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Predictive maintenance (M4.0) allows more targeted and efficient use of resources, 

reduces unplanned downtime, and increases production and equipment performance 

compared to classical existing maintenance (M3.0). This paper deals with the development 

of a new ecosystem that adopts the new technologies of Industry 4.0 to drive real-time 

monitoring and diagnosis of engine defects. The proposed architecture is based on 

implementing a process of identifying critical components and extracting related data 

(speed and acceleration) based on IoT technology. A neural model (ANN) is implemented 

for monitoring, detecting and diagnosing engine faults with high accuracy compared to 

existing techniques. The effectiveness and reliability are validated through real-time test 

bench studies. 
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1. INTRODUCTION

For the first time at the Hannover Fair for Industrial 

Technologies, Industry 4.0 has been described as the fourth 

industrial revolution, which consists of a new way of 

organizing the means of production, where intelligent 

machines and robots are connected. This industry will change 

the manufacturing sector through the integration of 

manufacturing processes by information and communication 

technologies [1, 2] to develop efficient "smart factories" 

capable of achieving the current objective in a flexible way [3]. 

In addition, I4.0 helps to improve and satisfy the emerging 

demand for products through intelligent process control and 

management [4, 5]. There is a growing global competition to 

adopt Industry 4.0 to control the production chain and ensure 

the desired level of quality and productivity while respecting 

the axes of sustainable development: social, economic, and 

risk [6, 7]. 

Predictive maintenance cannot be dissociated from Industry 

4.0. It is one of its main axes because it represents an effective 

solution to anticipate failure and intervene in advance. M4.0 

has several definitions; for some researchers, it has become a 

brave new world of specialized technologies and methods 

which consist of monitoring vibrations in rotating machines to 

anticipate malfunction and thus avoid failure [8]. Meanwhile, 

others use it by looking at the infrared emissions of electrical 

devices, engines, and other equipment for the same purpose of 

problem prevention [9]. These two methods have in common 

the control over the condition and the operational state of a 

machine. Overall, one can say that M4.0 is a good way of 

anticipating and identifying early signs of failure and plan 

interventions, which leads to improving productivity, product 

quality, and overall plant efficiency [10], The desire of the 

scientific and industrial community to adopt this technology 

and advance towards Industry 4.0 has intensified, particularly 

with the development of huge data processing and analysis 

tools [9]. 

Maintenance 4.0 is a comprehensive process that consists of 

three main components:  

Monitoring: According to the ISO13381 standard of the 

world federation of national standards organizations, it is an 

evolution of systems analysis using indicators and predefined 

thresholds. The purpose of monitoring is to detect the first 

signs of a failure and then to diagnose them by locating the 

failing elements and identifying the root causes.  

Diagnosis: it consists of searching or analyzing a problem's 

causes and locating the defective parts. It is the process of 

detecting and identifying a failure mode within a system. In 

more detail, diagnosis is a thorough exploration of the failure 

to identify the root cause after it has occurred [11]. 

Prognosis: Prognosis is the prediction of future failures. 

Indeed, it is the rational estimation of the remaining lifetime 

until a complete failure occurs [12]. Thus, it consists of 

monitoring and detecting a component's early indications of 

machine degradation and consistently making accurate 

predictions. The main objective of prognosis is to predict a 

malfunction before it occurs, so time is a critical variable in 

prognosis, distinguishing it from diagnosis, in which time 

plays a less critical role [13]. 

Several research studies have been addressed over time on 

M4.0 approaches. From extensive research, we demonstrated 

that M4.0 is based mainly on one of the following three 

approaches: 

•Physics-based approaches assume on a mathematical or

analytical model to characterize and model the failure [14, 15]. 

•Data-driven approaches use either a static [16],

probabilistic or artificial intelligence model such as artificial 

neural networks [17-19]. 

•Hybrid approaches combine the two previous approaches

to concatenate the advantages of both [20, 21]. 
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Several review papers [17, 22, 23] have also addressed the 

suggestions, challenges and future direction of predictive 

maintenance on how to implement algorithms that do fault 

diagnosis. However, they have not addressed either the 

methodology to implement predictive maintenance in 

conventional plants or the applicability of their algorithms in 

a real case. 

