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A virus that attacks the human respiratory system that first appeared in the province of 

Wuhan, China is known as COVID-19 (SARS COV2 n-corona virus). In order to 

anticipate the increasing of the cases, a strategy is needed to inhibit its growth and 

spread. Seeing the projection of future situations becomes very important, so we can 

anticipate with a selection of policy scenarios. The dynamical system model approach 

is very important for predicting future situations as well as selectable scenarios based 

on simulation results. In this study, we develop a COVID-19 transmission model which 

can be used to predict the epidemiological outcome and simultaneously to evaluate the 

effect of quarantine and hospitalization to COVID-19 spread. The mathematical model 

of the transmission of COVID-19 was developed in the form of the non-linear 

differential equation system, with seven variables, namely susceptible, exposed, 

infected, quarantined-1 (exposed individuals who were quarantined), quarantined-2 

(infected individuals who were quarantined), hospitalized and recovered. The proposed 

model has a non-endemic and endemic equilibrium point. Local stability analysis of the 

non-endemic equilibrium point was investigated using the Routh-Hurwitz criterion, 

while global stability of the endemic equilibrium point was analyzed by using the 

Lyapunov method. If the basic reproduction number is less than one, then non-endemic 

equilibrium point is stable. On the other hand, if the basic reproduction number is 

greater than one, then endemic equilibrium point is stable. Verification of the developed 

model was carried out through numerical simulations using data from Central Java 

Province, Indonesia. We have investigated that parameter related to quarantine and 

hospitalize affect the number of new infections COVID-19 and the basic reproduction 

number. From the simulation results, it was found that strict quarantine and hospitalize 

have the potential to succeed in reducing and inhibiting the transmission of the COVID-

19. It can be used by the government in making policies to increase the implementation

of quarantine and hospitalize in the community.
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1. INTRODUCTION

Coronavirus is a virus characterized by a crown of spikes on 

its surface. The most dangerous corona viruses today are 

MERS-CoV and SARS-CoV, which are the cause of severe 

diseases, such as MERS and SARS [1, 2]. At the end of 2019, 

in Wuhan, China, a epidemiological outbreak of COVID-19 

caused by SARS-CoV appeared [3-5]. Upon further 

investigation, it was found that the disease was caused by 

infection with a new type of virus belonging to the coronavirus 

family, which was later named 2019 novel Coronavirus (2019-

nCoV) [6]. World Health Organization (WHO) named the new 

virus SARS-CoV-2 (Severe Acute Respiratory Syndrome 

Coronavirus2) and the name of the disease was COVID-19 

(Coronavirus Disease 2019) [7]. 

Following WHO advice to limit, control, delay and reduce 

the spread of COVID-19. To overcome this pandemic situation, 

various countries, including Indonesia, have implemented a 

quarantine system to reduce the transmission rate of COVID-

19. The Indonesian government has implemented several

policies to reduce the transmission of the virus. Large-Scale

Social Restrictions (PSBB) are a type of implementation of 

health quarantine in the region, in addition to regional 

quarantine, hospital quarantine, and self-quarantine. 

Community responses related to community health and social 

measures implemented by the federal government in order to 

reduce the spread of Covid-19 during a pandemic have been 

studied by Okafor et al. [8].

In the COVID-19 pandemic situation, in addition to the 

development of medical and medical science which has a 

major role in overcoming COVID-19, other fields of science 

that also have an important role in dealing with COVID-19, 

one of which is the field of mathematics, namely mathematical 

modeling. According to reference [9], mathematical modeling 

is a field of mathematics to represent the problems in the real-

world into mathematical language, so that a more precise 

understanding of real-world problems is obtained. 

Mathematical modeling, through differential equations, can be 

applied to represent the phenomenon of change, one of which 

is in the field of biology, including the field of Health [10, 11]. 

In various cases of coronavirus disease spread, the epidemic 

model used to represent epidemic phenomena in a population. 
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Several mathematical and statistical models have been 

developed by researchers. Adedotun [12] has been published 

the classification and regression tree models and also 

autoregressive integrated moving averages that are used for 

modeling and forecasting the confirmed COVID-19 cases. 

Further, dynamical models of the COVID-19 spread, such 

as Suspected, Infected, and Removed (SIR) [13] and 

Suspected, Exposed, Infected, and Removed (SEIR) models 

[14] have been published to analyze the transmission between 

its subpopulations. SEIR is a modified model of the SIR model 

that has been presented in many reports, see e.g. [15-17]. Then, 

Tchoumi et al. [18] has modified the SIR model of two-strain 

COVID-19 transmission dynamics with strain one vaccination. 

Development of this compartmental model of the COVID-19 

epidemic by adding Hospitalized subpopulation (SEIHR) has 

been investigated by Rahman et al. [19]. This model was built 

using a non-linear system of differential equations to predict 

the transmission of COVID-19. Furthermore, various studies 

about COVID-19 spread analysis using dynamical systems are 

also available in the literature, which were used to determine 

the effectiveness of treatments to prevent the transmission of 

the virus (see e.g. [20-26]). We summarize the specification of 

each developed model as well as the proposed model in this 

paper in Table 1. It shows the progress of the COVID-19 

transmission model development extracted from published 

papers including the model developed in our study based on 

the divided compartments which represent the number of 

dependent variables from the dynamical model. Moreover, 

each model has its own uniqueness in term of the parameters 

involved in the model.

 

Table 1. Variables studied in the compartmental models of the COVID-19 transmission 

(S: Suspectible; V: Vaccinated; E/L: Exposed/Laten;Q: Quarantined; I: Infected ; A: Asymptomatic ; H: Hospitalized; R: 

Recovered ; D: Death/Deceased body) 

 

Source Compartments (Variables) 

S V E/L Q I A H R D 

Mackolil and Mahanthesh [13] √    √   √  

Parsamanesh et al. [17] √ √   √     

Bärwolff et al. [27] √    √   √  

Zewdie and Gakkha [28] √    √   √ √ 

Din et al. [14] √  √  √   √  

Carcione et al. [15] √  √  √   √  

Santoro et al. [16] √  √  √   √  

Radha and Balamuralitharan [21] √  √  √   √  

Cullenbine et al. [26] √  √  √   √  

Yang and Wang [29] √  √  √   √  

Ishtiaq [30] √  √  √   √  

Schecter [31] √  √  √   √  

Masoumnezhad et al. [20] √ √   √   √  

Tchoumi et al. [18] √ √   √    √  

Telles et al. [2] √  √ √   √   

Lamichhane et al. [32] √  √  √ √  √  

Hu et al. [25]  √  √ √ √   √  

Rahman et al. [19] √  √  √  √ √  

Ala’raj et al. [12] √  √  √  √  √ 

Arin and Portet [1] √  √  √ √  √  

Serhani and Labbardi [22] √   √ √ √  √ √ 

This paper √  √ √ √  √ √  

 

Furthermore, policies are needed to anticipate an increase in 

cases, slow or stop the spread of the virus. By identifying the 

right policies to implement. The model of dynamical system 

model approach is very important to predict future conditions 

from the simulation results as well as the scenarios that can be 

selected. Analysis of the interaction between the most 

influential variables can help determine the sensitivity of the 

related parameters. This is done to determine the behavior of 

the system around the non-endemic and endemic equilibrium 

points. In this study, we formulated the COVID-19 spread 

model by considering the policies such as quarantine and 

hospital treatment. Therefore, there are new information and 

parameters involved in our proposed model so that it becomes 

the novelty in this work. 

This paper is structured as follows: In the introduction, we 

describe the scientific background, importance, and objectives 

of this research. The mathematical formulation of COVID-19 

spread, positivity and boundedness of solutions, and the basic 

reproduction number are discussed in the second section. In 

the third section, we propose the non-endemic and endemic 

equilibrium points. Stability analysis is discussed in the fourth 

section. Further, in the fifth section, numerical simulations 

based on data from Central Java Province Indonesia are 

demonstrated to verify the developed dynamical model. 

Finally in the sixth section, conclusions for the research are 

given. 

