝑃𝑖𝐵𝑖Ω𝑖�̃�𝑖

𝑇
𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛) +  

 2𝑡𝑟(Ω𝑖�̃�𝑖
𝑇
𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛){𝑒𝑖

𝑇𝑃𝑖𝐵𝑖
+ 𝜇𝑖𝛷𝑖

𝑇(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛)�̂�𝑖𝐵𝑖
𝑇𝑃𝑖𝐴𝑖,𝑚

−1𝐵𝑖}) 

(33) 

 

Using trace identity 𝑡𝑟(𝑎𝑇𝑏) = 𝑏𝑎𝑇 , Eq. (33) can be re-

expressed as: 

 

�̇�𝑖 = 𝑒𝑖
𝑇[𝑃𝑖𝐴𝑖,𝑚 + 𝐴𝑖,𝑚

𝑇𝑃𝑖]𝑒𝑖 − 

2𝑒𝑖
𝑇𝑃𝑖𝐵𝑖Ω𝑖𝜃𝑖

𝑇
𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛) +  

 2{𝑒𝑖
𝑇𝑃𝑖𝐵𝑖 + 𝜇𝑖𝛷𝑖

𝑇(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛)𝜃𝑖𝐵𝑖
𝑇𝑃𝑖𝐴𝑖,𝑚

−1𝐵𝑖} 

Ω𝑖𝜃𝑖
𝑇
𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛) 

(34) 

 

After some elimination, finally, it obtained that: 

 

�̇�𝑖 = 𝑒𝑖
𝑇[𝑃𝑖𝐴𝑖,𝑚 + 𝐴𝑖,𝑚

𝑇𝑃𝑖]𝑒𝑖 + 

2𝜇𝑖Ω𝑖𝛷𝑖
𝑇(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛)�̂�𝑖𝐵𝑖

𝑇𝑃𝑖𝐴𝑖,𝑚
−1𝐵𝑖  

�̃�𝑖
𝑇
𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛) 

(35) 

It is known that 𝜃𝑖 + �̃�𝑖 = �̂�𝑖, therefore Eq. (35) become: 

 

�̇�𝑖 = 𝑒𝑖
𝑇[𝑃𝑖𝐴𝑖,𝑚 + 𝐴𝑖,𝑚

𝑇𝑃𝑖]𝑒𝑖 + 

2𝜇𝑖Ω𝑖𝛷𝑖
𝑇(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛)𝜃𝑖𝐵𝑖

𝑇𝑃𝑖𝐴𝑖,𝑚
−1𝐵𝑖  

𝜃𝑖
𝑇
𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛) + 2𝜇𝑖Ω𝑖𝛷𝑖

𝑇(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛)𝜃𝑖 

𝐵𝑖
𝑇𝑃𝑖𝐴𝑖,𝑚

−1𝐵𝑖𝜃𝑖
𝑇
𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛) 

(36) 

 

Consider the first term in Eq. (36), by substituting Eq. (22), 

𝑃𝑖𝐴𝑖,𝑚 + 𝐴𝑖,𝑚
𝑇𝑃𝑖  becomes: 

 

𝑃𝑖𝐴𝑖,𝑚 + 𝐴𝑖,𝑚
𝑇𝑃𝑖 = −𝑄𝑖 − (2𝑐2,𝑖(𝑑𝑖𝑖 + 𝑔𝑖𝑖)

− 1)𝐾𝑖
𝑇𝑅𝑖𝐾𝑖  

(37) 

 

Therefore, Eq. (36) becomes: 

 

�̇�𝑖 = 𝑒𝑖
𝑇[−𝑄𝑖 − (2𝑐2,𝑖(𝑑𝑖𝑖 + 𝑔𝑖𝑖) − 1)𝐾𝑖

𝑇𝑅𝑖𝐾𝑖]𝑒𝑖 

+2𝜇𝑖Ω𝑖𝛷𝑖
𝑇(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛)𝜃𝑖𝐵𝑖

𝑇𝑃𝑖𝐴𝑖,𝑚
−1𝐵𝑖 

𝜃𝑖
𝑇
𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛) + 2𝜇𝑖Ω𝑖𝛷𝑖

𝑇(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛)𝜃𝑖 

𝐵𝑖
𝑇𝑃𝑖𝐴𝑖,𝑚

−1𝐵𝑖𝜃𝑖
𝑇
𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛) 

(38) 

 

Following [28, 30], it can be seen that the sign-definiteness 

of Eq. (38) is rely on the sign-defininiteness of 𝑃𝑖𝐴𝑖,𝑚
−1 . 

