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The equivalent of electricity has recently been used to replace all the wear-prone 

moving mechanical components that produce faults. The electronic unit that substitutes 

the mechanical commutation unit in Brushless Direct Current (BLDC) motors improves 

dynamic properties, noise level, and efficiency. This work describes a method for 

estimating the BLDC machine's rotor speed and position by using Extended Kalman 

Filter (EKF) and Particle Filter (PF). The BLDC is a non-linear system with nonlinear 

measurements. To perform the EKF, Jacobian linearization of the motor model and the 

observation are needed. Linearization leads to a decrease in the accuracy of filter 

estimation. In PF, the relative likelihood of each particle is computed according to the 

measurements. Resampling gives set particles are distributed according to power 

density function (pdf). Then the PF can compute any desired statistical measure of this 

pdf. A sensorless drive has an accurate good throughout a wide speed range and with 

varied load torque, according to the simulation's results. The results show that the 

velocity inaccuracy rate at PF is approximately 0.01% and that at EKF it is 

approximately 1%. According to the findings, the PF outperformed the EKF in a 

comparison between them.  
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1. INTRODUCTION

An improved variant of the standard DC motor is the 

brushless DC (BLDC) motor, which replaces the commutator 

and brushes with an electronic commutation mechanism. 

BLDC motors are utilized in a variety of settings, including 

industry, the home, computers, automobiles, etc. They are 

quickly gaining prominence. The 3-phase permanent-magnet 

synchronous motor is comparable to the 3-phase BLDC motor 

in terms of construction, while the DC motor is similar in 

terms of functioning [1]. A 3-phase inverter that functions by 

the timing indications from the Hall-effect sensor provide the 

electrical power for the BLDC motor [2, 3]. Sensorless BLDC 

motors are widely utilized in a variety of applications, 

including instrumentation, automated industrial machinery, 

consumer goods, vehicles, and more. Those motors had been 

utilized in a broad range of the industrial applications due to 

the fact that their architecture is perfect for any safety-critical 

application. Sensorless BLDC motors are frequently utilized 

because of their increased efficiency, dependability, power, 

and low acoustic noise [4, 5]. A larger speed range, better 

speed-to-torque characteristics, greater dynamic 

responsiveness, lower weight, and a longer lifespan the 

elimination of the motor's neutral voltage, the use of a 

predetermined phase shift circuit, and its affordability are only 

a few of its benefits [6, 7]. However, the main disadvantages 

are the higher cost, the size of the motor, and the requirement 

for a unique mounting solution for the Sensors [8]. 

A brushless motor with electronic control is a BLDC. The 

BLDC needs the sensor position's reading of the rotor position 

to turn the rotor. It also affects the sensor's high price and 

dependability, which are problems. Because BLDCM is a 

brushless motor Then BLDC requires the position of the 

sensor to rotate the rotor and this is a weakness of BLDC so 

use other methods such as the Extended Kalman Filter (EKF) 

to cover this weakness. In addition, BLDC is also a non-linear 

system. For improving the performance of BLDC motor drives, 

numerous sensorless control techniques have been presented 

[9]. Many researchers have developed a sensorless strategy to 

overcome this problem. The use of BLDC in all industries will 

be fueled by effective solutions because it is a low-cost and 

high-reliability solution. In recent decades, numerous 

sensorless driving methods, like trapezoidal back-EMFs, have 

been created to take the role of sensor position [10]. There are 

a lot of researchers who have used algorithms to improve the 

performance of Brushless DC Motor, in 2021, Ellahi [11] the 

Extended Kalman filter has been utilized for the estimation of 

position and speed in this thesis. The DC voltage will be 

applied first as a source of information The Extended Kalman 

Filter is employed to perform the analysis. Whereas a PID 

controller has been used so as to estimate the state following 

reference signal, and adjust system state. Then, Vinida and 

Chacko [12] proposed the 𝐻∞  algorithm to enhance the

performance of a sensorless BLDC motor whose algorithm 

weights are optimized by PSO. The proposed controller 

decreases the percentage overshoot and reduce the settling 

time. In 2018, Chojowski [13] proposed the EKF to estimates 

the parameters of the BLDC motor. A critical step in the filter 

design is the choice of the initial values for the covariance 

matrices of the plant model (Q) and observation model (R) as 

they affect the performance, convergence, and stability. Any 

increase in the values of the Q matrix elements will cause an 

increase in the Kalman gain. Increasing the values of the 

elements inside the R matrix will cause a decrease in the 
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Kalman gain, and this in turn will make the transient response 

worse. 