 

 

2. MATHEMATICAL FORMULATION OF COVID-19 

SPREAD 
 

The spread of COVID-19 model in this study, represents the 

interaction between seven subpopulations, that is namely 

susceptible (S), exposed (E), infected (I), quarantined-1 (Q1), 

quarantined-2 (Q2), hospitalized (H) and recovered (R). Hence, 

the total population at time t is represented by  

 

𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑄1(𝑡) + 𝑄2(𝑡) + 𝐻(𝑡) + 𝑅(𝑡)  

 

In this model the migration rate is ignored. The transmission 

of COVID-19 is assumed from susceptible individuals (S) who 

are in contact with exposed individuals (E) and infected 

individuals (I) with the incidence rate β1 and β2 respectively. It 

is assumed that the exposed individuals (E) are transmitted to 
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infected individuals (I) and the quarantined exposed 

individuals (Q1) is transmitted to quarantined infected 

individuals (Q2) with the same average rate of v, also the 

infected individuals (I) and the quarantined infected (Q2) are 

transmitted to hospitalized individuals (H) with the same 

transition rate of η. Hospitalized individuals (H) are 

transmitted to recovered individuals with rate of 𝛾. The 

proposed COVID-19 disease transmission model is given in 

the scheme showed in Figure 1. 

 

 
 

Figure 1. Schematic model of the spread of COVID-19 

 

The dynamics of each compartment, which were used to 

formulate the mathematical model representing the COVID-

19 spread, are described as follows. Changes in the susceptible 

individuals (S) cover: (1) increment due to the recruitment rate 

of 𝐴, (2) decrement due to infections from direct interactions 

between vulnerable individuals and COVID-19 carriers, and 

move to individuals E with rates β1 and β2, (3) decrement due 

to natural death by 𝜇1, Further, it increased due to the rate of 

development from Q1 to S of ε.  

The number of individuals in the exposed subpopulation (E) 

increased due to the interaction between susceptible 

individuals and COVID-19 carriers, causing E and I with rate 

𝛽1 and 𝛽2 respectively. Further, it decreased due to the rate of 

development from E to Q1 and I of q1 and v respectively. 

Finally, there is a natural death of 𝜇1.  

Changes in the number of the exposed individual who were 

quarantined (Q1) cover: (1) increment due to the rate of 

development of exposed E to Q1 by the rate of q1, (2) 

decrement due to recovery with the rate of ε, (3) decrement 

due to the rate of transmission from Q1 to Q2 and natural death 

of v and 𝜇1 respectively.  

The number of the infected individuals (I) increased due to 

the rate of development from the E class to positive individuals 

I by the rate of v. The infected individuals by COVID-19 

decreased due to the rate of change of infected individuals to 

quarantine Q2 and hospitalized H by q2 and 𝜂  respectively, 

decrement because of the death rate due to COVID-19 infected 

and natural deaths with the rate of 𝜇2 and 𝜇1 respectively.  

Changes in the number of the infected individual who were 

quarantined (Q2) cover: (1) increment due to the rate of 

development of infected individuals I to Q2 and the rate of 

transmission from Q1 to Q2 by the rate of q2 and 𝑣 respectively, 

(2) decrement because of the death rate due to COVID-19 

infected and natural deaths with the rate of 𝜇2 and 𝜇1 

respectively. (3) decrement due to the rate of transmission 

from Q2 to H of 𝜂.  
The number of the hospitalized individuals (H) increased by 

subpopulation transmissions from Q2 and I with the rate of 𝜂. 
Further, H reduced due to COVID-19 infected and natural 

deaths with the rate of 𝜇2 and 𝜇1 respectively. Finally, 

decrement due to the rate of transmission from H to R of γ.   

The number of the recovered individual (R) increased by 

population transmissions from H with the rate of 𝛾 and reduced 

due to natural deaths by 𝜇1.  

There are seven variables involved in the model, the 

dynamic of each variable is modeled as a differential equation. 

Below, we present the derivation of the differential equation 

of S only, where the model derivation for the other six 

variables was derived analogously. The dynamic of S at a time 

t with the time increment t is modeled as follows: 

 

1 1

2 1

( ) ( ) ( ( ) ( ) ( )

( ) ( ) ( )) .

S t t S t A Q t S t I t

S t E t S t t

 

 

+  − = + −

− − 
 

 

By taking the limit value of S for Δt→0, we derive the 

following differential equation: 

 

1 1
0

2 1

( ) ( )
lim ( ) ( ) ( )

( ) ( ) ( ).

t

S t t S t dS
A Q t S t I t

t dt

S t E t S t

 

 

 →

+  −
= = + −



− −
 

 

Based on the dynamics described above and Figure 1, the 

non-linear differential equation system for all seven variables 

as the complete mathematical model of the transmission of 

COVID-19 disease is obtained as follows 

 

{
 
 
 
 
 

 
 
 
 
 

𝑑𝑆

𝑑𝑡
= 𝐴 + 𝜀𝑄1 − 𝛽1𝑆𝐼 − 𝛽2𝑆𝐸 − 𝜇1𝑆,

𝑑𝐸

𝑑𝑡
= 𝛽1𝑆𝐼 + 𝛽2𝑆𝐸 − 𝑞1𝐸 − 𝜇1𝐸 − 𝑣𝐸,

𝑑𝐼

𝑑𝑡
= 𝑣𝐸 − 𝑞2𝐼 − 𝜂𝐼 − (𝜇1 + 𝜇2)𝐼,

𝑑𝑄1

𝑑𝑡
= 𝑞1𝐸 − 𝜀𝑄1 − 𝑣𝑄1 − 𝜇1𝑄1,

𝑑𝑄2

𝑑𝑡
= 𝑞2𝐼 + 𝑣𝑄1 − 𝜂𝑄2 − (𝜇1 + 𝜇2)𝑄2,

𝑑𝐻

𝑑𝑡
= 𝜂𝐼 + 𝜂𝑄2 − 𝛾𝐻 − (𝜇1 + 𝜇2)𝐻,

𝑑𝑅

𝑑𝑡
= 𝛾𝐻 − 𝜇1𝑅.

   (1) 

 

with non-negative initial values  

 

𝑆(0) = 𝑆0,   𝐸(0) = 𝐸0, 𝐼(0) = 𝐼0, 𝑄1(0) =
𝑄10, 𝑄2(0) = 𝑄20, 𝐻(0) = 𝐻0, 𝑅(0) = 𝑅0  

 

and all parameters are positive.  

 

2.1 Positiveness and boundedness of solutions 

 

In order to analyze whether the COVID-19 model as in (1) 

has epidemic significance, the first step is to prove that the 

variables are positive. This means that the solution of the 

system of equations with non-negative initial conditions must 

be positive for every t>0 and also model (1) represent the 

interaction between of human subpopulations, so the solutions 

are bounded. The next theorem has guaranteed the 

positiveness and boundedness of solutions of the system. 

Theorem 1. Let S(0)≥0, E(0)≥0, I(0)≥0, Q1(0)≥0, Q2(0)≥0,, 

H(0)≥0, and R(0)≥0, then the solutions S(t), E(t), I(t), Q1(t), 

Q2(t), H(t),and R(t) of the model (1) are positive for every t>0. 

Proof. Please see Appendix A for proof  

Theorem 2. The feasible region of the model (1) is defined 
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by 𝛺 = {(𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄1(𝑡), 𝑄2(𝑡), 𝐻(𝑡), 𝑅(𝑡)) ∈

ℝ+
7 : 0 ≤ 𝑁(𝑡) ≤

𝐴

𝜇1
} is positively invariant for the system (1).  

Proof. Please see Appendix B for proof  

 

2.2 The basic reproductive number 

 

The basic reproductive number (𝔑0) is the average number 

of new infection cases in a population. If 𝔑0 < 1, the spread 

of the disease can be controlled and will not become an 

epidemic [27, 28]. However, if 𝔑0 < 1, then each infected 

individual will spread the disease to other individuals, so that 

it can lead to an epidemic [29, 30]. The reproduction number 

is found from the Next Generation Matrix (NGM) method, 

which is to build a matrix that generates the number of infected 

individuals [31] in this dynamic system model the infected 

compartments are the exposed (E) and infectious (I). 