Where, the evaluation of sign-definiteness of 𝑃𝑖𝐴𝑖,𝑚
−1 can be 

conducted by using the negative definite matrix property, i.e. 

“A general real matrix 𝑀 is negative definite if and only if its 

symmetric part 𝑀𝑠 =
1

2
(𝑀 +𝑀𝑇) is also negative definite”. 

Denote 𝑀 = 𝑃𝑖𝐴𝑖,𝑚
−1 , then Eq. (37) can be pre and post 

multiplied by 
1

2
𝐴𝑖,𝑚

−𝑇 and 𝐴𝑖,𝑚
−1, finally yields: 

 
1

2
(𝑃𝑖𝐴𝑖,𝑚

−1 + 𝐴𝑖,𝑚
−𝑇𝑃𝑖)

= −
1

2
[𝐴𝑖,𝑚

−𝑇𝑄𝑖𝐴𝑖,𝑚
−1

+ 𝐴𝑖,𝑚
−𝑇(2𝑐2,𝑖(𝑑𝑖𝑖 + 𝑔𝑖𝑖)

− 1)𝐾𝑖
𝑇𝑅𝑖𝐾𝑖𝐴𝑖,𝑚

−1] 

(39) 

 

By selecting a coupling gain 𝑐2,𝑖 that satisfies Eq. (29), the 

right-hand side of Eq. (39) is negative definite which mean that 

𝑀 = 𝑃𝑖𝐴𝑖,𝑚
−1 < 0. This matrix can be decomposed into the 

sum of a symmetric matrix 𝑀𝑠 and an anti-symmetric matrix 

𝑁 , i.e. 𝑀 = 𝑀𝑠 + 𝑁 , where 𝑀𝑠 =
1

2
(𝑃𝑖𝐴𝑖,𝑚

−1 + 𝐴𝑖,𝑚
−𝑇𝑃𝑖) 

and 𝑁 =
1

2
(𝑃𝑖𝐴𝑖,𝑚

−1 − 𝐴𝑖,𝑚
−𝑇𝑃𝑖). By choosing 𝑦 as a vector 

of matching dimensions, then pre and post multiplied 𝑀 =
𝑀𝑠 + 𝑁  by 𝑦𝑇  and y, considering that N is anti-symmetric 

matrix such that 𝑦𝑇𝑁𝑦 = 0, finally yields: 

 

𝑦𝑇𝑃𝑖𝐴𝑖,𝑚
−1𝑦 = −

1

2
𝑦𝑇[𝐴𝑖,𝑚

−𝑇𝑄𝑖𝐴𝑖,𝑚
−1

+ 𝐴𝑖,𝑚
−𝑇(2𝑐2,𝑖(𝑑𝑖𝑖 + 𝑔𝑖𝑖)

− 1)𝐾𝑖
𝑇𝑅𝑖𝐾𝑖𝐴𝑖,𝑚

−1]𝑦 

(40) 

 

Let choose 𝑦 = 𝐵𝑖�̃�𝑖
𝑇
𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛), then Eq. (38) can be 

represented as: 

 
�̇�𝑖
= 𝑒𝑖

𝑇[−𝑄𝑖 − (2𝑐2,𝑖(𝑑𝑖𝑖 + 𝑔𝑖𝑖) − 1)𝐾𝑖
𝑇𝑅𝑖𝐾𝑖]𝑒𝑖

+ 2𝜇𝑖Ω𝑖𝛷𝑖
𝑇(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛)𝜃𝑖𝐵𝑖

𝑇𝑃𝑖𝐴𝑖,𝑚
−1𝐵𝑖 

𝜃𝑖
𝑇
𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛) − 𝜇𝑖Ω𝑖𝛷𝑖

𝑇(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛)𝜃𝑖𝐵𝑖
𝑇 

(41) 
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[𝐴𝑖,𝑚
−𝑇𝑄𝑖𝐴𝑖,𝑚

−1 + 𝐴𝑖,𝑚
−𝑇(2𝑐2,𝑖(𝑑𝑖𝑖 + 𝑔𝑖𝑖)