In, Rif'an et al. [14] presents a new algorithm for a BLDC 

motor based on the Ensemble Kalman Filter (EnKF) and NN. 

The EnKF is used to estimate the speed and position of the 

rotor. The NN is used to estimates the perturbations. The speed 

error was about 3% with 2 electrical angles during the 

perturbations of 50%. 

In 2015, Lv et al. [15] presented in this paper, a new 

mathematical model is built according to the characteristics of 

the brushless DC (BLDC)motor and a new filtering algorithm 

is proposed for the sensorless BLDC motor based on the 

unscented Kalman filter (UKF).  

The proposed UKF algorithm is employed to estimate the 

speed and rotor position of the BLDC motor only using the 

measurements of terminal voltages and three-phase currents. 

In order to observe the drive performance, two simulation 

examples are given and the feasibility and effectiveness of the 

UKF algorithm are verified through the simulation results.  

Rif'an et al. [16] methods for BLDC estimation and control 

are discussed in the abstract. A flaw in BLDC is that it depends 

on the sensor position to rotate the rotor because BLDCM is a 

brushless motor. To address this flaw, a sensorless Extended 

Kalman Filter (EKF) technique was suggested. And BLDC is 

a non-linear system as well. As a result, using a traditional PID 

technique makes it impossible to produce an accurate and 

worthwhile PID parameter controller. A single neural network 

called a fuzzy PID for BLDC was constructed in this paper. 

The experimental findings demonstrate that the EKF can 

estimate the speed of BLDC and single neural networks, and 

that BLDC system speed is increased by fuzzy PID controller. 

In this paper, two modern algorithms are used, namely EKF 

and PF to measure the velocity of brushless dc motor and 

position by relying on measuring currents and voltages. 

through our results. It was noted that this work gave the best 

result regarding stability at 1s, speed error at 0.01%, and 

position error at 0.112% compared to previous studies. It is 

considered the best improvement in system performance. 

 

 

2. BLDC MOTOR’S MATHEMATICAL MODEL  

 

 
 

Figure 1. BLDC motor equivalent circuit 

 

While the commutation in ordinary DC motors is carried out 

manually using a mechanical commutator and brushes, it is 

carried out electronically in BLDC motors utilizing hall-effect 

sensors and an electric inverter. BLDC motor's windings are 

located on either the rotor has been made of permanent 

magnets mounted on a steel core or stator and the rotor is built 

entirely of materials that are permanent magnets. Figure 1 

depicts how the BLDC motor drive is set up. Hall-effect 

sensors use commutating signals to identify the position of the 

rotor. Similar to permanent magnet brushes are not required if 

the armature windings of the BLDC motor are replaced. Figure 

2 illustrates the 3-phase BLDC motor's trapezoidal back-

EMFs and square-wave phase currents with a 120° conduction 

mode [17]. 

 

 
 

Figure 2. Back-emf and current waveforms 

 

General voltage eq. of BLDC motor may be expressed 

below [18]: 

 

[

𝑉𝑎
𝑉𝑏

𝑉𝑐

] = [

𝑅𝑠 0  0
0  𝑅𝑠 0
 0  0 𝑅𝑠

 ]  [

 𝑖𝑎
 𝑖𝑏
 𝑖𝑐

] + [
 La Lab  Lac
 Lba Lb  Lbc 
 Lca Lcb  Lc

]
d

dt
[

 𝑖𝑎
 𝑖𝑏
 𝑖𝑐

]

+ [

𝑒𝑎

𝑒𝑏

𝑒𝑐

] 

(1) 

 

La=Lb=Lc=Ls  

 

L =L =L =M=0  

 

𝑽𝒂, 𝑽𝒃, 𝑽𝒄 represent motor three-phase voltage values, 𝒊𝒂, 

𝒊𝒃 , 𝒊𝒄  are motor three-phase currents, 𝒆𝒂,  𝒆𝒃, 𝒆𝒄  represent 

motor three-phase back-emf wave-forms, Rs is motor phase 

resistance, La=Lb=Lc=L represents self-inductance of 

Electro-magnetic torque may be illustrated as: 

 

