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The objective of this study was to obtain NOx emission prediction model at the inlet 

selective catalytic reduction (SCR) reactors, which was the basis of combustion 

optimization and denitrification treatment. A deep extreme learning machine (DELM) 

optimized by the sparrow optimization algorithm (SSA) was adopted to establish the NOx 

model based on data fusion of Computational Fluid Dynamics (CFD) simulation and 

Distributed Control System (DCD). The mechanism analysis and XGBoost algorithm was 

used to select input variables. The results show that the XGBoost-SSA-DELM-based 

prediction model has high prediction accuracy with mean absolute error of 2.54 mg/m3. 

The results of this study have important implications for research on improving combustion 

efficiency and reducing pollutant emissions. 
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1. INTRODUCTION

The excessive emission of nitrogen oxide (NOx) has 

seriously damaged the ecological and living environment and 

affected the human health. Thermal power plants are one of 

the main sources of NOx emissions. Despite clean sources of 

energy is rapidly developed, more than 70% of China's current 

electricity comes from coal-fired power plants in 2021. 

Currently, there are two main ways to reduce NOx emissions 

from coal-fired power plants, one is low nitrogen combustion 

in the furnace, and the other is denitrification of the furnace 

outlet. Due to the increasingly stringent emission restrictions, 

the NOx emission concentration after denitrification is 

generally required to be below 50 mg/m3 [1]. The NOx 

concentration at the inlet of the denitrification is in the range 

of 150 mg/m3 to 400 mg/Nm3. Modeling the NOx 

concentration at the inlet of the denitrification is of theoretical 

and practical significance because it can provide a model basis 

for the setting of combustion process control parameters and 

the optimal control of ammonia injection in denitrification 

process. 

At present, in addition to the direct measurement of NOx 

emissions by Continuous Emission Monitoring System 

(CEMS), there are two indirect methods to obtain NOx 

concentrations, one is the mechanical method based on 

Computational Fluid Dynamics (CFD) simulation, and the 

other is the data-driven modeling method. In CFD simulation, 

the nonlinear mass, energy, component, and momentum 

differential equations of combustion process are solved and 

combustion state and the three-dimensional distribution of 

various combustion products can be obtained. Not only 

average NOx concentration value in a certain boiler 

crosssection but also its complete distribution. 

Choi and Kim [2] investigated the formation of NOx in a 

500MWe tangentially fired boiler using CFD simulation and 

thus provided a useful basis for the reduction and control of 

NOx. Ti et al. [3] simulated a 600-MWe boiler with two levels 

of OFA (over-fire air) technology and analyzed the effect of 

blade angle variation on NOx emissions. Some CFD 

simulation were carried out and investigated the influencing 

factors of NOx formation, such as the effect of air-staged 

combustion [4], excess air coefficient [5], burner tilt angle [6], 

SOFA distribution modes [7], swirl arrangement and coal 

injection mode [8]. Chang et al. [9] established a CFD model 

including flow, coal combustion and NOx formation for a 

630MW tangentially fired pulverized-coal boiler under 

variable/low load conditions, aiming at solving the problem of 

decreasing combustion stability and increasing NOx emission 

in low-load operation. The study results gave the optimal 

burner tilt angle and burner arrangement mode of this unit. 

CFD simulation is an off-line modeling method and has a 

relatively long modeling time, so it is not suitable for real-time 

NOx prediction. The combustion process in power station is a 

complex physicochemical process, in which the complex 

mechanisms are difficult to be expressed by accurate reaction 

equations.  

The other NOx emission prediction is based on data-driven 

method. With the development of computer technology and 

machine learning, the data driven methods provide a new way 

for model construction of NOx emission. Many NOx emission 

prediction modes have been developed based on the artificial 

neural network (ANN) [10]. Support Vector Machine (SVR) 

and least square support vector machine (LSSVM) had also 

been applied to predict the NOx emission [11]. The ELM 

algorithm was proposed by Huang in 2006 and successfully 

mapped the relationship between the operational parameters 

and NOx emission [12]. Currently, deep learning is 

undoubtedly become the biggest hotspot in the field of 

machine learning. The LSTM algorithm had been widely used 

to established NOx prediction in recent years [13]. Wang et al. 

[14] carried out three deep belief network (DBN)-based NOx

emission prediction models for coal-fired power plants to

verify the effectiveness of the deep learning algorithms. Wang

et al. [15] proposed an ensemble DBN model based on random

International Journal of Heat and Technology 
Vol. 40, No. 6, December, 2022, pp. 1514-1521 

Journal homepage: http://iieta.org/journals/ijht 

1514

https://crossmark.crossref.org/dialog/?doi=10.18280/ijht.400621&domain=pdf


 

subspace for NOx concentration prediction, which has better 

prediction performance and generalization ability. To solve 

the difficulty of deep learning model parameter tuning, various 

optimization algorithms have been applied in the process of 

NOx modeling process such as particle swarm optimization 

[16], ant colony optimization [17], JAYA optimization [18], 

genetic algorithm [19] and Bayesian optimization [20]. 

