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The problem posed in the surface heat treatment industry of metallic materials is the 

knowledge of the amount of energy required and its correct distribution on the treated 

surface for the achievement of a better quality of the metallurgical structure of treated parts. 

To succeed in this operation, manufacturers are required to carry out many expensive and 

time-consuming experiments. This work consists in predicting the energy density applied 

to the surface of a metal part, during surface heat treatment by a laser beam, based solely 

on temperature measurements taken under the treated surface. This problem in the 

mathematical sense is called the reverse heat transfer problem. The solution of this inverse 

problem of heat conduction allows us to predict the density of the energy necessary to be 

applied to the surface from the desired metallurgic structure characterized by a well-

defined temperature distribution. The optimization method used in this work is that of the 

conjugate gradient thanks to its speed of convergence, its quality of precision and also to 

stability. Many similar works have been developed in the literature using the inverse 

method but only to estimate thermo-physical characteristics such as thermal conductivity, 

thermal capacity mass, point heat source, etc. using conventional numerical methods. But 

in no case to estimate the complex profile of an energy density applied to the real 

processing of steel using the conjugate gradient algorithm. 
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1. INTRODUCTION

Solid-phase heat treatment is applied to the superficial 

martensitic quenching of low- or non-alloy steels and aims to 

improve the tribological and mechanical properties of the 

material (wear, hardness, corrosion, etc.). The purpose of 

quenching is to modify the microstructure of the steel and cast 

irons by strengthening the hardness. 

The initially ferritic-pearl structure of the material is first 

austenitized by heating and then transformed into hard 

martensite by quenching. It is thus possible to carry out a 

partial or superficial quenching on complex parts and to 

preserve the greatest ductility of the initial structure of the 

other areas. 

Laser beam quenching is part of the surface quenching 

process. It is fast, economical, and ecological. It usually uses 

a continuous OR diode CO2 laser delivering a few kilowatts. 

This heat treatment process now makes it possible to work on 

extremely complex geometries, e.g. worm gear camshaft. 

Parts treated with laser beam undergo minimal 

deformations due to the fact that the absorbed laser energy is 

narrow. Hence the usefulness of the numerical simulation of 

this heat treatment process is to avoid deformations of the 

material on the one hand and to predict the final metallurgical 

structure before doing the experiment on the other hand. And 

this will make it possible to significantly reduce the cost of 

manufacturing mechanical parts by reducing the number of 

experiments and real tests, optimizing the quality of the parts, 

and controlling energy consumption better. 

This physical problem of thermal conduction is modeled in 

the mathematical sense by an inverse problem. 

The first work concerning the solution of the inverse 

problem was carried out by Stolz [1] in 1960 in the field of 

aerospace and military. He proposed an analytical solution to 

the one-dimensional problem obtained by the numerical 

inversion of the integral equation based on Duhamel's theorem. 

If one wants to determine the transient flow with good 

accuracy, it is necessary to take a short time step. The 

procedure thus proposed then becomes unstable. Indeed, the 

temperature at an inner point of the solid is damped and out of 

phase with respect to the surface temperature. In 1962 Beck [2] 

proposed an approach based on the deconvolution of the 

inverse problem in the transient and linear case. This method 

made it possible to adopt a weaker time step. 

A technique based on the method of least squares was then 

presented by Burggraf [3] in 1964. This technique, expressing 

the surface temperature as a series of temperature and flow 

derivatives at the measuring point, gives an exact solution to 

the opposite problem when the data used are known 

continuously. On the other hand, it becomes approximate 

when discrete or experimental data are used. 

Solving the problems of inverse conduction at the 

boundaries makes it possible to estimate the parameters 

(contact thermal resistance, exchange coefficient) and the 

functions (heat flow density, temperatures) characterizing the 

heat transfer on an interface. 
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Knowledge of these parameters or functions is of paramount 

importance for the numerical simulation of heat transfer within 

materials. This is why this problem has been the subject of 

several works in 1D, 2D and see 3D [4-18].  