This study aims to develop a transition approach to I4.0 for 

companies and to help them implement predictive 

maintenance tools to detect and diagnose failures while 

guaranteeing the reliability and availability of industrial 

equipment. 

This paper is organized in the following way: the first 

section presents the methodology developed to transition from 

classical maintenance to maintenance 4.0. The second section 

highlights the proposed methodology's applicability on a test 

bench. Finally, the results and performance of our model are 

presented in the last section. 

 

 

2. PROPOSED METHODOLOGY 

 

With the increase of automated tasks linked to the 

complexity of machines, maintenance must evolve towards the 

requirements of the manufacturing sector. Therefore, 

companies are looking for solutions to adopt the 4.0 

technologies and digitalize maintenance processes.  

In order to meet this challenge, the contribution developed 

in this article will guide industrialists to integrate 4.0 

technologies in their processes better in order to move towards 

maintenance that meets the needs of I4.0 [6]. 

 

2.1 The architecture developed to make the transition 

towards industry 4.0 

 

In order to move towards an industry that meets the needs 

of business and international competitiveness. An architecture 

has been set up to help manufacturers to integrate 4.0 

techniques by focusing on M4.0, thus making a jump toward 

the future industry. 

The developed architecture can be divided into seven main 

modules, as shown in Figure 1. 

- Identification of critical components: This involves 

decomposing the industrial system into several subsystems, 

each with a well-defined function. This decomposition is 

based on the expertise of the system operator. Then, a 

technical description has been made to know the subsystems' 

functionality and the links between them. Finally, a 

quantitative and qualitative analysis of the data and knowledge 

collected during the operation is required. 

- Definition of the physical quantities to be monitored: the 

choice of the physical quantities is essential because it requires 

a good and thorough knowledge of the causal links between 

the variation of the value of physical quantities and the 

evolution of the equipment degradations.  

- Choice of an infrastructure: choose sensors and smart 

meters that have a technical means of communication as well 

as an acquisition card that is compatible with the system in 

order to have a communication network. 

- Data acquisition and storage: this module aims to acquire 

and save in real-time and continuously the different data 

formats by ensuring they are weak and ready for processing. 

- Data preprocessing and feature extraction: this module 

relies on techniques de-rived from the processing of 

monitoring data provided by the sensors installed on the 

critical components with the aim of observing the status 

machine and the relevant information on the triggering and 

progression of equipment degradation. 

- Artificial intelligence processing algorithm is mainly 

based on detecting and identifying the first signs of failure and 

the diagnosis the status of the system using artificial 

intelligence algorithm. 

 

 
 

Figure 1. Proposed architecture transformed by adding 4.0 

technologies 

 

 

3. CASE STUDY 

 

To validate the reliability of our architecture, a case study 

has been made on a testbench to evaluate it. 

 

3.1 Experimental testbench description 

 

The experimental is conducted using data acquired from an 

experimental platform built in the Industrial Engineering 

Department at the National School of Applied Sciences. The 
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test bench used in this validation is illustrated in Figure 2(a). 

The purpose of this test bench is to characterize the attenuation 

efficiency of physical quantities such as vibrations, 

temperature, and power consumption..., as well as the 

performance of components, for example, bearing, engine, and 

pump, under controlled conditions. In our experiment, the 

faults are generated artificially by inserting a screw with a nut 

in specific points P1 and P2, as shown in Figure 2(b). In 

addition, the engine speed has been fixed at 1200rpm. 

 

 
 

Figure 2. (a) The experimental test bench, (b) screws and 

nuts to create the unbalance fault in rotating machinery 

 

3.2 Static and dynamic unbalance 

 

The defects created in this experiment are static and 

dynamic unbalance defects. This type of fault is often the 

cause of annoying vibrations and noises. During an unbalance, 

the machine's center of gravity is outside its axis of rotation. 

By adding weights, the center of gravity "S" can be moved so 

that the two axes correspond with the axis of rotation. This 

process is called unbalance. With the sensors and electronic 

cards, the unbalance can be demonstrated explicitly. Figure 3 

shows the difference between a static and a dynamic unbalance. 