For example, 𝑋 = [𝐸 𝐼]𝑇  so that it can be written as 

 

𝑑𝑋

𝑑𝑡
= 𝐹(𝑋) − 𝑉(𝑋) = [

𝛽1𝑆𝐼 + 𝛽2𝑆𝐸 − 𝑞1𝐸 − 𝜇1𝐸 − 𝑣𝐸

𝑣𝐸 − 𝑞2𝐼 − 𝜂𝐼 − (𝜇1 + 𝜇2)𝐼
]  

 

where, F(x) is a matrix containing the initial infection rate, 

while V(x) is a matrix containing the rate of movement of the 

infected population, with the values of F(x) and V(x) being  

 

𝐹(𝑋) = [
𝐹1
𝐹2
] = [

𝛽1𝑆𝐼 + 𝛽2𝑆𝐸
0

],  

and 

 

𝑉(𝑋) = [
𝑉1
𝑉2
] = [

𝑞1𝐸 + 𝜇1𝐸 + 𝑣𝐸

𝑞2𝐼 + 𝜂𝐼 + (𝜇1 + 𝜇2)𝐼 − 𝑣𝐸
]  

 

Suppose F and V are Jacobian matrices of F(x) and V(x) and 

substitute the value of the variable with the equilibrium point 

𝐾0(𝑆0, 𝐸0, 𝐼0, 𝑄1
0, 𝑄2

0) = (
𝐴

𝜇1
, 0,0,0,0) then we get: 

 

𝐹 = [

𝜕𝐹1

𝜕𝐸

𝜕𝐹1

𝜕𝐼
𝜕𝐹2

𝜕𝐸

𝜕𝐹2

𝜕𝐼

] = [
𝛽2𝑆 𝛽1𝑆
0 0

] = [
𝛽2𝐴

𝜇1

𝛽1𝐴

𝜇1

0 0
],  

 

and 
 

𝑉 = [

𝜕𝑉1

𝜕𝐸

𝜕𝑉1

𝜕𝐼
𝜕𝑉2

𝜕𝐸

𝜕𝑉2

𝜕𝐼

] = [
𝑞1 + 𝜇1 + 𝑣 0

−𝑣 𝑞2 + 𝜂 + 𝜇1 + 𝜇2
]  

 

Furthermore, to determine the inverse of the 𝑉 method is 

used Next Generation Matrix (NGM) 
 

𝑉−1 =
1

𝑑𝑒𝑡(𝑉)
𝐴𝑑𝑗(𝑉)  

𝑉−1 =
1

𝑞1+𝜂+𝜇1+𝜇2
[
𝑞1 + 𝜂 + 𝜇1 + 𝜇2 0

𝑣 𝑞1 + 𝜇1 + 𝑣
].  

 

So that the inverse matrix V, as follows 

 

𝑁𝐺𝑀 = 𝐹(𝑉)−1𝑁𝐺𝑀 [
𝛽2𝐴

𝜇1(𝑞1+𝜇1+𝑣)
+

𝛽1𝐴𝑣

𝜇1(𝑞1+𝜇1+𝑣)(𝑞2+𝜂+𝜇1+𝜇2)

𝛽1𝐴

𝜇1(𝑞2+𝜂+𝜇1+𝜇2)

0 0
].  

 

The reproduction number is (ℜ0) obtained from the radius 

spectral of the NGM determined using a non-endemic 

equilibrium point. The reproduction number obtained are as 

follow 

 

ℜ0 =
𝛽2𝐴

𝜇1(𝑞1+𝜇1+𝑣)
+

𝛽1𝐴𝑣

𝜇1(𝑞1+𝜇1+𝑣)(𝑞2+𝜂+𝜇1+𝜇2)
.  

 

The form ℜ0 above, it shows that the parameters 𝑞1 and 𝑞2 

relating to quarantine and also 𝜂  (transition rate from 

quarantined and infected individuals to hospitalized 

individuals) are inversely proportional to the value of the basic 

reproduction number which will determine the type of stability. 

The greater the value of 𝑞1, 𝑞2 and 𝜂, will impact the smaller 

the value of ℜ0 . This parameter makes an important 

contribution to the occurrence of epidemics when the system 

has an endemic equilibrium and determines the speed in 

achieving COVID-19 disease-free equilibrium when ℜ0  is 

less than one. 

 

 

3. EQUILIBRIUM POINT 

 

The equilibrium point is the point where there is no change 

in the number of individuals in each subpopulation. The 

equilibrium point is obtained as follows 

 
𝑑𝑆

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑄1

𝑑𝑡
=

𝑑𝑄2

𝑑𝑡
=

𝑑𝐻

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0  

 

Notice in system (1), the first five equation of the model (1) 

don’t depend on H and R, so that the model (1) can be reduced 

to a model with five variables. The equilibrium state is 

satisfied, as follows. 

 

{
 
 

 
 

𝐴 + 𝜀𝑄1 − 𝛽𝑆𝐼 − 𝛽𝜎𝑆𝐸 − 𝜇1𝑆 = 0
𝛽𝑆𝐼 + 𝛽𝜎𝑆𝐸 − 𝑞1𝐸 − 𝜇1𝐸 − 𝑣𝐸 = 0

𝑣𝐸 − 𝑞2𝐼 − 𝜂𝐼 − (𝜇1 + 𝜇2)𝐼 = 0
𝑞1𝐸 − 𝜀𝑄1 − 𝑣𝑄1 − 𝜇1𝑄1 = 0

𝑞2𝐼 + 𝑣𝑄1 − 𝜂𝑄2 − (𝜇1 + 𝜇2)𝑄2 = 0

,  (2) 

 

with S(0)≥0, E(0)≥0, I(0)≥0, 𝑄1 ≥ 0, 𝑄2 ≥ 0 dan H≥0. The 

solution to the system of Eq. (1) has two equilibrium point 

states, namely the non-endemic equilibrium point 

𝐾0(𝑆, 𝐸, 𝐼, 𝑄1, 𝑄1) and the endemic equilibrium point 

𝐾1(𝑆∗, 𝐸∗, 𝐼∗, 𝑄1
∗, 𝑄2

∗). 
The COVID-19 non-endemic equilibrium point is a state of 

equilibrium in which the population is free from disease or 

there are no more individuals infected with COVID-19 disease. 

The non-endemic equilibrium point means that the class 

values of the infected compartment are zero (I=0), so the 

system of Eq. (1) becomes 

 

{
 
 

 
 𝐴 + 𝜀𝑄1 − 𝛽1𝑆𝐼 − 𝛽2𝑆𝐸 − 𝜇1𝑆 = 0 ⇒ 𝑆0 =

𝐴

𝜇1

𝛽1𝑆𝐼 + 𝛽2𝑆𝐸 − 𝑞1𝐸 − 𝜇1𝐸 − 𝑣𝐸 = 0 ⇒ 𝐸0 = 0

𝑣𝐸 − 𝑞2𝐼 − 𝜂𝐼 − (𝜇1 + 𝜇2)𝐼 = 0 ⇒ 𝐼0 = 0

𝑞1𝐸 − 𝜀𝑄1 − 𝑣𝑄1 − 𝜇1𝑄1 = 0 ⇒ 𝑄1
0 = 0

𝑞2𝐼 + 𝑣𝑄1 − 𝜂𝑄2 − (𝜇1 + 𝜇2)𝑄2 = 0 ⇒ 𝑄2
0 = 0

. 
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So, the non-endemic equilibrium point is found as follows 

𝐾0(𝑆0, 𝐸0, 𝐼0, 𝑄1
0, 𝑄2

0) = (
𝐴

𝜇1
, 0,0,0,0). 

The endemic equilibrium point for COVID-19 disease is a 

state of equilibrium in which in a population there are infected 

individuals, so that they can spread the infection to other 

individuals and cause COVID-19 to become endemic. Since 

in the endemic equilibrium point there are always infected 

individuals, the classes of infecting and infected compartments 

are not zero (I≠0). Therefore, the system of Eq. (1) becomes. 