Then come the analytical methods that are based on the 

principle of superposition or on the Laplace transformation, 

and are limited to linear problems and simple geometries. 

Two other main classes of methods have been developed: 

function specification methods using criterion minimization 

and space marching methods in which a subdivision of the 

field studied is used into two subdomains, one referring to a 

direct problem and the other identifying with an inverse 

problem. These include the methods of D’Souza [19], Weber 

[20], and Hensel Jr and Hills [21], Raynaud and Bransier [22]. 

The most important criterion for choosing an inverse 

method is stability. This stability problem can only be solved 

by the use of the regularization technique. Since the regulation 

technique cannot be used in inverse methods belonging to the 

class of return to surface methods. 

In 2000, Huang and Chen [23] Used the conjugate gradient 

method to solve a three-dimensional forced convection inverse 

problem to estimate heat flow at the surface. In 2002, Kim and 

Lee [24] developed a solution for the inverse conduction 

problem using the principle of maximum entropy. In 2007, 

another solving technique based on the principle of gradient 

and the resolution of adjoint equations was used by Pujos [25]. 

In 2008, Lin et al. [26] used the gradient method for solving 

the inverse problem in forced convection between two parallel 

plates. In 2010, Lu et al. [27] solved the inverse heat problem 

in two dimensions to estimate the temperature inside a pipeline. 

In 2018, El Idi and Karkri [28] have developed heating and 

cooling conditions effects on the kinetic of phase change of 

pcm embedded in metal foam.  

In other works, the authors have highlighted the influence 

of temperature on electronic and mechanical equipment Cheng 

[29], the stresses caused by the friction temperature between 

cutting tool Niu [30], the influence of fins on heat transfer in 

parabolic trough solar collectors Badr et al. [31]. 

 

 

2. DESCRIPTION OF THE PROBLEM AND 

GEOMETRY 

 

The sample used in this inverse heat transfer problem is a 

cylindrical part of XC42 heat treatment steel whose geometry 

is defined on the Table 1. The thermo-physical and 

metallurgical characteristics of this steel are considered 

variable with temperature. The temperature-related evolution 

of these parameters is shown in the Figures 3-5. 

The heat treatment of this steel requires the application of 

two phases:  

♦ A heating phase of 3 seconds that requires to apply during 

this time a laser flow of power 80 W distributed on a base 

surface according to the radius (r) selling a Gaussian law 

to be determined by solving the inverse problem.  

♦ A long cooling phase, of 10 seconds, ensured by natural 

convection in the ambient air. 

 

The search for the heat flow applied to the surface of the 

cylindrical sample consists in solving three problems:  

a- Direct problem using an estimated heat flow 𝜑𝑛(𝑟, 𝜃, 𝑧, 𝑡). 

b- Adjoint problem by using the error relating to the 

difference between the measured temperature and the 

temperature calculated by the direct problem as the energy 

source.  

c- Sensitivity problem using the temperature gradient as a 

boundary condition. 

 

The results of these three problems allowed us to calculate 

the depth and decent direction of the conjugate gradient 

method which will then be used to estimate the new heat flow 

𝜑𝑛+1(𝑟, 𝜃, 𝑧, 𝑡). 

 

2.1 Experiment simulation 

 

By applying a flow of energy to the heating surface of 

unknown density, six thermocouples (Figure 1) installed under 

the surface make it possible to measure the evolution of the 

temperature Ym(t) at these points, which will be read by the 

calculation code and serve then to the estimation of the heat 

flow φ(t), applied to the surface (Γ) (Figure 2), and of the 

temperature distribution T(t) in the whole calculation domain 

(Ω) Maniana et al. [32]. 

 

 
 

Figure 1. Diagram of the experiment 

 

 
 

Figure 2. Mesh 

 

2.2 Mesh of the computational domain 

 

For numerical study we have chosen the finite element 

method a cubic element of 8 nodes an initial density of 0.002 

mm, a final density of 0.005 mm and a time step of 0.1 s. 