−  1)𝐾𝑖
𝑇𝑅𝑖𝐾𝑖𝐴𝑖,𝑚

−1]𝐵𝑖𝜃𝑖
𝑇
𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛) 

 

By choosing a coupling gain 𝑐2,𝑖 that satisfies Eq. (29), the 

upper bound of �̇�𝑖 is: 

 

�̇�𝑖 ≤ −𝜎(𝑄𝑖)‖𝑒𝑖‖
2 − 𝜇𝑖Ω𝑖𝜎(𝐵𝑖

𝑇𝐴𝑖,𝑚
−𝑇𝑄𝑖𝐴𝑖,𝑚

−1𝐵𝑖) 

‖�̃�𝑖
𝑇
𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛)‖

2

+ 2𝜇𝑖Ω𝑖𝜎(𝐵𝑖
𝑇𝑃𝑖𝐴𝑖,𝑚

−1𝐵𝑖)‖𝜃𝑖𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛)‖ 

‖�̃�𝑖
𝑇
𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛)‖ 

(42) 

 

Thus, with: 

 

‖�̃�𝑖
𝑇
𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛)‖ ≥ 

2𝜎(𝐵𝑖
𝑇𝑃𝑖𝐴𝑖,𝑚

−1𝐵𝑖)‖𝜃𝑖𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛)‖

𝜎(𝐵𝑖
𝑇𝐴𝑖,𝑚

−𝑇𝑄𝑖𝐴𝑖,𝑚
−1𝐵𝑖)

 
(43) 

 

render �̇�𝑖 ≤ 0. Since, 

 

𝑉𝑖(𝑡 → ∞) ≤ 𝑉𝑖(0) − 𝜎(𝑄𝑖)∫ ‖𝑒𝑖‖
2

∞

0

𝑑𝑡 − 

𝜇𝑖Ω𝑖𝜎(𝐵𝑖
𝑇𝐴𝑖,𝑚

−𝑇𝑄𝑖𝐴𝑖,𝑚
−1𝐵𝑖) 

∫ ‖𝜃𝑖
𝑇
𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛)‖

2
𝑑𝑡

∞

0

+ 

2𝜇𝑖Ω𝑖�̅�(𝐵𝑖
𝑇𝑃𝑖𝐴𝑖,𝑚

−1𝐵𝑖) 

∫ ‖𝜃𝑖𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛)‖‖𝜃𝑖
𝑇
𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛)‖ 𝑑𝑡 < ∞

∞

0

 

(44) 

 

It means that 𝑉𝑖(𝑡 → ∞) < 𝑉𝑖(0) , therefore 𝑉𝑖  decrease 

inside a compact set 𝒞 ⊂ ℝ𝑛  as described in Eq. (30). 

However, 𝑉𝑖  increase inside the complementary set 𝒞 =

{‖�̃�𝑖
𝑇
𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛)‖ ∈ ℝ

𝑛: ‖�̃�𝑖
𝑇
𝛷𝑖(𝜎𝑖(𝑥𝑖), 𝑢𝑖,𝑛)‖ ≤ 𝛽} 

which contain �̃�𝑖
𝑇
= 0  and will inside 𝒞 . By the LaSalle’s 

extension of the Lyapunov method, �̃�𝑖 is uniformly bounded. 

It implies that the tracking error 𝑒𝑖 is uniformly bounded. 

 

Proof of the stability of �̇�.  

Inspired by reference [10], stability analysis of the platoon 

can be conducted by using the characteristic equation of Eq. 

(27) as: 

 

|𝜆𝐼𝑁 − �̂�| = |

𝜆𝐼𝑁 −𝐼𝑁 0𝑁
0𝑁 𝜆𝐼𝑁 −𝐼𝑁
𝛼𝑝𝐻 𝛼𝑣𝐻 𝜆𝐼𝑁 + 𝛼𝑎𝐻 + 𝜗

| (45) 

 

= 𝜆3𝐼𝑁 + 𝜆
2(𝛼𝑎𝐻 + 𝜗) + 𝜆𝛼𝑣𝐻 + 𝛼𝑝𝐻 (46) 

 

Here, 𝛼𝑝 , 𝛼𝑣 �̧�𝑎 , 𝜗 are diagonal matrices and H is lower 

triangular matrix, therefore Eq. (46) can be described as: 