{
 
 

 
 

𝐴 + 𝜀𝑄1
∗ − 𝛽1𝑆

∗𝐼∗ − 𝛽2𝑆
∗𝐸∗ − 𝜇1𝑆

∗ = 0
𝛽1𝑆

∗𝐼∗ + 𝛽2𝑆
∗𝐸∗ − 𝑞1𝐸

∗ − 𝜇1𝐸
∗ − 𝑣𝐸∗ = 0

𝑣𝐸∗ − 𝑞2𝐼
∗ − 𝜂𝐼∗ − (𝜇1 + 𝜇2)𝐼

∗ = 0
𝑞1𝐸

∗ − 𝜀𝑄1
∗ − 𝑣𝑄1

∗ − 𝜇1𝑄1
∗ = 0

𝑞2𝐼
∗ + 𝑣𝑄1

∗ − 𝜂𝑄2
∗ − (𝜇1 + 𝜇2)𝑄2

∗ = 0

  (3) 

 

with the help of Maple's calculator, the values of all endemic 

equilibrium point variables are obtained, showing that the 

endemic equilibrium points 𝐾1(𝑆
∗, 𝐸∗, 𝐼∗, 𝑄1

∗, 𝑄2
∗)exist, namely: 

 

𝑆∗ =
(𝑞1 + 𝜇1 + 𝑣)(𝜂 + 𝜇1 + 𝜇2 + 𝑞2)

𝜂𝛽2 + 𝑣𝛽1 + 𝛽2𝜇1 + 𝛽2𝜇2 + 𝛽2𝑞2
   𝐸∗ =

(𝜂 + 𝜇1 + 𝜇2 + 𝑞2)𝐼
∗

𝑣
 

𝐼∗ = −
𝑣(𝜇1 + 𝑣 + 𝜀)(𝑞1 + 𝜇1 + 𝑣)(1 − ℜ0)

(𝜇1 + 𝑣)(𝜇1 + 𝑞1 + 𝑣 + 𝜀)(𝜂𝛽2 + 𝑣𝛽1 + 𝛽2𝜇1 + 𝛽2𝜇2 + 𝛽2𝑞2)
   𝑄1

∗ =
(𝑞2 + 𝜂 + 𝜇1 + 𝜇2)𝑞1𝐼

∗

𝑣(𝑣 + 𝜇1 + 𝜀)
 

𝑄2
∗ =

𝐼∗(𝜂𝑞1 + 𝑣𝑞2 + 𝜀𝑞2 + 𝑞1𝜇1 + 𝜇1𝑞2 + 𝜇2𝑞1 + 𝑞1𝑞2)

(𝜇1 + 𝑣 + 𝜀)(𝜇1 + 𝜂 + 𝜇2)
. 

 

 

4. STABILITY ANALYSIS 

 

Analysis is used to determine the behaviour around the 

equilibrium point. Non-endemic equilibrium is the case in 

which there are no individuals infected by COVID-19 in a 

population, denoted by 

 

𝐾0(𝑆0, 𝐸0, 𝐼0, 𝑄1
0, 𝑄2

0) = (
𝐴

𝜇1
, 0,0,0,0).  

 

The local stability analysis of the non-endemic equilibrium 

point for the system of Eq. (1) is expressed in the following 

theorem. 

Theorem 3. If ℜ0 < 1 then the non-endemic equilibrium 

point 𝐾0 is locally asymptotically stable and ℜ0 > 1, then 𝐾0 

is unstable. 

Proof. Please see Appendix C for proof.  

Further, we explore the global stability analysis of the 

endemic equilibrium point K* by using Lyapunov method. 

The conditions for global stability of K* is discuss as follows. 

Theorem 4. Let the endemic equilibrium point K* of 

system (1) exists. 

i. If ℜ0 > 1  then the endemic equilibrium point K* is 

globally asymptotically stable. 

ii. If ℜ0 > 1, then it 𝐾∗ is unstable. 

Proof. To prove the stability of the endemic equilibrium 

point, we will use the Lyapunov method. Assume that ℜ0 > 1 

and let suitable Lyapunov function [32] in the form. 

 

( ) * *

1 *
1

ln ,
n

i

i i i

i i

x
x a x x x

x=

 
= − − 

 
  (4) 

 

with x=(S,E,I,Q1,Q2 ). 

Adjusting to (4), a Lyapunov function is formed by ℒ: 𝛺 ⊂
ℝ5 → ℝ, with: 

 

( ) * *

1 2 *

* * * *

1 2* *

* * * *1 2

3 1 1 1 4 2 2 2* *

1 2

, , , , ln

ln ln

ln ln ,

S
S E I Q Q S S S

S

E I
a E E E a I I I

E I

Q Q
a Q Q Q a Q Q Q

Q Q

 
= − − 
 

   
+ − − + − −   

   

   
+ − − + − −   

   

 

 

where, ∀(𝑆, 𝐸, 𝐼, 𝑄1, 𝑄2, 𝑅) ∈ 𝛺and 𝑎1, 𝑎2, 𝑎3, and 𝑎4  are real 

numbers. The function ℒ  is a Lyapunov function because it 

satisfies the definition of a Lyapunov function which will be 

shown as follows. The functionℒ is continuous on 𝛺 because 

the function ℒ contains logarithms and has a continuous first 

partial derivative on 𝛺.  

For any 𝐾 = (𝑆, 𝐸, 𝐼, 𝑄1, 𝑄2) ∈ 𝛺  with  𝐾 ≠ 𝐾∗ , 

then ℒ(𝑡) > 0 and if 𝐾 = 𝐾∗, then ℒ(𝑡) = 0.  

Next, we derived ℒ(𝑡) > 0  when 𝐾 ≠ 𝐾∗.  Let 
𝐾

𝐾∗
=

𝑎and𝑔(𝑎) = 𝐾 − 𝐾∗ − 𝐾∗ 𝑙𝑛
𝐾

𝐾∗
, then 

 

( ) ( )* *

* *
1 ln 1 ln .

K K
g a K K a a

K K

 
= − − = − − 

 
 

 

Note that the point a=1 is the minimum point of 𝑔(𝑎) with 

𝑔(1) = 0, because 𝑔′(1) = 0 and𝑔′′(𝑎) =
1

𝑎2
> 0. Thus it is 

obtained 𝑔(𝑎) = 𝐾 − 𝐾∗ − 𝐾∗ 𝑙𝑛
𝐾

𝐾∗
> 0,for 𝐾 ≠ 𝐾∗. 

Further, to show that the equilibrium point 𝐾∗ is a global 

minimum point is done by obtaining the Hessian matrix at 𝐾∗ 
as follows.  

 

( )

L L L L L

L L L L L

L L L L L

L L L L L

L L L L L

2 2 2 2 2

2

1 2

2 2 2 2 2

2

1 2

2 2 2 2 2
*

2

1 2

2 2 2 2 2

2

1 1 1 1 21

2 2 2 2 2

2

2 2 2 1 2 2

S E S I S Q S QS

S E E I E Q E QE

H K
S I E I I Q I QI

S Q E Q I Q Q QQ

S Q E Q I Q Q Q Q

     


       
     

       


    

=
       

    

       

    

        

*

1

*

2

*

3

1

4

2

1
0 0 0 0

0 0 0 0

0 0 0 0 .

0 0 0 0

0 0 0 0

S

a

E

a

I

a

Q

a

Q









 
 
 
 
 
 
 
 



 
 
 
 
 
 
 

=  
 
 
 
 
 
  
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Matrix 𝐻(𝐾∗)  is positive due to 𝑑𝑒𝑡(𝐻(𝐾∗)) =
𝑎1𝑎2𝑎3

𝑆∗𝐸∗𝐼∗𝑄1
∗𝑄2

∗ > 0.  Furthermore, when K=K* is obtained 

Lyapunov function ℒ(𝑡) as follows: 

 

( )

( )( ) ( )( ) ( )( )

( )( ) ( )( )

* *

1 2 *

* * * *

1 2* *

* * * *1 2

3 1 1 1 4 2 2 2* *

1 2

* * *

1 2

* *

3 1 4 2

, , , , ln

ln ln

ln ln ,

ln 1 ln 1 ln 1

ln 1 ln 1 0.

S
S E I Q Q S S S

S

E I
a E E E a I I I

E I

Q Q
a Q Q Q a Q Q Q

Q Q

S a E a I

a Q a Q

 
= − − 
 

   
+ − − + − −   

   

   
+ − − + − −   

   

= + +

+ + =

 

 

It is proved that ℒ(𝑡) > 0, if K≠K* and ℒ(𝑡) = 0 if K=K*, 

and K* are a global minimal. 