 

 

3. NUMERICAL DATA FOR CALCULATION 

 

All data necessary for numerical calculation are classified 

into three categories and defined in Tables 1-3. 
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Table 1. Sample geometry 

 
Quantity Value 

Diameter [mm] 100 

Height [mm] 60 

Mass [kg] 0.918 

 

Table 2. Chemical composition 

 
XC42 STEEL 

C S Mn P Si 

0.37 at 

0.44 

0.035 

max 

0.50 at 

0.80 

0.035 

max 

0.40 

max 

 

Table 3. Mechanical characteristics of XC42 

 
Young’s 

Modulus 

E [GPa] 

Poisson 

Coefficient ν 

Sigma 

σ[MPa] 

Reference 

temperature 

T ℃ 

200 0.278 230 20 

185 0.288 184 200 

170 0.298 132 400 

153 0.313 105 600 

135 0.327 77 800 

96 0.342 50 1000 

50 0.350 20 1200 

10 0.351 10 1340 

 

 

4. MATHEMATICAL MODELING 

 

Let us define the heat transfer problems to be solved with 

the conjugate gradient method as well as the boundary 

conditions imposed on the boundaries of the computational 

domain. 

 

4.1 The direct problem 

 

This problem consists in finding the distribution of the 

temperature in the mass of the sample knowing the density of 

the heat flow φ applied to the base surface of the cylinder and 

the evolution of the volume source �̇� . The heat Eq. (1) is 

obtained by recording the conservation of thermal energy in 

an element of volume (V) of any solid: 

 

𝜌𝑐𝑝
𝜕𝑇(𝑟,𝜃,𝑧,𝑡)

𝜕𝑡
+ 𝑑𝑖𝑣 (−𝑘(𝑇). 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑇(𝑟, 𝜃, 𝑧, 𝑡)) =

�̇�(𝑟, 𝜃, 𝑧, 𝑡) in Ω 
(1) 

 

♦ In this case there is no power density: �̇� = 0.  

♦ First boundary condition: flow imposed on the surface 

heated by laser beam. This Eq. (2) is based on the Fourier 

relation. 

 

−𝑘(𝑇)
𝜕𝑇(𝑡,𝑟,𝜃,𝑧)

𝜕𝑛1
|
𝑧=𝑙

= 𝜑(𝑟, 𝜃, 𝑧, 𝑡) on Γ (2) 

 

♦ Second boundary condition: convection flow applied to 

the rest of the outer surface of the sample. We get Eq. (3) 

using Newton's law.  

 

−𝑘(𝑇)
𝜕𝑇(𝑟,𝜃,𝑧,𝑡)

𝜕𝑛2
|
𝑟=𝑅

= ℎ. (𝑇(𝑟, 𝜃, 𝑧, 𝑡) − 𝑇∞)

 on Σ 
(3) 

 

♦ Initial condition. 

 

𝑇(𝑟, 𝜃, 𝑧, 𝑡) = 𝑇0 in Ω  at t=0 (4) 

 

After solving the direct problem, we have to calculate the 

error E(r,θ,z,t) defined by the Eq. (5). This error will serve us 

as a volume source applied in the Eq. (6) of the adjoint 

problem defined below.  

 

𝐸(𝑟, 𝜃, 𝑧, 𝑡) = ∑(𝑇(𝑟, 𝜃, 𝑧, 𝑡) − 𝑌𝑚(𝑡))

𝑁𝑐

𝑛=1

𝛿(𝑟

− 𝑟𝑚)𝛿(𝜃 − 𝜃𝑚)𝛿(𝑧 − 𝑧𝑚) 

(5) 

 

4.2 Adjoint problem 

 

Solving this problem will allow us to determine the 

temperature gradient at the surface Γ. 