The data-driven method can map the relationships between 

the input variables and NOx emission. The data sets for data-

driven modeling of NOx concentration usually comes from 

distributed control system (DCS)operational data. In order to 

cover a larger range of variables, the latest studies have fused 

the CFD simulation data with DCS data to diversify the data 

and improve the generalization capability of the model [14, 20, 

21]. 

In this study, a NOx emission prediction model based on a 

deep extreme learning machine (DELM) is proposed. Firstly, 

the corresponding experimental data are obtained by actual 

power plant DCS system and CFD simulation. Secondly, in 

order to reduce the model complexity, several variables that 

may affect NOx emissions are selected based on empirical and 

mechanistic analysis, and the XGBoost feature selection 

algorithm is used to determine optimal input parameter. Then, 

the DELM algorithm is used to conduct modeling research on 

NOx emissions, and sparrow search algorithm (SSA) 

algorithm is developed to automatically optimize the 

hyperparameters of the DELM model. In order to verify the 

validity of the model, relevant experiments were designed and 

compared with common modeling methods.  

The rest of the paper is organized as follows. Section 2 

described the study object and the process of training data set 

acquisition. The NOx formation mechanism and the variables 

selection introduced in Section 3. Section 4 proposes a DELM 

modeling method based on SSA hyperparameter optimization. 

The experimental results and corresponding discussion and 

analysis were given in section 5. Finally, the conclusion was 

drawn in Section 6. 

 

 

2. BOILER DESCRIPTION AND DATA 

PREPARATION 

 

2.1 Boiler description and DCS data acquisition 

 

 
 

Figure 1. The schematic diagram of the 350 MW boiler 

 

The object of this study is a 350MW supercritical boiler, 

which has a single furnace, π type layout, double flue at the 

end and balanced ventilation. The detailed schematic diagram 

of the boiler is shown in Figure 1. The boiler is 57.30 m in 

height and has a cross-section of 14.6273 m × 14.6273 m. Six 

layers of tiltable fuel-air nozzles (A, B, C, D, E, F) are installed 

on the four walls of the water cooled wall. Pulverized coal is 

blown into the furnace through six medium-speed coal mills. 

Eight layers of secondary air nozzles (AA, AB, BC, CC, DD, 

DE, EF, FF) locate at the four corners of the furnace. Fuel-air 

nozzles and secondary air nozzles are arranged alternately and 

symmetrically and formed two main combustion areas (upper 

combustion area and lower combustion area). Four layers of 

separate over-fire air (SOFA1~SOFA4) are located at the four 

corners of furnace over the main burner area. The new 

tangential fired mode has the advantages of short flame travel 

and good gas replenishment conditions on both sides of the 

flame. 

The modeling data is taken from the power plant DCS. In 

order to improve the adaptability of model, the samples should 

cover as large a range of load variations and as many operating 

conditions as possible. The unit load varied from148.59MW 

to 352.84MW and NOx generating concentration of SCR inlet 

changed from 107.24 mg/m3 to 238.23mg/m3. 2000 operating 

data samples were collected with interval of 60 seconds by 

removing the unstable operating points from 5000 groups of 

historical operating data. 

 

2.2 CFD simulation 

 

 
(a) Global geometric model 

 
(b) Refined mesh of furnace burner area 

 

Figure 2. Geometric model and local refined mesh of boiler 

 

Model prediction performance of the NOx emissions 

depends on the selection of training samples and modeling 

algorithms. In this paper, CFD simulation data is fused with 

DCS operation data to achieve sample diversification. CFD is 

a mechanism-based modeling method, which can off-line 

calculate the combustion state and the spatial distribution of 

pollutants in the furnace under any operating conditions. 
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Figure 2 shows that the geometric model and mesh generation 

of CFD simulation. After the performed grid independence test, 

a grid with 2.8 million meshes was selected to simulate the 

combustion process. The combustion process was simulated in 

Fluent 15.0 software. The coal quality is considered to be 

constant during the simulation, and the boundary conditions 

and the mathematical model was described by in Lv et al. [22].  

Since the boiler adopts the air-staged combustion method, 

the change of air distribution mode and tilting angle of 

dampers will affect the final combustion condition in the 

furnace and the final NOx emission. CFD simulation was 

carried out at 100%, 75% and 50% of the load to change the 

mill operation mode, the secondary air and SOFA distribution 

mode and the dampers tilting angle, etc. A total of 162 groups 

of samples were obtained. The NOx emissions were obtained 

by calculating the average NOx values in the cross-sectional 

area at the outlet of the economizer. 

 

2.3 Framework of the proposed method 

 

Establishing the NOx emission model in the furnace mainly 

consists of three steps, including data acquiring and processing, 

feature selection, parameter optimization and NOx modeling. 

The overall modeling process is described as in Figure 3. 

 

 
 

Figure 3. Modeling framework of the NOx concentration 

based on DELM 

 

Step1: According to the model requirements, training 

samples are extracted from the historical DCS data and 

combined with the data obtained from CFD simulations to 

form the training sample set. 