The derivative of the function ℒ with respect to t is: 

 

1 2

1 2

* * *

1 2

* *

1 1 2 2

3 4

1 2

1 1 1

1 1

dQ dQd dS dE dI

dt S dt E dt I dt Q dt Q dt

d S dS E dE I dI
a a

dt S dt E dt I dt

Q dQ Q dQ
a a

Q dt Q dt

    
= + + + +
    

     
= − + − + −     
     

   
+ − + −   

   

 

 

( )

( )

( ) ( )

( )

*

1 1 2 1

*

1 1 2 1

**

1

2 2 3 1 3 1

1

*

2

4 2 1 4 2

2

 

1

1

1 1

1 ,

d S
A Q SI SE S

dt S

E
a SI SE B E

E

QI
a vE B I a q E B Q

I Q

Q
a q I vQ B Q

Q

   

 

 
= − + − − − 
 

 
+ − + − 

 

  
+ − − + − −  

   

 
+ − + − 

 

 

(5) 

 

where 
 

𝐵1 = (𝑞1 + 𝜇1 + 𝑣)   
𝐵2 = (𝑞2 + 𝜂 + 𝜇1 + 𝜇2)  
𝐵3 = (𝜀 + 𝑣 + 𝜇1)  

𝐵4 = (𝜂 + 𝜇1 + 𝜇2). 

(6) 

 

The relationship between𝑆∗, 𝐸 ∗, 𝐼∗, 𝑄1
∗, and 𝑄2

∗ with Eqns. 

(6) and (3) is as follows 
 

{
 
 

 
 

𝐴 + 𝜀𝑄1
∗ = 𝛽1𝑆

∗𝐼∗ + 𝛽2𝑆
∗𝐸∗ + 𝜇1𝑆

∗

𝛽1𝑆
∗𝐼∗ + 𝛽2𝑆

∗𝐸∗ = 𝐵1𝐸
∗

𝑣𝐸∗ = 𝐵2𝐼
∗

𝑞1𝐸
∗ = 𝐵3𝑄1

∗

𝑞2𝐼
∗ + 𝑣𝑄1

∗ = 𝐵4𝑄2
∗.

 (7) 

 

Thus, Eq. (5) becomes 
 

 

 

   

 

1 1 2 1

* *
* * *

1 1 2 1

* * *

1 1 2 1 1 1 2 1

* *

2 2 2 2 3 1 3 1

* *

3 1 1 3 1 4 2 1 4 2

1

* *

4 2 2 2

2

d
A Q SI SE S

dt

S S
A Q IS ES S

S S

SI
a SI SE B E a E E S B E

E

E
a vE B I a vI B I a q E B Q

I

E
a q Q B Q a q I vQ B Q

Q

I
a q Q vQ

Q

   

   

   

= + − − −

 
+ − − + + + 
 

 
+ + − + − − + 

 

 
+ − + − + + − 

 

 
+ − + + + − 

 

+ − − *1

4 2

2

,
Q

B Q
Q

 
+ 

 

 

which is equivalent to the following expression, 

 

* * * * *

1 1 1 2 2 3 3 1 4 4 2

* *

1 2 1 1 1 1 2 2

*

1 2 1 1 2 3 1 1 2 2

*

4 2 1 3 3 1 4 1 4 4 2

*
* * *

1 1 1 2 3 1 1

1

*

4 2 2

2

d
A S a B E a B I a B Q a B Q

dt

a E S S SI a SI ES SE

a SE a B E a vE a q E IS a B I

S
a q I Q a B Q a vQ a B Q A

S

S SI E E
Q a E a vI a q Q

S E I Q

I
a q Q a

Q



     

 



 

 = + + + + + 

− − − + + − +

− + + + − +

+ − + − − −

− + − −

− * 1

4 2

2

.
Q

vQ
Q

 

(8) 

 

To simplify (8), define (
𝑆∗

𝑆
,
𝐸∗

𝐸
,
𝐼∗

𝐼
,
𝑄1
∗

𝑄1
,
𝑄2
∗

𝑄2
) =

(𝑦0, 𝑦1, 𝑦2 , 𝑦3, 𝑦4) , and let  𝐷 = 𝐴 + 𝜇1𝑆
∗ + 𝑎1𝐵1𝐸

∗ +
𝑎2𝐵2𝐼

∗ + 𝑎3𝐵3𝑄1
∗ + 𝑎4𝐵4𝑄2

∗. Thus, we have  

 

( )

( ) ( )

( )

( ) ( )

* *

1 1 2

0

* * * *

1 1 1 2

0 2 0 1

* *

2 1 1 2 3 1

1

* * *

1 2 2 4 2 3 3 4 1

2 3

* * * *0 1

4 4 2 0 1 1 1

4 3 0 2

* * * *32 4 4

2 3 1 4 2 4 1

1 1 3 3

1

1 1
1 1

1

1 1

1

.

d
D a E S

dt y

a S I a S E
y y y y

S a B a v a q E
y

S a B a q I a B a v Q
y y

y y
a B Q Ay Q a S I

y y y y

yy y y
a vE a q E a q I a vQ

y y y y

 

 



 

 

= − +

+ − − −

+ − + +

+ − + + − +

− − − −

+ − − −

 

(9) 

 

Construct the function set ϒ 

 

ϒ = {𝑦0,
1

𝑦0
,
1

𝑦1
,
1

𝑦2
,
1

𝑦3
,
1

𝑦4
,

1

𝑦0𝑦2
,

1

𝑦0𝑦1
,
𝑦1

𝑦0𝑦2
,
𝑦2

𝑦1
,
𝑦3

𝑦1
,
𝑦4

𝑦2
,
𝑦4

𝑦3
,
𝑦0

𝑦3
}.  

 

There are two groups corresponding to ϒ such that the 

product of all functions within each group is unity. The two 

groups are 

 

{𝑦0,
1

𝑦0
} and {𝑦0,

𝑦1

𝑦0𝑦2
,
𝑦2

𝑦1
}. 

 

Furthermore, associating with this groups, we can define the 

function 

 
𝑑ℒ

𝑑𝑡
= 𝑏1 (2 − 𝑦0 −

1

𝑦0
) + 𝑏2 (3 − 𝑦0 −

𝑦1

𝑦0𝑦2
−
𝑦2

𝑦1
),  (10) 

 

where, the coefficients b1, b2 are the unknown. We will 

determine coefficients a1, a2, a3, and a4 and b1 and b2 such that 

(9) is equal to (10). Taking those equations together, we derive  
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{
 
 
 
 
 
 

 
 
 
 
 
 
1 − 𝑎1 = 0
𝐴 = 𝑏1 + 𝑏2
𝜇1 + 𝑎1𝛽2𝐸

∗ = 𝑏1
𝛽2𝑆

∗ − 𝑎1𝐵1 + 𝑎2𝑣 + 𝑎3𝑞1 = 0
𝛽1𝑆

∗ − 𝑎2𝐵2 + 𝑎4𝑞2 = 0
𝜀 − 𝑎3𝐵3 + 𝑎4𝑣 = 0
𝑎4𝐵4𝑄2

∗ = 0
𝜀𝑄1

∗ = 0
𝑎1𝛽1𝑆

∗𝐼∗ = 𝑏2
𝑎2𝑣𝐸 = 𝑏2
𝑎3𝑞1𝐸

∗ = 0
𝑎4𝑞2𝐼

∗ = 0
𝑎4𝑣𝑄1

∗ = 0

  (11) 

 

From (11), by using some basic algebraic manipulations, we 

find  

 

𝑎1 = 1, 𝑎3 = 0, 𝑎4 = 0, 𝑎2 =
𝛽1𝑆

∗

𝐵2
, 𝑏1 = 𝜇1 +

𝑎1𝛽2𝐸
∗ = 𝜇1 + 𝛽2𝐸

∗, 𝑏2 = 𝑎1𝛽1𝑆
∗𝐼∗ = 𝛽1𝑆

∗𝐼∗.  
(12) 

 

Subtituting (12) into (11), we have 

 
𝑑ℒ

𝑑𝑡
= (𝜇1 + 𝛽2𝐸

∗) (2 − 𝑦0 −
1

𝑦0
) + (𝛽1𝑆

∗𝐼∗) (3 −

𝑦0 −
𝑦1

𝑦0𝑦2
−

𝑦2

𝑦1
) ≤ 0,  

(13) 

 

From the principle of arithmetical inequalities and 

geometrical means, we obtain 

 

1 2 1 2

0 0

0 2 1 0 2 1

1 2

0

0 2 1

1 2

0

0 2 1

3

3

3 0

y y y y
y y

y y y y y y

y y
y

y y y

y y
y

y y y

+ + 

+ + 

− − − 

 

 

and 

 

0 0

0 0

0

0

0

0

1 1
2

1
2

1
2 0.

y y
y y

y
y

y
y

+ 

+ 

− − 

 

 

Thus, it is proved that 
𝑑ℒ

𝑑𝑡
≤ 0 and 

𝑑ℒ

𝑑𝑡
= 0  if 𝑦0 = 1  and 

𝑦1 = 𝑦2. Since we can construct the Lyapunov function, ℒ >

0 and 
𝑑ℒ

𝑑𝑡
≤ 0 so that the endemic equilibrium point (𝐾∗) reach 

globally asymptotically stable. 