𝑇𝑒 = (𝑒𝑎𝑖𝑎 + 𝑒𝑏𝑖𝑏 + 𝑒𝑐𝑖𝑐)/𝜔𝑟 (2) 

 

The represents electro-magnetic torque and represents 

mechanical speed. The BLDC motor motion equation can be 

expressed as: 

 

𝐽𝑠𝜔̈𝑟 + 𝐵𝑠𝜔̇𝑟 = 𝑇𝑒 − 𝑇𝐿  (3) 

 

𝑇𝐿  epresents load on motor shaft, Js represents inertia 

moment of drive plus load and Bs represents constant of 

friction. Electrical frequency in terms of mechanical speed for 

motor rotor with p numbers of poles would be represented as 

[17]:  

 

𝜃𝑒 =
𝑃

2
θm (4) 

 

where, 𝜔𝑟: Angular speed of rotor, 𝜃𝑚: Mechanical angle of 

rotor and 𝜃𝑒: Electrical angle of rotor. 

 

𝜔𝑟 =  𝑑𝜃𝑚/𝑑𝑡 (5) 

 

State space form of such system is shown in reference [17]: 
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 𝑋̇ = 𝐴𝑋 + 𝐵𝑈 (6) 

 

where, 

 

𝑋𝑇 = [ 𝑖𝑎  𝑖𝑏  𝑖𝑐   𝜔𝑟  𝜃𝑚 ], (7) 

 

𝑈𝑇 = [ 𝑉𝑎  𝑉𝑏  𝑉𝑐   𝑇𝐿] (8) 

 

𝑋̇ =  

[
 
 
 
 
𝐴11 0 0 
0 𝐴22 0 

0
𝐴41

0

0
𝐴42

0

𝐴33

𝐴43

0

  

𝐴14 0
𝐴24 0
𝐴34

𝐴44

1

0
0
0]
 
 
 
 

 𝑋 

+

[
 
 
 
 
𝐵11 0 0
0 𝐵22 0
0
0
0

0
0
0

𝐵33

0
0

 

0
0
0

𝐵44

0

 

]
 
 
 
 

 [

𝑉𝑎
𝑉𝑏
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𝑇𝐿

] 

(9) 
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 (10) 

 

The non-linear function F (𝜃𝑒) may be described as: 

 

F(θe) =

(

 
 
 
 
 
 
 

3

𝜋
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 (11) 

 

Figure 3 Schematic of the employed closed loop control 

system of BLDC motor with estimation in the feedback loop. 

Estimation inputs are operating voltages 𝑉𝑎 , 𝑉𝑏 and 𝑉𝑐  or the 

motor’s phases A, B and C, while outputs are estimated values 

of angular speed 𝜔̂𝑟 and rotor’s angular position 𝜃̂𝑚
. 

 

 
 

Figure 3. Diagram of estimation 

3. THE PROPOSED APPROACH 

 

In this section, the Particle Filter (PF) method, and its two 

Extended Kalman Filter (EKF) proposed in the present work 

have been explained in detail. 

 

3.1 Extended Kalman Filter (EKF) 

 

Kalman filter was designed specifically for linear systems. 

However, many real-world systems, like BLDC motors, are 

non-linear. If the nonlinearities are minimal, they can be 

ignored. Despite their importance, they are frequently 

overlooked. Non-linearity is a phenomenon that occurs when 

there is a change that cannot be overlooked and must be 

compensated in some way Before a Kalman filter can be 

applied to the system, it must first pass one of these tests. Non-

linear equations can be linearized in some ways [19]. 

The Taylor series can be used to get around a given working 

point. The Taylor series is used to solve nonlinearities in a 

system. Using these equations, a variant of the Kalman filter 

is known as Extended Kalman Filter. This observer has the 

ability to almost every non-linear system can be handled at a 

low cost. At each time sample, the Taylor series is calculated. 

Although Extended Kalman Filter can’t be proven to be 

optimal, this doesn’t imply that it is a terrible solution. 

Because BLDCM is an engine without a coil brush then 

requires BLDC position sensor to rotate the rotor this is a 

weakness of BLDC. Suggest an algorithm without sensors like 

the Extended Kalman Filter (EKF) to cover this weakness. In 

addition, BLDC is also a non-linear system. So using the EKF 

algorithm, which can be linearized using Jacobian matrix, we 

can get the stability of the system. The non-linear variant of 

Kalman filter, on the other hand, usually performs admirably. 