 

 

The unbalance force is a rotating force, so it equal: 

 

F=m·R·w2·sin(wt) (1) 

with: 

𝐹: Centrifugal force, N. 

𝑚: Unbalance mass, kg. 

𝑅: distance between unbalance and the axis of rotation of 

the object, m. 

𝜔: Angular frequency, rad.s-1. 

 

The unbalance is equivalent to an unbalance mass located at 

a given distance from the axis of rotation. Thus, the unbalance 

is equal to: 

 

U=m·R (2) 

 

Therefore, the unbalance force becomes: 

 

F=U·w2·sin(wt) (3) 

 

 
 

Figure 3. Unbalance fault in rotating machinery 

 

Table 1. Failure modes on the test bench 

 

Sub-set Organs Failure mode 
Physical phenomenon to 

be monitored 
Actions Sensors 

 

Group 1: 

Bearing 

Engine 

Coupling 

Bearing 
Warm-up Inner ring defect Temperature and vibration 

measurement 

Temperature sensor or thermal 

camera and accelerometer Vibration Outer ring defect 

Engine 

Warm-up Inner ring defect 
Vibrations analysis Accelerometer 

Vibration Outer ring defect 

Groaning 
Phase failure or single 

phasing 
Noise Sound level meter 

Power 

consumption 

Unbalance 
Power analyzer Energy meter 

Misalignment 

Coupling 
Sound Dressing Noise Sound level meter 

Vibration Misalignment Vibration analysis Accelerometer 

Group 2: 

Gearing 

Coupling 

Pump 

Gear 

Vibration 

Pinion crack 

Vibration analysis (Time/ 

Frequency) 
Accelerometer 

Temperature Temperature measurement 
Temperature sensor or thermal 

camera 

Pump 

Leakage Seal Leakage Air and gas compressor Ultrasound 

Temperature Water pump faults Temperature measurement 
Temperature sensor or Thermal 

camera 

Cavitation Vibration Vibration analysis Accelerometer 

 

  

            
        

            
        

            
        

            
        

                   

                     

          
       
    

        
       

        
       

         

         

          
       
    

819



 

3.3 Application of proposed architecture 

 

According to the architecture presented in section 2.1, the 

first step is to identify the critical components of the studied 

system. In our case, the system has been subdivided into two 

subsystems, as shown in Table 1, the first one contains three 

pieces of equipment: a bearing, an engine, and a coupling. The 

second subsystem contains gear, another coupling and a pump. 

Several probable failure modes on the test bench were 

detected, i.e., bearing, motor, gear or pump failures. In 

addition, we identified the physical quantities to be monitored 

for each component. 

This work is of great importance; it allows us to optimize 

and determine the types of sensors, the location point and their 

number from the directions of the generated efforts. 

Several failure modes were identified in the test bench, such 

as bearing, engine, coupling, or pump failures. In our case, the 

unbalance faults, in particular, were treated. Then, we drew the 

physical quantities to be monitored in each organ to define the 

sensors used and the associated card. For the monitored system, 

we installed several temperature sensors and accelerometers in 

different locations to monitor the system and even to follow 

the effects of unbalance on other equipment. 

The next step is to retrieve the data from the sensors via the 

frame grabber and send it back to the processing unit for 

storage and pre-processing. The data preprocessing consists of 

normalizing them and ensuring that they are complete, reliable, 

and ready to be processed by an artificial neural network 

algorithm we have developed. As a result, another analysis 

was done to allow strategic decisions to be made. 

The final stage of our process is the development of an 

artificial intelligence algorithm capable of detecting and 

diagnosing engine faults. 

Applying this approach on the test bench allows for 

validating the feasibility and efficiency of maintenance 4.0 on 

industrial systems. 

 

3.4 Generated dataframe 

 

Table 2. Shape of the frame acquired 

 
DataFrame Description 

{Timestamp, v_RMS,Unit, 

a_RMS,Unit, a_Peak,Unit,crete,Unit, 

temp,Unit} 

The DataFrame is 

encoded in Json format. 