 

 

5. CASE STUDY 

 

In this section, we demonstrate a numerical simulation to 

verify the proposed dynamical COVID-19 spread model. Base 

on data provided by the Central Java Province, Indonesia from 

02 April 2021 to 5 October 2021, we estimate the parameters 

involved in the model (1) by using the nonlinear least-square 

method, which is a well-known method. This works by fitting 

the parameters from the solution of models (1) to the 

observation data and the estimated parameters derived by 

minimizing the least-square error, which are given in Table 2. 

 

Table 2. Parameter values 

 
Parameter Values  Unit Source 

𝛽1 (3.84)(10)−8 day-1 [estimated] 

𝛽2 (9.13)(10)−8 day-1 [estimated] 

𝑣 0.0473 day-1 [estimated] 

𝑞1 0.00983 day-1 [estimated] 

𝑞2 (2.6782)(10)−14 day-1 [estimated] 

𝜇1 (0.3873)(10)−5 day-1 [estimated] 

𝜇2 (6.15)(10)−2 day-1 [estimated] 

𝐴 4.99999 day-1 [estimated] 

𝜂 (3.72)(10)−1 day-1 [estimated] 

𝛾 (9.35)(10)−3 day-1 [estimated] 

𝜀 0.4888 day-1 [estimated] 

 

By substituting the parameters from Table 2 into Eq. (1), we 

obtain a dynamic model of spread COVID-19 as follows 

 

{
 
 
 
 

 
 
 
 

𝑑𝑆

𝑑𝑡
= (4.999) + 0.4888𝑄1 − (3.84(10

−8))𝑆𝐼

−(9.13(10−8))𝑆𝐸 − (0.3873(10−5))𝑆
𝑑𝐸

𝑑𝑡
= (3.84(10−8))𝑆𝐼 + (9.13(10−8))𝑆𝐸

−0.057133873𝐸
𝑑𝐼

𝑑𝑡
= 0.0473𝐸 − 0.4335𝐼

𝑑𝑄1

𝑑𝑡
= 0.00983𝐸 − 0.5361𝑄1

𝑑𝑄2

𝑑𝑡
= (2.6782(10−14))𝐼 + 0,0473𝑄1 − 0.4335𝑄2

  

 

Next, substitute the parameter values into the basic 

reproduction number to find out the number of susceptible 

individuals that infected by one infected individual. 

 

ℜ0 =
𝛽2𝐴

𝜇1(𝑞1+𝜇1+𝑣)
+

𝛽1𝐴𝑣

𝜇1(𝑞1+𝜇1+𝑣)(𝑞2+𝜂+𝜇1+𝜇2)
≈ 2.1577  

 

It was obtained that ℜ0 ≈ 2.1577 > 1, this means that on 

average one infected person can infect more than one 

susceptible person, which specifically means that on average 

one person can infect about 2 susceptible people. This is 

indicate that the model has the endemic equilibrium point 
(𝐾∗) . We obtain endemic equilibrium point 𝐾∗ =
(598284;  104;  12;  2;  1;  61;  1.46 × 108). 

 Base on Theorem 4, endemic equilibrium point is globally 

asymptotically stable because ℜ0 ≈ 2.1577 > 1. To illustrate 

this endemic simulation, we use the initial values as follows 

 

( ) ( ) ( )0 2,409,251; 0 20,515; 0 294,481;S E I= = =  

𝑄1(0) = 273,966; 𝑄2(0) = 267,572; 
𝐻(0) = 26,909; 𝑅(0) = 249,287. 

 

Numerical simulation of the SEIQ1Q2HR model of the 

transmission of COVID-19 is used to determine the dynamic 

behavior of the number of suspected exposed, infectious, 

quarantined-1, quarantined-2, hospitalized and recovered 

individuals using the MATLAB R2019b software package. 
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Figure 2. Simulation results in an endemic situation 

 

Figure 2 shows an endemic situation where susceptible 

individuals decrease due to transmission from exposed and 

infected individuals, resulting in an increase in exposed 

individuals until the 27th day. 

However, until the 10th day the quarantined-1 individual 

decreased, this was due to the quarantined-1 individual being 

able to recover to a suspectible individual. Likewise, 

quarantined-2 decreased until the 10th day because some of 

the quarantined-2 individuals were hospitalized and some 

death, either natural death or death coused by COVID-19 

infected. On the 27th day, the exposed individuals reached the 

peak where the number reached more than 1.25×106 

individuals and after that it decreased, but for the infected 

individuals, it increased to a peak on the 29th day with the 

number of 0.13×106 individuals and after that it decreased 

slowly. The increase in infected individuals was due to the 

addition of susceptible individuals infected with COVID-19. 

Individuals treated by the medical team (hospitalized) 

increased and reached a peak on the 40th day where the 

number reached 0.584×106 individuals, this was due to the 

addition of infected individuals and quarantine-2 to the 

hospitalized class. The increase in recovered individuals was 

due to individuals who were hospitalized some have recovered. 

 

 
 

Figure 3. The effect of variations in parameter values 𝑞1 on 

the infected individuals 

 

Further, simulated the effect of parameter variations q1 and 

q2 (parameter relating to quarantine) on infected individuals 

and reproductive number. Quarantine can be used as one of the 

mitigations to reduce the number of people infected with 

COVID-19 so that the COVID-19 disease does not spread. 

Quarantined simulation results are given in the Figure 3 and 

Figure 4 as follows. 

The effect of the variation of parameter values 𝑞1 with other 

parameters remains constant, taking q1=0.085; and q1=0.383 

and q1=0.993 changing the number of infected individuals is 

given in Figure 3. 

It can be seen that the higher the parameter value 𝑞1then the 

fewer infected individuals and vice versa. Until the 14th day 

with q1=0.085 people the number of infected individuals 26 

730 people. While for, q1=0.383 infected individuals as many 

as 2,322 people. As q1=0.993 for the infected individuals as 

many as 8,250 people. 

The effect of variations in parameter values q2 with other 

parameters remains constant, taking  q2=0.085; and q2=0.383 

and q2=0.993 on changes in the number of infected individuals 

is given in Figure 4. 

 

 
 

Figure 4. The effect of variations in parameter values 𝑞2 on 

the Infected people 

 

It can be seen that the higher the parameter value q2, so the 

fewer infected individuals and vice versa. Up to day 14th with 

q2=0.085 the number of infected individuals 43,710 people, 

for q2=0.383 those infected individuals as many as 25,070 

people. As for q2=0.993 the infected individuals as many as 

12,290 people. To investigate the quarantine effect, we took 

q1=0.5 and q2=0.4, while the other parameters were constant 

(see Figure 5). In this case, the basic reproduction value is 

𝑅0 = 0.2205 and the non-endemic equilibrium point, 𝐾0 =
(1.2909 × 109; 0; 0; 0; 0).  Since 𝑅0 = 0.2205 < 1 , this 

results in an asymptotically stable for non-endemic 

equilibrium point. 

 

 
 

Figure 5. The effect of quarantine on the spread of COVID-

19 
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This situation is given in Figure 5. It shows that if the 

parameter related to the quarantine can be maintained then the 

number of infected individuals will follow the curve according 

to the simulation results. In other words, the number of 

infected individuals will decrease over time. It means that the 

increasing value of the quarantine rate of exposed and infected 

individuals results in a smaller reproduction number due to 

quarantined individuals cannot transmit COVID-19 to other 

individuals. 

Figure 6. The effect of variations in parameter 𝜂 on the 

Recovered people 

The effect of parameter values 𝜂  (transition rate from 

quarantined and infected individuals to hospitalized 

individuals) with other parameters remains constant, taking 

η=0.12; η=0.57; η=0.99 on changes in the number of 

recovered individuals is demonstrated in Figure 6.  