The Extended Kalman Filter is required to continually predict 

speed and position rotor of BLDC motor utilizing recorded 

voltages and currents. The motor current is estimated in each 

time step [20]. Generally , EKF's estimating system is divided 

into two stages: the step of prediction and the step of correction 

The predicted state variable value and predicted state variable 

value are calculated in the first stage. The expected state 

covariance Matrix is denoted by 
𝑃𝑘

𝑘
− 1, can be obtained, and 

a correction term is added to the anticipated value in the 

second stage, the corrective step 𝑋̃𝑘/𝑘 [18-24]. 

The estimation procedures for the EKF can be listed as 

follow [21, 22]:  

1-Prediction of State: 

 

𝑋̃𝑘/𝑘 − 1 = 𝑓 (𝑋̃𝑘 −
1

𝑘
− 1, 𝑈𝑘 − 1) (12) 

 

2-Error Covariance Matrix Estimation: 

 

𝑃𝑘/𝑘 − 1 = ∅𝑘 − 1𝑃𝑘 − 1/𝑘 − 1∅𝑘 − 1𝑇 +  𝑄𝑘
− 1 

(13) 

 

3-Computation of Kalman Filter Gain:  

 

𝐾𝐾 = 𝑃𝑘/𝑘 − 1𝐻𝑇(𝐻𝑃𝑘/𝑘 − 1𝐻𝑇 + 𝑅𝐾 )
−1 (14) 

 

4-State Estimation 

 

 𝑦̃𝑘 = 𝑦𝑘 − 𝐻(𝑋̃𝑘/𝑘 − 1) 

𝑋̃𝑘/𝑘 = 𝑋̃𝑘/𝑘 − 1 +  𝐾𝐾 𝑦̃𝑘 
(15) 
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5-Update of Error Covariance Matrix: 

 

𝑃𝑘/𝑘 = (1 −  𝐾𝐾  𝐻𝐾 )𝑃𝑘/𝑘 − 1 (16) 

 

3.2 Particle Filter (PF) 

 

Utilizing all of the available information, which include the 

measurement data, in order to create posterior probability 

density function (pdf) is one option for state estimate based 

upon Bayesian filtering method. It is possible to determine 

optimum state estimation and its precision from this pdf 

because it comprises all statistical data. A posterior pdf is 

produced by applying Bayes' rule [22]: 

 

𝒑(𝑿𝒌|𝒀𝟏:𝒌)  =
𝒑(𝒀𝒌|𝑿𝒌)𝒑(𝑿𝒌|𝒀𝟏:𝒌)

𝒑(𝑿𝒌|𝒀𝟏:𝒌)
 (17) 

 

In (17): 

 

𝒑(𝑿𝒌|𝒀𝟏:𝒌−𝟏)

= ∫𝒑(𝑿𝒌|𝑿𝟏:𝒌−𝟏 ) 𝒑(𝑿𝒌−𝟏|𝒀𝟏:𝒌−𝟏)𝒅𝑿𝟏:𝒌−𝟏  

𝒑(𝒀𝒌|𝒀𝟏:𝒌−𝟏) = ∫𝒑(𝒀𝒌|𝑿𝒌 ) 𝒑(𝑿𝒌|𝒀𝟏:𝒌−𝟏)𝒅𝑿𝒌 

(18) 

 

Except a few cases (such as the linear Gaussian model), 

there are no analytical solutions to those equations. For other 

models, (18) must be approximately evaluated. Particle Filter 

has been represented for the approximation of the posterior pdf 

through the utilization of a group of the random weighted 

particles{(𝑋𝑘
 𝑛, 𝑊𝑘

 𝑛), 𝑛 = 1:𝑁} [21], 

 

𝒑(𝑿𝒌|𝒀𝟏:𝒌−𝟏) ≈ ∑ 𝑊𝑘
 𝑚

𝑁

𝑚=1
𝛿(𝑋𝑘

 − 𝑋𝑘
 𝑚) (19) 

 

where, 𝑋𝑘
 𝑚 represents state value of the mth particle, 𝑊𝑘

 𝑚 its 

weight, δ(.) represents Dirac delta function, and N represents 

number of  particles. In fact, particle weight shows the 

potential of a particle being represented by Eq. (19    (  

 

𝑤𝑘
 (𝑖)