 

|𝜆𝐼𝑁 − �̂�| =∏𝜆3
𝑁

𝑖=1

+ 𝜆2 [𝛼𝑖,𝑎(𝑑𝑖𝑖 + 𝑔𝑖𝑖) +
1

𝜏𝑖
]

+  𝜆[𝛼𝑖,𝑣(𝑑𝑖𝑖 + 𝑔𝑖𝑖)] + 𝛼𝑖,𝑝(𝑑𝑖𝑖 + 𝑔𝑖𝑖) 

(47) 

 

The stability of the global tracking error dynamics Eq. (27) 

is equivalent to the stability of the following 𝑁 characteristic 

equations, 

 

𝜆3 + 𝜆2 [𝛼𝑖,𝑎(𝑑𝑖𝑖 + 𝑔𝑖𝑖) +
1

𝜏𝑖
] + 𝜆[𝛼𝑖,𝑣(𝑑𝑖𝑖 + 𝑔𝑖𝑖)]

+ 𝛼𝑖,𝑝(𝑑𝑖𝑖 + 𝑔𝑖𝑖) = 0,   𝑖 = 1,2, . . , 𝑁 
(48) 

 

Since H is lower triangular matrix, it is seen that �̂� in Eq. 

(28) is composed of 𝐴𝑖 − 𝑐2,𝑖(𝑑𝑖𝑖 + 𝑔𝑖𝑖)𝐵𝑖𝐾𝑖  which is equal to 

𝐴𝑖,𝑚 as in Eq. (22). From Eq. (37), by choosing the proper 𝑐2,𝑖 

it shown that 𝐴𝑖,𝑚  is Hurwitz for all 𝑖 . Therefore, all the 

eigenvalues of Eq. (48) have negative real parts and guarantee 

stability of vehicle platoon.  

This completes the proof.  

 

 

5. NUMERICAL SIMULATION 

 

For numerical simulation analysis, a heterogeneous vehicle 

platoon consisted of 1-leader and 5-followers, formed based 

on PF topology and constant spacing policy with the desired 

inter-vehicular distance 𝑑𝑟 = 5 m, is used, Figure 2.  

Vehicles have nominal inertial time lags 𝜏0 = 0.6 , 𝜏1 =
0.25, 𝜏2 = 0.27, 𝜏3 = 0.3, 𝜏4 = 0.5 and 𝜏5 = 0.7. Followers 

are subjected to uncertainty in the inertial time lag which 

represented by following constant weighting matrices: 

𝑊1
𝑇 = [0 0 0.286], 𝑊2

𝑇 = [0 0 0.27], 𝑊3
𝑇 = [0 0 0.926], 

𝑊4
𝑇 =[0 0 0.286] and 𝑊5

𝑇 =[0 0 0.125]. The actual control 

effectiveness for followers is Ω1 = 0.5, Ω2 = 0.6, Ω3 = 0.6, 

Ω4 = 0.7 and Ω5 = 0.7. It is assumed that only position and 

velocity information can be obtained, therefore the output 

matrix is, 

 

𝐶𝑖 = [
1 0 0
0 1 0

] (49) 

 

The initial states of vehicles are as follows: 𝑥0(0) =
[60,20,0]𝑇 , 𝑥1(0) = [40,18,0]𝑇 , 𝑥2(0) = [25,19,0]

𝑇 , 

𝑥3(0) = [17,22,0]𝑇 , 𝑥4(0) = [10,21,0]
𝑇  and 𝑥5(0) =

[0,17,0]𝑇 , while the initial state of the estimated state are 

selected near the initial states, namely �̂�1(0) = [38,17,0]
𝑇 , 

�̂�2(0) = [27,18,0]𝑇 , �̂�3(0) = [16,23,0]
𝑇 , �̂�4(0) =

[12,22,0]𝑇 and �̂�5(0) = [2,16,0]𝑇. 

The coupling gains for the observer and nominal controls, 

the adaptation rates and the weighting constant are selected to 

be the same for each follower, namely 𝑐1,𝑖 = 0.1 and 𝑐2,𝑖 =

0.5 , 𝛾𝑖 = 1  and 𝜇𝑖 = 0.2  respectively. While the observer 

gain, 𝐹𝑖, and the feedback gain, 𝐾𝑖 are obtained according to 

Eq. (8) and Eq. (12) respectively by selecting 𝑄𝑖 = 𝐼3×3 and 

𝑅𝑖 = 0.1.  