 

𝜌(𝑇)𝑐𝑝(𝑇)
𝜕𝜓(𝑟,𝜃,𝑧,𝑡)

𝜕𝑡
+ 𝑘(𝑇)Δ𝜓 =

𝐸(𝑟𝑚 , 𝜃𝑚, 𝑧𝑚, 𝑡, 𝜑) −
𝜕�̇�

𝜕𝑇
𝜓  in Ω 

(6) 

 

♦ Flow applied to the base surface of the cylinder 

 

𝑘(𝑇)
𝜕𝜓(𝑟,𝜃,𝑧,𝑡)

𝜕𝑛1
= 0 on Γ (7) 

 

♦ Flow applied to the rest of the outer surface 

 

𝑘(𝑇)
𝜕𝜓(𝑟,𝜃,𝑧,𝑡)

𝜕𝑛2
= 0 on Σ (8) 

 

♦ Initial condition 

 

𝜓(𝑟, 𝜃, 𝑧, 𝑡) = 0 in Ω  at 𝑡 = 𝑡𝑓 (9) 

 

The extraction of the solution ψ(r,θ,z,t) of this problem 

added to the boundary surface Γ will allow us to deduce the 

gradient and the direction of descent of the conjugate gradient 

method. 

 

♦ Gradient calculation: 

 

𝐽′(𝜑𝑛) = 𝜓(𝑟, 𝜃, 𝑙, 𝑡) (10) 

 

♦ Coefficient calculation: 

 

𝛽𝑛 =
‖𝐽′(𝜑𝑛)‖

‖𝐽′(𝜑𝑛−1)‖
 (11) 

 

♦ Calculation of direction of descent: 

 

𝑑𝑛 = 𝐽′(𝜑𝑛) + 𝛽𝑛𝑑𝑛−1 (12) 

 

The value of the descent direction will be applied as the heat 

flow to the heating surface in the following problem. Solving 

this sensitivity problem will allow us to calculate the depth of 

descent for the conjugate gradient method. 

 

4.3 Sensitivity problem 

 

In this sensitivity problem we solve the heat Eq. (13), in 

which we apply as a boundary condition Eq. (14) on the 

control surface (Γ) the heat flow 𝛿𝜑. 
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𝜕(𝜌𝑐𝑝(𝑇)𝛿𝑇(𝑟,𝜃,𝑧,𝑡))

𝜕𝑡
− Δ(𝑘(𝑇)𝛿𝑇(𝑟, 𝜃, 𝑧, 𝑡)) =

𝜕�̇�

𝜕𝑇
𝛿𝑇(𝑟, 𝜃, 𝑧, 𝑡)      in Ω 

(13) 

 

We set: 𝛿𝜑 = 𝑑𝑛 

 

♦ Flow applied to the base surface of the cylinder. 
 

𝜕(𝑘(𝑇)𝛿𝑇(𝑟,𝜃,𝑧,𝑡))

𝜕𝑛1
= 𝛿𝜑 on Γ (14) 

 

♦ Flow applied to the rest of the outer surface. 
 

𝜕(𝑘(𝑇)𝛿𝑇(𝑟,𝜃,𝑧,𝑡))

𝜕𝑛2
= 0 on Σ (15) 

 

♦ Initial condition.  
 

𝛿𝑇(𝑟, 𝜃, 𝑧, 𝑡) = 0   in Ω   at 𝑡 = 0 (16) 
 

The analytical expression for the depth of descent is given 

by the Eq. (17). 
 