∝ 𝑤𝑘−1
  (𝑖) 𝒑(𝒀𝒌|𝑿𝒌)𝒑(𝑿𝒌|𝒀𝟏:𝒌)

𝒒(𝑿𝒌|𝒀𝒌)
 (20) 

 

 
 

Figure 4. The structure of the suggested sensorless speed 

control drive 

 

The use of the Particle Filter to estimate state is a recursive 

technique. Most particles will have modest weights after 

numerous repetitions. As a result, a significant amount of 

computing time is spent updating particles that play a minor 

role in estimating the pdf. Degeneracy is the term for this 

situation, which is a prevalent PF issue. Degradation is the 

term for this situation, and it is a prevalent problem in PF. This 

situation often affects the implementation of the Particle Filter. 

To avoid this situation use methods including resampling to 

maintain the performance of the PF. One of the most well-

known strategies for preventing degeneracy is the use of Re-

sampling Small-weight particles are duplicated with large-

weight particles throughout the process of re-sampling.  

 

𝑋̇ = 𝑓(𝑋)𝑋 + 𝐵𝑢 (21) 

 

Figure 4 shows that through the use of measuring currents 

and voltages, velocity and momentum can be measured 

without a sensor by relying on the Particle Filter. 

Consider the following nonlinear system using state 

equations: 

 

𝑋̇ = 𝑓(𝑋(𝑡))𝑋(𝑡) + 𝐵𝑢(𝑡) +  σ(t) (22) 

 

𝑦(𝑡) = ℎ(𝑋(𝑡)) + 𝑣(𝑡) (23) 

 

σ(t) & ν(t) represent zero-means white Gaussian noises with  

Q(t) and R(t) covariance, respectively. Eq. (22) and Eq. (23) 

are in continuous time domain, however, PF algorithm has 

been implemented in the discrete domain. Those equations can 

be represented in the following forms: 

 

𝑋𝑘+1 = (𝐼 + 𝑓(𝑋𝑘)∆𝑡)𝑋𝑘 + 𝐵∆𝑡𝑢𝑘 + 𝑤𝑘  (24) 

 

𝑦𝑘 = ℎ(𝑋𝑘) + 𝑣𝑘 (25) 

 

The identity matrix is 𝐼, and the sampling time is t. Process 

and measurement noises pdf are expected to be known in these 

equations. 

N initial particles (𝑋0.𝑖
+ ( i= 1.....N)) are created randomly in 

the first iteration, based upon initially presumed p(𝑋0). The 

choice of parameter N in a Particle Filter has a significant 

impact on estimation accuracy and computational load. 

Parameter N is a set of particles that can determine the 

appropriate value of parameter N when obtaining better 

stability of the system. 

Initial particles have been propagated in system discrete Eq. 

(24) to get prior particles  𝑋𝑘.𝑖
− . In the next phase, each 

preceding particle must be given a relative weight based on the 

measurement results. This is accomplished by assessing the 

p(𝑦𝑘|𝑥𝑘 ) and determining the particle likelihood as follows 

[22]: 

 

𝑞𝑖=p(𝑦𝑘 |𝑥𝑘.𝑖  ~ 1 /(2𝜋)𝑚/2 |𝑅|
1

2exp ( −[𝑦 −
ℎ(𝑋𝑘)]

𝑇 𝑅−1[𝑦 − ℎ(𝑋𝑘)] / 2) 
(26) 

 

where, m refers to output matrix dimension and y refers to the 

measured data. The weight of every one of the particles is 

directly proportionate to its probability, according to Eq. (19) 

and (25). After that, resampling based on normalized 

likelihood is used to choose large-weighted particles and 

generate posterior particles  𝑋𝑘.𝑖
+ . The posterior p(𝑋𝑘|𝑦𝑘.𝑖) is 

now computed. Finally, the average of approximated 

p(𝑋𝑘 |𝑦𝑘.𝑖) is calculated to produce the state estimation. It's 

worth noting that these posterior particles are transmitted to 

form previous particles in the next iteration. 

The ~  symbol in the above equation means that the 

probability is not really given by the expression on the right 

side, but the probability is directly proportional to the right 

side. So if this equation is used for all the particles 𝑋𝑘 .𝑖
− . (i = 

1... , N), now we normalize the relative likelihoods obtained in 
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Eq. (26) as follows. 