It shown that the higher the parameter value 𝜂 then the 

higher recovered individuals. This is in accordance with the 

goals of hospitalized individuals for the treatment of infected 

individuals and accelerating recovery. Until the 14th day with 

η=0.12 people the number of recovered individuals 276,300 

people. While for η=0.57, recovered individuals as many as 

295,700 people. As η=0.99 for the recovered individuals as 

many as 298,500 people.  

Furthermore, to investigate the quarantine and hospitalize 

effect, we took 𝑞1 = 0.5, 𝑞2 = 0.4  and η=0.65, while the

other parameters were constant. The effect of quarantine and 

hospitalize on the dynamical model behaviour is depicted in 

Figure 7. This figure shows non endemic situation where 

susceptible individuals increase until the 18th day, which 

achieve 2,663,000 people. Meanwhile, on the 1st day, the 

number of exposed individual was 30,910 people and then 

decreased until 32nd day, which became 5 people. Likewise 

for the infected individuals on 3rd day, there were as many as 

33,300 people, then it decreased until 40th day reached to 1 

individual. It is also can be seen that for quarantine-1 and 

quarantine-2 individuals, on 4th day, there were as many as 

66,620 and 101,400 people respectively, then it decreased to 

zero on 46th day. Meanwhile, individuals who were in the 

hospital on the 5th day were 373,400 people then decreased to 

31,180 people on the 40th day, so there was a reduction of 

342,220 people. 

In addition, from Figure 7 it can be seen that recovered 

individuals increase over time, this is due to the intervention 

of quarantine and hospitalized individuals.  

In this case, the basic reproduction value is 𝑅0 = 0.2192.

Since R0=0.2192<1, this results in an asymptotically stable for 

non-endemic equilibrium point. The reproduction number 

value with quarantine and hospitalized intervention is smaller 

than the reproduction number value with only quarantine 

intervention. This indicates that if quarantine and hospitalized 

are applied, than the COVID-19 disease in the future will 

disappear faster. 

Figure 7. The effect of quarantine and hospitalize on the 

spread of COVID-19 

6. DISCUSSION

We proposed in Section 2 the mathematical model that 

represents the dynamics of population in dealing with 

COVID-19 spread including a case study using data in 

Central Java Province, Indonesia presented in Section 5. In 

the case study we demonstrated a numerical simulation 

based on data variables (S,E,I,Q1,Q2,H,R) Central Java 

Province, Indonesia from 02 April 2021 to 5 October 2021 

(about six months) to estimate the parameters. One may 

wonder whether these six-month data are sufficient. In fact, 

six months of data collection are enough because COVID-19 

spread is not related to the annual cycle. For one year data, it 

does not significantly affect the transmission pattern of 

COVID-19 compared with six-month data. Besides, the 

analysis regarding the mathematical proofs and stability were 

completely observed in this study. For comparison purposes, 

some other published references also used data with less 

than or equal to six months of the observation in their 

models and have produced good simulation results 

(see e.g. [2, 4, 5, 11, 13, 15, 22, 24-26, 28]).  

Numerical simulation results showed that the model has an 

endemic equilibrium point. In early stages, the number of 

individuals exposed and infected with COVID-19 increased, 

this is shown by the basic reproductive number value of 2.15, 

which means that one infected person can on average transmit 

the COVID-19 to two susceptible people. To reduce the 

reproduction number value, it can be done by increasing the 

average rate of exposed and infected individuals by applying 

self-quarantine and increasing the transition rate from 

quarantined and infected individuals to hospitalized 

individuals. This means that the more individuals who are 

quarantined, the number of infected individuals can be 

significantly reduced. Likewise, the more infected individuals 

who are admitted to the hospital, the faster the recovery. From 

the simulation results, by increasing quarantine and 

hospitalization, we found R0=0.2192<1. This condition results 

in an asymptotically stable non-endemic equilibrium point. 

This indicates that the transmission of COVID-19 is 

decreasing. 
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Based on the formulated model (1) this study still leaves 

open problems for future research prospects related to how to 

control the spread of COVID 19. Control variables could be 

added in the model that plays as strategies to reduce the 

number of exposed individual, quarantine individual, and 

infected individuals in the population and to increase the 

number of recovered individuals. Control variables could 

involve number of vaccinated individuals, self-precaution 

(wearing medical masks, washing hands/using hand sanitizers 

and physical distancing) and treatment. Furthermore, control 

methods that suit the dynamical model could be implemented 

in calculating the optimal strategy in controlling the spread of 

COVID-19. This will indeed produce more complicated 

differential equations and therefore further analysis regarding 

the existence and uniqueness of the optimal control are needed. 

 

 

7. CONCLUSIONS 

 

A modification of the SEIR dynamics model has been 

proposed by adding quarantine (Q) and hospitalized (H) 

variables to obtain the SEQ1Q2IHR dynamics model of the 

spread of COVID-19. In this case the population is divided 

into seven subpopulations, namely susceptible class, exposed, 

exposed individuals who were quarantined, infected 

individuals who were quarantined, infected, individuals being 

treated in hospital, and recovered. The dynamic model of the 

spread of COVID-19 has two equilibrium points, namely non-

endemic and endemic. 

We provided the conditions for the local stability of the non-

endemic equilibrium point by using the Routh-Hurwith 

method and the global stability of the endemic equilibrium 

point which was investigated by using the Lyapunov method. 

It has been demonstrated that the non-endemic equilibrium 

point is locally asymptotically stable if the value of the basic 

reproduction number is less than one. The globally 

asymptotically stable endemic equilibrium point is achieved if 

the value of the basic reproduction number is more than one. 

Furthermore, numerical simulations were carried out to 

verify the proposed model. Several scenarious were tested 

with various values of parameters related to quarantine and 

hospitalization. A relation between these parameters and the 

basic reproduction number was given, which showed that the 

increasing quarantine rate and hospitalization rate parameters 

resulted in a decreasing reproduction number. This means that 

the quarantine and hospitalization interventions can reduce the 

spread of the COVID-19 disease. 
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NOMENCLATURE 

 

S  Number of susceptible individuals  

E  Number of exposed individuals  

I  Number of infected individuals  

Q1  
Number of exposed individuals who were 

quarantined  

Q2  
Number of infected individuals who were 

quarantined  

H Number of hospitalized individua 

R Number of recovered individuals  

 

Greek Symbol 

 

A  Rate of recruitment-S 

β1  Transmission rate in S from infected individual 

β2  Transmission rate in S from exposed individual 

μ1  Natural death rate 

μ2  Death rate caused by COVID-19 

Ε  Rate of development from Q1 to S  

q1  Rate of quarantine of exposed individuals 

q2  Rate of quarantine of infected individuals 

v  Transition rate from Q1 to Q2 and E of I 

η  Transition rate from Q2 and I to H 

γ  Recovery rate of H 

 

 

APPENDIX 

 

Appendix A. Proof of Theorem 1 

 

We know the initial conditions of 𝑆(0) ≥ 0,  𝐸(0) ≥
0,  𝐼(0) ≥ 0, 𝑄1(0) ≥ 0, 𝑄2(0) ≥ 0,  𝐻(0) ≥ 0  and 

𝑅(0) ≥ 0, it will be shown that the solution 𝑆(𝑡) > 0, 𝐸(𝑡) >
0,  𝐼(𝑡) > 0, 𝑄1(𝑡) > 0, 𝑄2(𝑡) > 0,  𝐻(𝑡) > 0  and 𝑅(𝑡) >
0for each𝑡 > 0.  