𝛾 =

∫
∑ (𝑇(𝑟𝑚 , 𝜃𝑚, 𝑧𝑚, 𝑡, 𝜑) − 𝑌𝑚(𝑡))𝑚=𝑁𝑐

𝑚=1

𝛿𝑇(𝑟𝑚 , 𝜃𝑚, 𝑧𝑚, 𝑡, 𝛿𝜑)𝑑𝑡

𝑡𝑓
0

∫ ∑ (𝛿𝑇(𝑟𝑚, 𝜃𝑚, 𝑧𝑚 , 𝑡, 𝛿𝜑))
2𝑚=𝑁𝑐

𝑚=1 𝑑𝑡
𝑡𝑓
0

 
(17) 

 

The estimate of the new heat flow sought is given by the 

following relationship: 
 

𝜑𝑛+1 = 𝜑𝑛 − 𝛾𝑛𝑑𝑛 (18) 
 

The convergence condition is imposed by the minimization 

of the functional defined below: 
 

𝐽(𝜑𝑛) = ∑ [𝑇𝑚(𝜑𝑛) − 𝑌𝑚(𝜑𝑛)]2

𝑚=𝑁𝑐

𝑚=1

 (19) 

 

4.4 Algorithm of this conjugate gradient method 
 

This algorithm shows the hierarchy to follow in the 

conjugate gradient method to determine the new flux (𝜑𝑛 ) 

from the estimated flow (𝜑𝑛−1) in the previous step.   
 

 

5. GRAPHIC REPRESENTATION OF THE 

THERMOMECHANICAL CHARACTERISTICS OF 

THE MATERIAL 

 

In the Figures 3-5 below we represent the evolution 

according to the temperature of the density ρ(T), of the thermal 

conductivity K(T) and of the specific heat capacity cp(T) for 

the XC42 steel. 

 

 
 

Figure 3. Volumic mass 

 

 
 

Figure 4. Heat capacity 

 

 
 

Figure 5. Conductivity 

 

 

6. RESULTS  

 

In the Figure 6 we represent the evolution of the temperature 
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versus time in the six measurement points obtained by 

experimental simulation. 

In the Figure 7 we represent in 3D the mapping of the 

applied flow to the heated surface, obtained by numerical 

calculation. 

The Figure 8 represents the convergence of the estimated 

heat flow, depending on the number of iterations (N), towards 

the exact solution. 

In Figure 9 we compared the radial profile of the 

temperature obtained by the numerical method with the profile 

estimated experimental. 

In Figure 10 we represent the evolution versus time of the 

temperature in the six measurement points, obtained by the 

numerical method. 

The Figure 11 represents the temperature map in half of the 

sample at the end of the heating phase. 

The Figure 12 shows the rapid evolution of the convergence 

criterion versus the number of iterations. 

In Figure 13 we have made a comparison between the 

calculated temperature and that measured at the measurement 

point pt_0, located in the center of the heated surface of the 

sample. 

 

 
 

Figure 6. Measured temperature 

 

 
 

Figure 7. Applied flow 

 

 
 

Figure 8. Heat flow iteration 

 

 
 

Figure 9. Measured and calculated temperature profile at 

index point (P0) 

 

 
 

Figure 10. Calculated temperature profile 
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Figure 11. Temperature distribution in the sample 

 

 
 

Figure 12. Convergence criterion 

 

 
 

Figure 13. Comparison of T0C and T0M 

 

 

7. CONCLUSION 

 

By the comparison between the measured temperature, at 

the center of the heated surface, and that calculated by the 

numerical method at the same geometric point, we found that 

the conjugate gradient method converges quickly and 

efficiently towards the exact solution. 

The limitation of this technique of evaluating the thermal 

source by the inverse method is summarized in the efficiency 

of access to temperature measurement inside the material. 

The prospect of this work is to make a thermomechanical 

coupling in order to be able to make a complete study of the 

behaviour of the material from the point of view of 

deformations and structure after surface treatment. 
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NOMENCLATURE  

 

∅ Heat flow (W) 

φ Surface heat flow (W.m-2) 

k Conductivity (W.m-1.K-1) 

ρ Density (kg.m-3) 

cp Mass calorific capacity (mass heat) (J.kg-1.K1) 

h Convection coefficient (W.m-2.K-1) 

t Time (s) 

tf final time (s) 

q Volumetric Heat Flow (W.m-3) 

r Contact Radius (m) 

S Surface (m²) 

T Temperature (°C) 
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