 

𝑞𝑖 =
𝑞𝑖

∑ 𝑞𝑗𝑁
𝑗=1 

 (27) 

 

This ensures that the sum of all the likelihoods is equal to 

one. Next we resample the particles from the computed 

likelihoods. That is, we compute a brand new set of particles 

 𝑋𝑘.𝑖
+  that are randomly generated on the basis of the relative 

likelihoods qi [21]. 

Figure 5 shows the steps for implementing a Particle Filter. 

 

 
 

Figure 5. The flowchart of the proposed PF algorithm 

 

4. SIMULATION AND IMPLEMENTATION  

 

The simulation model of BLDC Motor and results was 

implementation based on MATLAB programming. The table 

1 show simulation parameter of the BLDC motor. The 

Simulink block of our model has the EKF and PF algorithm 

when PF blocks input. The PF block's inputs are the measured 

currents and line voltages. Following a formatted explanation 

of the PF algorithm's operation in the third part, estimated 

speed and position were employed at each time step . Feedback 

from the driving system. Any measurement data in a real-time 

system has noise and error. 

 

Table 1. Parameters of BLDC motor 

 
Rated voltage 80V 

Rated speed 1500rpm  

Rotor Inertia - 𝐽𝑠 [kg-m2] 5.5e-3 

Resistance – 𝑅𝑠 1.43ohm 

Inductance – 𝐿 9.4e-3H 

Friction Coefficient  2e-3 

Torque constant 3N.m 

Rotor Flux 0.2158wb 

Number of pole pairs (P)  4 

 

Based upon the mathematical Eq. (1) in order to obtain a 

prediction ω, data that are required includere ia, ib, ic, va, vb, 

vc, TL, and ωr at previous time. The process of the prediction 

is performed with the use of EKF algorithm and PF algorithm. 

In such case, ia, ib, ic, va, vb, and vc is created by taking direct 

measurements. Two treatments have been done in order to 

verify performance of velocity and modification load to justify 

the estimated performance of our method. In this example, 

reference speed is modified from 750 to 1500 r.p.𝑚 at time t = 

0.6 s. after that, load torque TL = 3 is added to this motor at 

time t = 2 s. Figure 6a shows the Simulink model of BLDC 

motor with EKF 

Figure 6b illustrates connection of Simulink model to the 

EKF. By relying on the measurement of currents and voltages, 

we will obtain the measurement of velocity and position.  

 

 
(a) Simulink model of BLDC motor with EKF 
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(b) Simulink model to the EKF 

 

Figure 6. (a) Simulink model of BLDC motor with EKF; (b) Simulink model to the EKF 

 

 
 

Figure 7. Simulink model of real system BLDC motor 

 

 
 

Figure 8. Simulink model of BLDC motor with PF 

1528



Figure 7 shows Simulink model of the real system forBLDC 

Motor, while Figure 8 shows Simulink model of BLDC Motor 

with Estimation. The comparison between the two systems is 

done by relying on a Particle Filter (PF). 

Figure 9 shows speed of BLDC Motor with EKF When 

loading within t=2s, the amount of TL = 3 N.m becomes 

1490rpm when loaded with estimation, and the speed with 

optimum is 1470rpm. After that, when the load is lifted, both 

speeds stabilize with the reference speed of 1500rpm, and as 

we note the error speed at EKF is about 1% and Figure 10 

shows the position at EKF. From the figure, we notice the error 

position of 0.314%. While Figure 11 shows the speed of 

BLDC motor with PF, the speed at load is 1495, and as we 

note error speed = 0.01% and error position = 0.112%. Figure 

12 shows the rotor position of the BLDC Motor while Figure 

13 shows current with estimation and Figure 14 shows current 

without estimation.  

 

 
Time (sec) 

 

Figure 9. Shows the speed of BLDC Motor with EKF under 

TL=3N.m 

 

 
Time (sec) 

 

Figure 10. shows the rotor position of BLDC Motor PF 

 

 
Time (sec) 

 

Figure 11. Shows the speed of BLDC Motor with PF under 

TL=3N.m 

 
Time (sec) 

 

Figure 12. The rotor position of BLDC Motor with PF 

 

This work has been compared with previous studies and 

Table 2 illustrates this. 