Consider the differential equation for the change in the 

number of susceptible individuals: 
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( )

1 1 2 1

1 1 2 1 .

dS
A Q SI SE S

dt

dS
A Q I E S

dt

   

   

= + − − −

= + − + +

 

 

We can write the above equation as follows: 

 
𝑑𝑆(𝑡)

𝑑𝑡
+ 𝑝𝑆(𝑡) = 𝐴 + 𝜀𝑄1(𝑡) where 𝑝 = 𝛽1𝐼 − 𝛽2𝐸 − 𝜇1 

 

by using the integrating factor method, we can get: 

 
𝑑𝑆(𝑡)

𝑑𝑡
. 𝑒∫ 𝑝𝑑𝜃

𝑡
0 + 𝑝𝑆(𝑡). 𝑒∫ 𝑝𝑑𝜃

𝑡
0 = (𝐴 + 𝜀. 𝑄1(𝑡))𝑒

∫ 𝑝𝑑𝜃
𝑡
0  

⇔
𝑑

𝑑𝑡
(𝑆(𝑡). 𝑒∫ 𝑝𝑑𝜃

𝑡
0 ) = (𝐴 + 𝜀. 𝑄1(𝑡))𝑒

∫ 𝑝𝑑𝜃
𝑡
0  

 

Furthermore, we find: 

 

𝑆(𝑡). 𝑒∫ 𝑝𝑑𝜃
𝑡
0 − 𝑆(0) = ∫ (𝐴 + 𝜀𝑄1(𝑡))𝑒

∫ 𝑝𝑑𝜃
𝑡
0

𝑡

0
𝑑𝑡𝑆(𝑡) =

𝑆(0)𝑒−∫ 𝑝𝑑𝜃
𝑡
0 + 𝑒−∫ 𝑝𝑑𝜃

𝑡
0 {∫ (𝐴 + 𝜀𝑄1(𝑡))𝑒

∫ 𝑝𝑑𝜃
𝑡
0

𝑡

0
𝑑𝑡} > 0  

∀𝑡 > 0  

 

In the same way, it can be obtained that 𝐸(𝑡) >  0, 𝐼(𝑡) >
 0 , 𝑄1(𝑡) >  0, 𝑄2(𝑡) >  0, 𝐻(𝑡) >  0, and 𝑅(𝑡) >  0. Then 

the solution of 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡) , 𝑄1(𝑡), 𝑄2(𝑡), 𝐻(𝑡), and 𝑅(𝑡) 
of the dynamic model (1) are positive for every 𝑡 >  0.  

 

Appendix B. Proof of Theorem 2 

 

Given 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑄1(𝑡) + 𝑄2(𝑡) +
𝐻(𝑡) + 𝑅(𝑡) 
 

( )

( )

( )( )

( )

( )( )

( )( ) ( )

1 2

1 1

1 1

2 1 2

1 1 1 1 1

2 1 2 1 2 2

2 1 2  

dQ dQdN dS dE dI dH dR

dt dt dt dt dt dt dt dt

dN
A Q SI SE S

dt

SI SE q E E vE

vE q I I I

q E Q vQ Q

q I vQ Q Q

I Q H H H R

   

  

  

 

  

      

= + + + + + +

= + − − −

+ + − − −

+ − − − +

+ − − −

+ + − − +

+ + − − + + −

 

1 1 1 1

2 1 2 1 1 1 1 1 2 1

2 1 2 2 2 2 1 2 1

dN
A Q SI SE S SI SE q E E vE

dt

vE q I I I I q E Q vQ Q q I vQ

Q Q Q I Q H H H R

      

    

        

= + − − − + + − − −

+ − − − − + − − − + +

− − − + + − − − −

 

 
𝑑𝑁

𝑑𝑡
= 𝐴 − 𝜇1𝑆 − 𝜇1𝐸 − 𝜇1𝐼 − 𝜇2𝐼 − 𝜇1𝑄1 − 𝜇1𝑄2 − 𝜇2𝑄2

− 𝜇1𝐻 − 𝜇2𝐻 − 𝜇1𝑅 
𝑑𝑁

𝑑𝑡
≤ 𝐴 − 𝜇1𝑆 − 𝜇1𝐸 − 𝜇1𝐼 − 𝜇1𝑄1 − 𝜇1𝑄2 − 𝜇1𝐻 −

𝜇1𝑅
𝑑𝑁

𝑑𝑡
≤ 𝐴 − 𝜇1𝑁.  

 

An initial value 𝑁(0) that represents the total population at 

time t=0. 

 
𝑑𝑁(𝑡)

𝑑𝑡
𝑒∫ 𝜇1𝑑𝑦

𝑡
0 + 𝜇1𝑁(𝑡)𝑒

∫ 𝜇1𝑑𝑦
𝑡
0 ≤ 𝐴𝑒∫ 𝜇1𝑑𝑦

𝑡
0  

𝑑

𝑑𝑡
(𝑁(𝑡)𝑒∫ 𝜇1𝑑𝑦

𝑡
0 ) ≤ 𝐴𝑒∫ 𝜇1𝑑𝑦

𝑡
0  

𝑑(𝑁(𝑡)𝑒𝜇1𝑡) ≤ 𝐴𝑒𝜇1𝑡𝑑𝑡 

𝑁(𝑡)𝑒𝜇1𝑡 − 𝑁(0) ≤ ∫ 𝐴𝑒𝜇1𝑡𝑑𝑡
𝑡

0

 

𝑁(𝑡)𝑒𝜇1𝑡 − 𝑁(0) ≤
𝐴

𝜇1
(𝑒𝜇1𝑡 − 1) 

𝑁(𝑡) ≤
𝐴

𝜇1
+ (𝑁(0) −

𝐴

𝜇1
) 𝑒−𝜇1𝑡 

 

for t→∞, we get 𝑁(𝑡) ≤
𝐴

𝜇1
 

Then, all feasible solutions of model (1) are in the region 

𝛺 = {(𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄1(𝑡), 𝑄2(𝑡), 𝐻(𝑡), 𝑅(𝑡)) ∈ ℝ+
7 : 0 ≤

𝑁(𝑡) ≤
𝐴

𝜇1
}. Therefore, all solutions of system (1) are bounded.  

 

Appendix C. Proof of Theorem 3 

 

In carrying out a local stability analysis at the non-endemic 

equilibrium point (𝐾0)  of non-linear model (1) with 

linearization around 𝐾0.  

As we know that the first five equation of the model (1) do 

not depend on 𝐻 and 𝑅, so the system (1) can be reduced to a 

system with five variables (𝑆, 𝐸, 𝐼, 𝑄1, 𝑄2). Linearization of 

the system around non-endemic equilibrium point, we obtain 

Jacobian matrix 𝐽(𝐾0) as follows 

 

𝐽(𝐾0) =

[
 
 
 
 
 
−𝛽1𝐼

0 − 𝛽2𝐸
0 − 𝜇1 −𝛽2𝑆

0 −𝛽1𝑆
0 𝜀 0

𝛽1𝐼
0 + 𝛽2𝐸

0 𝛽2𝑆
0 − 𝑞1 − 𝜇1 − 𝑣 𝛽1𝑆

0 0 0

0 𝑣 −𝑞2 − 𝜂 − (𝜇1 + 𝜇2) 0 0
0 𝑞1 0 −𝜀 − 𝑣 − 𝜇1 0

0 0 𝑞2 𝑣 −𝜂 − (𝜇1 + 𝜇2)]
 
 
 
 
 

. 

 

Base on Routh-Hurwith criterion, non-endemic equilibrium 

point 𝐾0is locally asymptotically stable if the all eigenvalues 

of the Jacobian matrix have negative real parts. By 

calculating𝑑𝑒𝑡(𝜆𝐼 − 𝐽(𝐾0)) = 0, where 𝜆 is the eigenvalues 

of the matrix 𝐽(𝐾0) , then the characteristic polinimial is 

obtained as follows. 

 
(𝜆 + 𝜇1)(𝜆 + 𝜀 + 𝑣 + 𝜇1)(𝜆 − 𝜂 + 𝜇1 + 𝜇2)(𝜆 + 𝑞2 + 𝜂 +

𝜇1 + 𝜇2) (𝜆 −
𝛽2𝐴−𝜇1

2−𝑞1𝜇1−𝑣𝜇1

𝜇1
) = 0,  

 

which means the eigenvalues are as follows 

1 1

2 1

3 1 2

v

 

  

   

= −

= − − −

= − −

4 2 1 2

2

2 1 1 1 1

5

1

.

q

A q v

   

   




= − − − −

− − −
=

 

 

Note that the matrix 𝐽(𝐾0)  has three strictly negative 

eigenvalues (𝜆1, 𝜆2, 𝜆4) . The eigenvalues of 𝜆3 and 𝜆5 are 

negative if 𝜂 < 𝜇1 + 𝜇2  and𝛽2𝐴 < 𝜇1
2 + 𝑞1𝜇1 + 𝑣𝜇1 . Since 

three negative eigenvalues and two conditionally negative 

eigenvalues are obtained from the Jacobian matrix 𝐽(𝐾0), it’s 

indicate that the non-endemic equilibrium point is locally 

asymptotically stable for ℜ0less than one.  
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