 

Table 3. DataFrame parameter 

 
Parameter 

names 
Derived Units Designation 

Timestamp  Time sampling 

v_RMS 
Meter per Second 

(m. s-1) 
Average speed 

a_RMS 
Meter per Second 

squared (m.s-2) 
Average acceleration 

a_Peak 
Meter per Second 

squared (m.s-2) 
Peak value 

crete 
Meter per Second 

squared (m.s-2) 
Peak-to-Peak value 

Temp Celsius (℃) Surface temperature 

Unit  
Represents the unit of 

each parameter 

 

Data checking and verification are essential parts of the pre-

processing. They allow us to check the reliability and 

availability of the data, verify the values of the parameters, and 

select the influenced parameters. Table 2 shows the acquired 

frame, and Table 3 describes each data frame parameter. 

 

3.5 Construction of the ANN 

 

Deploying an AI model to diagnose similar types of engines 

is possible using supervised machine learning. This involves 

collecting data from properly functioning engines as well as 

engines with problems and using that data to train a model that 

can diagnose problems in new engines.  This model can then 

be implemented on an electronic board to diagnose other 

motors of the same type in real-time. 

That's why, the second part of the method consists in 

diagnosing the failures from a history of the equipment data. 

This diagnosis is made by a machine learning model and, more 

precisely, by artificial neural network using the Python 

language to model the characteristics of each engine defect. 

Our architecture is composed:  

Five input neurons: these are v-RMS, a-RMS, a-Peak, Crete, 

Temp, as shown in Table 2. The purpose of the input layer is 

to receive the data from the sensors via the acquisition card 

and transmit them to the hidden layer so that it can model the 

relationship between the inputs and the output. Two hidden 

layers: each one contains 512 neurons, allowing the process of 

the relation between the inputs and the output to model the 

relation between them. Three neurons in outputs: each one 

represents the state of the engine.  

To train this model on the different states of the bearing, we 

exploited the monitoring history of the latter which contains 

more than 8000 data. 

Figure 4 represents our neural network architecture. 

 

 
 

Figure 4. Rotating machinery diagnostics by the developed 

architecture 

 

Normally, the data is put into the ANN network after 

preprocessing. The inputs are multiplied by the weights "ω", 

in this, a bias "b" is added, and the activation function "ReLu" 

is then applied to the outcome. This process is repeated up 

until the last layer is reached. As a result, the output of the 

network gives one of three values (0, 1 or 2), each 

corresponding to an operating mode of the engine: 

- The value “0”: means Healthy Engine, 

- The value “1” represent Static Unbalance Fault, 

- The value “2” means Dynamic Unbalance Fault. 

The developed algorithm directly displays the state of the 

engine. 
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4. RESULTS AND DISCUSSION 

 

4.1 System monitoring 

 

After integrating the proposed architecture into the studied 

system, we could have real-time system data, leading to 

continuous system monitoring. As a result, the ISO10816-3 

standard was exploited to monitor the whole system and detect 

the first signs of failure [24]. In this case study, the motor 

rotates at a speed of 1200 rpm and has a power of 2.2Kw. 

According to the ISO10816-3 standard, our system is 

classified in group I (K), so the vibration thresholds are 

defined as follows:  

- Good (<0,71mm/s) 

- Satisfactory (between 0,71 and 1,8mm/s) 

- Unsatisfactory (between 1,8 and 4,5mm/s) 

- Unacceptable (4,5mm/s <) 

Figure 5 illustrates the system monitoring status and the 

detection of an anomaly. 

 

 
 

Figure 5. Continuous system-performance monitoring 

 

The results of the monitoring are shown in Figure 5. The 

blue curve line represents the vibration signal of the monitored 

system, and the dotted lines represent the thresholds defined 

by the standard. At the beginning of the experiment, the 

vibration signal remains in the "good" area, which means that 

the system is in good condition. After the fault's appearance, 

the vibration signal's amplitude increases as the force exerted 

on the engine increases until it reaches the tolerable zone. The 

data acquired by the sensors will be recorded in order to 

exploit them in the training phase of the algorithms.  

The next step consists in processing the acquired signals to 

diagnose the type of fault. This processing is done by the 

network developed in section 3.5. 