 

Table 2. Showing the comparison between previous studies 

and current work 

 
Senserless Error speed Error position 

EKF 1% 0.314% 

Unkf [10] 3% 2% 

PF 0.01% 0.112% 

 

The reason that confirmed that the PF is the best through the 

results gave a better result than the rest of the filters through 

the error speed ratio were 0.01% and the position ratio was 

equal to 0.112. It also gave the best stability of the system at 

1s. As shown in the table2, the improvement rate at PF is better 

than the ratio of UKF, and EKF found the percentage of 

improvement is of 3% and 2% speed and position respectively. 

 

 
Time (sec) 

 

Figure 13. Three-phase stator current with the estimation 

 

 
Time (sec) 

 

Figure 14. Three-phase stator current without estimation 
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5. CONCLUSIONS 

 

In the presented paper, for the purpose of operating non-

sensor BLDC motor, a new classification system had been 

developed for rotor speed and rotor position speed with the use 

of an EKF and a particulate filter (PF). An accurate estimation 

performance may be obtained from results of simulation and 

efficiency of the suggested designed model can be 

demonstrated. The two proposed algorithms can maintain the 

motor speed with a speed error of 1% at EKF, 0.01% at PF, 

and a position error of about 0.314% at EKF, while at PF about 

0.112%. Through this, it was found that PF gave better results 

compared to EKF. In addition, the precision sensorless BLDC 

motor may be controlled as well according to the algorithm 

that has been designed for EKF and PF. It was also proven by 

comparing the previous studies and this work and found the 

percentage of improvement is of 3% and 2% speed and 

position respectively. 

 

 

REFERENCES  

 

[1] Abood, L.H., Haitham, R. (2022). Design an optimal 

fractional order PI controller for congestion avoidance in 

internet routers. Mathematical Modelling of Engineering 

Problems, 9(5): 1321-1326. 

https://doi.org/10.18280/mmep.090521 

[2] Yasien, F.R., Mahmood, R.A. (2018). Design new 

control system for brushless DC motor using SVPWM. 

International Journal of Applied Engineering. 

[3] Ezzaldean, M.M., Kadhem, Q.S. (2019). Design of 

control system for 4-switch bldc motor based on sliding-

mode and hysteresis controllers. Iraqi Journal of 

Computers, Communications, Control and Systems 

Engineering, 19(1): 42-51. 

https://doi.org/10.33103/uot.ijccce.19.1.6 

[4] Hameed, H.S. (2018). Brushless DC motor controller 

design using MATLAB applications. In 2018 1st 

International Scientific Conference of Engineering 

Sciences-3rd Scientific Conference of Engineering 

Science (ISCES), pp. 44-49. 

https://doi.org/10.1109/ISCES.2018.8340526 

[5] Boussekra, F., Makouf, A. (2020). Sensorless speed 

control of IPMSM using sliding mode observer based on 

active flux concept. Modelling, Measurement and 

Control A, 93(1-4): 1-9. 

https://doi.org/10.18280/mmc_a.931-401 

[6] Sivakami, R., Sugumar, G. (2019). Speed control of 

sensorless brushless DC motor by computing back emf 

from line voltage difference. International Journal of 

Electrical Engineering & Technology, 10(5): 31-38. 

https://ssrn.com/abstract=3554218. 

[7] Akkar, H.A., Salman, S.A. (2020). Improvement 

parameters for design brushless DC motor by moth flame 

optimization. In IOP Conference Series: Materials 

Science and Engineering, 745(1): 012019-012019. 

https://doi.org/10.1088/1757-899X/745/1/012019 

[8] Boiko, Y., Lin, C., Kiringa, I., Yeap, T. (2021). 

Performance of BLDC motor under Kalman filter 

sensorless drive. International Journal of Electrical and 

Information Engineering, 15(7): 282-288. 

[9] Aishwarya, V., Jayanand, B. (2016). Estimation and 

control of sensorless brushless dc motor drive using 

extended kalman filter. In 2016 International Conference 

on Circuit, Power and Computing Technologies 

(ICCPCT), 1-7. 

https://doi.org/10.1109/ICCPCT.2016.7530343 

[10] Rif’an, M., Yusivar, F., Kusumoputro, B. (2018). Design 

of extended kalman filter speed estimator and single 

neuron-fuzzy speed controller for sensorless brushless 

DC motor. Journal of Telecommunication, Electronic 

and Computer Engineering (JTEC), 10(1-5): 157-161. 