Remark 3: In practice, the control parameters that require 

tuning are 𝑄𝑖 , 𝑅𝑖, 𝑐1,𝑖 , 𝑐2,𝑖, 𝛾𝑖 and 𝜇𝑖. It should be noted that 

the choice of 𝑄𝑖 , 𝑅𝑖, 𝑐1,𝑖 and 𝑐2,𝑖, values is a trade-off between 

consensus tracking performance and a reasonable control 

signal. The larger the value of 𝑄𝑖 , 𝑐1,𝑖 and 𝑐2,𝑖, the better the 

consensus tracking performance, conversely, the smaller the 

value of 𝑅𝑖 , the better the consensus tracking performance. 

However, the increase in performance will be followed by an 

increase in the control signal [22]. The higher the adaptation 

rate, 𝛾𝑖, the faster the follower can track to reference model, 

but it is followed by the possibility of high-frequency 

oscillations of the control signal [23]. The greater the value of 

𝜇𝑖, the greater the frequency attenuation of the control signal. 
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Figure 2. A vehicle platoon with PF topology [22] 

 

 
 

Figure 3. The state estimation error, �̂�𝑖 
 

 
 

Figure 4. Tracking error with respect of reference model, 𝑒𝑖 
 

 
 

Figure 5. Synchronization of the platoon 

 
 

Figure 6. Inter-vehicular distance comparison between the 

proposed DMRAC with OCM and the standard DMRAC 

 

 
 

Figure 7. Control input comparison between proposed 

DMRAC and standard DMRAC 

 

Table 1. Tracking error w.r.t the reference model 

 
Tracking error (t≥20s) Min Max 

Distance [m] -0.026 0.006 

Velocity [m/s] -0.0003 -0.0001 

Acceleration [m/s2] -0.00007 -0.00004 

 

 

Numerical simulations show that the state estimation error 

is approach zero as time approach infinity, Figure 3. While, in 

Figure 4, it is shown that the tracking error of followers w.r.t 

the reference model is bounded in some constant values, Table 

1. Stability and synchronization of the heterogeneous vehicle 

platoon is shown in Figure 5. It is seen that followers able to 

keep the inter-vehicular distance as required, with small 

bounded residual error, namely ± 0.025 m. 

For further analysis, the results were compared with the 

standard DMRAC [22] which was modified to be designed 

based on the cooperative observer and applied to 

heterogeneous vehicle platoons (standard DMRAC). Here, the 

inter-vehicular distance for both schemes is analyzed for each 

follower as shown in Figure 6. It can be seen that the 
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performance of the proposed controller is relatively the same 

with standard DMRAC, however the proposed controller able 

to eliminate high frequency oscillation in the control input 

which occurred in the standard DMRAC, Figure 7. This 

control signal improvements have implications for significant 

improvements in vehicle jerks and driving comfort, since the 

control input represents the desired acceleration of the vehicle. 

Moreover, with smooth trajectory control input, it will 

improve energy efficiency. 

 

 

6. CONCLUSIONS 

 

This paper presented a distributed model reference adaptive 

control based on cooperative observer for synchronization of 

heterogeneous vehicle platoon. The control scheme utilized a 

reference model and a main control system. The reference 

model generated a reference state that will be tracked by the 

estimated state which provided by the cooperative observer. 

The main control system consisted of two terms, namely (i) a 

nominal control that utilized the cooperative state estimation 

error and (ii) an adaptive term that adopted optimal control 

modification. Through stability analysis and numerical 

simulation, it is shown that the state estimation error approach 

zero as time approach infinity. Moreover, it shown that the 

tracking error w.r.t the reference state is bounded in some 

small constant values which implied that the follower 

synchronized the leader state with small residual error. The 

proposed control exhibited the advantage of eliminating high 

frequency oscillation in the control input which usually 

occurred in the standard DMRAC with high adaptation rate. 

This paper still assumes that the leader moves at constant 

velocity and communication between vehicles is in ideal 

conditions. Therefore, future works may focus on several 

implementation issues such as explicitly considering poor 

communication problems in controller design and stability 

analysis and on the case that lead vehicle has possibility to 

move at time-varying velocity. 
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