 

3.6 Evaluation of the developed model 

 

The Training and Validation loss displays a graph, see 

Figure 6, showing the number of errors that appear in the 

trained model throughout epochs. When the model has been 

run, a portion of the input data was used to train the model, 

and a portion of the data was used to validate and assess the 

model's correctness after it had been run. 

Figure 6 shows the model accuracy and error in each 

iteration. The developed model reaches an accuracy of 88% 

and an error of 0.3. 

To validate our model, we should be equipped with different 

assessment metrics to analyze the classification algorithm, 

these metrics are: 

Precision: it represents the actual correct predict divided by 

total prediction made by our model, as the following formula: 

 

 
 

Figure 6. Representation of accuracy and loss as a function 

of epoch 

 

P  c s o =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

 

Recall: represents the number of true positives divided by 

the total number of true positives and false negatives. 

 

  c ll =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

 

f1 score: it is a weighted average of precision and recall. 

This metrics is usually more useful than accuracy, especially 

if you have an uneven class distribution. 

 

f =  ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
 (6) 

 

The results of the evaluate are shown in Table 4. 

 

Table 4. Performance evaluation of proposed model 

 

 precision recall f1-score Support 

     

0 0.76 0.83 0.79 296 

1 0.79 0.71 0.75 291 

2 0.98 0.98 0.98 313 

Accuracy   0.84 900 

Macro avg 0.84 0.84 0.84 900 

Weighted avg 0.84 0.84 0.84 900 

 

 
 

Figure 7. Confusion matrix representation 

(b) Training and validation loss

(a) Training and validation accuracy
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Figure 7 illustrates the confusion matrix in the model's 

success in identifying each class using the real data and the 

model results. 

The confusion matrix is a table that summarizes how 

successful the classification model is at predicting examples 

belonging to various classes. One axis of the confusion matrix 

is the label that the model predicted, and the other axis is the 

actual label. In above confusion matrix, blue diagonal shows 

the result that in actually they represent one state of the engine 

and model also predicted that same state but the other boxes 

show the result that in actual they are one state of the engine 

and model predicted it another state. 

The model results showed that our diagnosis was identical 

to the target throughout the experiment.  

The model is based on two phases, as mentioned in Figure 8. 

- A first phase "offline" has been performed to understand 

and learn the degradation behavior. 

- A second phase "online" will allow us to exploit the 

generated neural network model as a diagnostic tool for other 

engine of the same type. 

 

 
 

Figure 8. Deploy developed model in the online phase 

 

The application findings show that our model functions 

admirably and is extremely sensitive to engine deterioration. 

This may be accounted for by the perfect adjusting and setting 

of the network parameters. 

We cannot compare the proposed model with other existing 

models in the literature because the data treated in this article 

are generated in our platform and are only available to some. 

 

 

5. CONCLUSIONS 

 

We presented the methodology developed to integrate new 

technologies in maintenance 4.0 for engine faults, which 

applies to different physical quantities of industrial equipment 

organs. It consists of implementing new technologies in 

Industry 4.0, monitoring and detecting any failure, and 

diagnosing the engine condition. 

Regarding the implementation of 4.0 technologies, the 

methodology is based on implementing an IoT infrastructure 

based on sensors and electronic boards to collect and feedback 

data continuously and in real-time from the monitored system, 

as well as create a connection between machines, devices and 

processing systems. Then, a monitoring phase is triggered to 

detect any anomaly in the monitored system. Finally, when the 

first signs of a failure are detected, an algorithm based on 

artificial neural networks takes over to diagnose the failures 

and deduce the type of fault.  

Based on these results, the application of Maintenance 4.0 

allows to anticipate breakdowns and failures of production 

lines, reduce the frequency of interventions, and positively 

influence energy consumption. 

In future work, it is planned to analyze the errors further to 

see if it would be possible to optimize the model in such a way 

that the performance of the learned model is maximized. 
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NOMENCLATURE 

I4.0 Industry 4.0 

M4.0 Maintenance 4.0 of predictive maintenance 

IA 

IoT 

Artificial Intelligence 

Internet of Things 

Power BI Power Business Intelligence 

823