[11] Ellahi, N. (2021). Extended kalman filter based brushless 

dc motor for rotor position and speed control. 

[12] Vinida, K., Chacko, M. (2021). Implementation of speed 

control of sensorless brushless DC motor drive using H-

infinity controller with optimized weight filters. 

International Journal of Power Electronics and Drive 

Systems, 12(3): 1379-1379. 

https://doi.org/10.11591/ijpeds.v12.i3.pp1379-1389 

[13] Chojowski, M. (2018). Simulation analysis of extended 

Kalman filter applied for estimating position and speed 

of a brushless DC motor. Power Electronics and Drives, 

3(1): 145-155. https://doi.org/10.2478/pead-2018-0008 

[14] Rif'an, M., Yusivar, F., Kusumoputro, B. (2019). 

Sensorless-BLDC motor speed control with ensemble 

Kalman filter and neural network. Journal of 

Mechatronics, Electrical Power, and Vehicular 

Technology, 10(1): 1-6. 

https://doi.org/10.14203/j.mev.2019.v10.1-6 

[15] Lv, H., Wei, G., Ding, Z., Ding, X. (2015). Sensorless 

control for the brushless DC motor: An unscented 

Kalman filter algorithm. Systems Science & Control 

Engineering, 3(1): 8-13. 

https://doi.org/10.1080/21642583.2014.982769 

[16] Rif’an, M., Yusivar, F., Kusumoputro, B. (2018). Design 

of extended kalman filter speed estimator and single 

neuron-fuzzy speed controller for sensorless brushless 

DC motor. Journal of Telecommunication, Electronic 

and Computer Engineering (JTEC), 10(1-5): 157-161. 

[17] Ali, Q.M., Ezzaldean, M.M. (2020). Direct current 

deadbeat predictive controller for bldc motor using single 

dc-link current sensor. Engineering and Technology 

Journal, 38(8): 1187-1199. 

https://doi.org/10.30684/etj.v38i8A.471 

[18] Abedulabbas, G.W., Yaseen, F.R. (2022). Design a PI 

controller based on PSO and GWO for a brushless DC 

motor. Journal Européen des Systèmes Automatisés, 

55(3): 331-338. https://doi.org/10.18280/jesa.550305 

[19] Alawsi, A.A.A., Jasim, B.H., Raafat, S.M. (2019). 

Nonlinear estimation of quadcopter states using 

unscented Kalman filter. Periodicals of Engineering and 

Natural Sciences, 7(4): 1626-1637. 

http://dx.doi.org/10.21533/pen.v7i4.878 

[20] Alpago, D., Dörfler, F., Lygeros, J. (2020). An extended 

Kalman filter for data-enabled predictive control. IEEE 

Control Systems Letters, 4(4): 994-999. 

https://doi.org/10.1109/LCSYS.2020.2998296 

[21] Rif’an, M., Yusivar, F., Wahab, W., Kusumoputro, B. 

(2015). A comparison of ensemble Kalman filter and 

extended Kalman filter as the estimation system in 

sensorless BLDC motor. ARPN Journal of Engineering 

and Applied Sciences, 10(17): 7386-7393. 

[22] Yasien, F.R., Khalid, H.W. (2017). Sensorless speed 

estimation of permanent magnet synchronous motor 

using extended kalman filter. Iraqi Journal of Computers, 

Communications, Control & 21 Systems Engineering 

(IJCCCE), 18(1): 64-81. 

1530

https://doi.org/10.18280/mmep.090521
https://doi.org/10.18280/mmc_a.931-401


 

https://doi.org/10.33103/uot.ijccce.18.1.7 

[23] Chulaee, Y., Zarchi, H.A., Sabzevari, S.I.H. (2019). State 

estimation for sensorless control of BLDC machine with 

particle filter algorithm. In 2019 10th International 

Power Electronics, Drive Systems and Technologies 

Conference (PEDSTC), 172-177. 

https://doi.org/10.1109/PEDSTC.2019.8697632 

[24] Sabzevari, S.I.H., Chulaee, Y., Abdi, S. (2020). Analysis 

and modification of a particle filter algorithm for 

sensorless control of BLDC machine. In 2020 

International Conference on Electrical Machines (ICEM), 

1: 1067-1073. 

https://doi.org/10.1109/PEDSTC.2019.8697632 

 

1531

https://doi.org/10.1109/PEDSTC.2019.8697632