Step2: Based on the simplified NOx formation mechanism, 

the initial variables are preselected. Then the XGBoost 

algorithm is used to feature select the initially selected 

variables, and the variables with high correlation coefficient 

with NOx emission concentration are selected as the optimal 

inputs to the model. 

Step3: The DELM is used to establish the NOx 

concentration prediction model, and model parameters are 

optimized by the sparrow optimization algorithm. 

 

 

3. FEATURE SELECTION BASED ON XGBOOST 

 

Factors that affect the accuracy of data-driven modeling 

include the choice of algorithm, the training dataset, and the 

selection of input variables. Insufficient input variables will 

lead to inaccurate prediction, but too much input will increase 

computational complexity. In this paper, mechanism analysis 

and XGBoost feature selection are combined to select input 

variables for NOx emission modeling.  

 

3.1 Input candidates for model 

 

The formation and suppression of NOx in coal-fired boilers 

is a complex process, the NOx in the combustion process 

mainly includes fuel NOx and thermal NOx. Thermal NOx 

refers to the nitrogen oxide generated by oxidation of the 

atmospheric N2 in the combustion air at high temperature. The 

formation of thermal NOx is analyzed based on the extended 

Zeldovich mechanism. The principal reactions governing the 

formation of thermal NOX from molecular nitrogen are as 

follows:  

 

2O N NO N+  +  (1) 

 

2O O NO O+  +  (2) 

 
N OH NO H+  +  (3) 

 

It can be seen that the formation of thermal NO is mainly 

affected by oxygen distribution and furnace temperature. 

Fuel NOx is produced by oxidation of molecular nitrogen 

present in the coal. The simple model is generally agreed by 

different researchers in Figure 4:  

 

 
 

Figure 4. The simple models of fuel NOx 

 

According to De Soete mechanism, the generation of fuel 

NOx is closely related to the pyrolysis product of coal and the 

oxygen concentration in the flame, so the formation of fuel NO 

is mainly affected by O2 concentration, type of fuel and char 

surface density.  

Therefore, twenty-six variables were preselected as the 

input candidates for model, which contains unit load (x1), Coal 

feed rate (x2-x7), Secondary airflow (x8-x15), SOFA (x16-x19), 

total air volume (x20), total Coal rate (x21), secondary air 

temperature (x22), total secondary air volume (x23), Oxygen 

concentration (x24), furnace exit gas temperature (x25), tail flue 

gas temperature (x26). 
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3.2 Feature selection based on XGBoost 

 

XGBoost is a boosted-tree-based machine learning system 

that contains a set of collection of iterative residual trees. Each 

tree learns the residuals of the previous N-1 trees and obtains 

the final predicted value of the sample by adding the new 

sample output values predicted by each tree. XGBoost 

expands the loss function according to the second-order 

derivative of Taylor's formula. By using both the first and 

second derivatives, XGBoost has faster convergence and 

higher accuracy [23]. 

To extract the best features for NOx data, this paper uses the 

XGBoost-based feature selection method. XGBoost feature 

selection depends on the importance of each feature's 

contribution to the model, and the importance is the sum of the 

number of times the feature is used for tree segmentation. Each 

segmentation of the tree in XGBoost takes a greedy approach 

to feature selection. The feature with the maximum current 

information gain is selected for tree segmentation. Information 

gain is calculated as shown in Eq. (4).  

 

( )

( )

22 2

2 2 2

1
-

2

L RL R

L R L R

g gg g
gain

h h h h


  

 +
= + − 

+ + + +  

 (4) 

 

γ is the difficulty factor of the tabular tree partitioning, 

which is used to control the generation of the tree. λ denotes 

the L2 regularity factor. hi is the second-order derivative of the 

loss function, gi is the first-order derivative of the loss function, 

and the subscripts L and R represent the left and right subtrees. 

After XGBoost modeling, the importance of NOx data 

features can be calculated and the importance of each feature 

is ranked from highest to lowest. The first dimension feature 

was modeled and the accuracy was calculated, and then 

gradually increase the dimensions used for modeling and 

record the accuracy rate. The dimension with the highest 

accuracy rate is the dimension for XGBoost feature selection. 

The magnitude problem of the original data will affect the 

result of feature selection and the accuracy of subsequent 

modeling, so the original data is normalized and mapped to the 

space of [0,1] using Min-Max normalization. 

According to the theory of data statistics, when the 

correlation coefficients is greater than 0.4, the variables have 

moderate or strong correlation. According to the XGBoost-

based feature selection, except tail flue gas temperature (x26), 

25 variables are retained as input variables to predict the NOx 

concentration at the SCR inlet.  

 

 

4. DELM MODEL BASED ON SSA 

 

4.1 DELM model 

 

Deep extreme learning machine (DELM) is a deep network 

structure which is superimposed by multiple ELM Auto-

Encoder (ELMA-AE). Its structure is shown in Figure 5. In 

this method, ELM-AE is initially used as the basic unit for 

unsupervised learning to train and learn the input data. When 

the input equals to the output, the coding vector of the hidden 

layer becomes the feature representation of the input. The 

algorithm steps of ELM-AE are as follows: 

Step1: Randomly generate the input weights ω and bias b, 

and orthogonalize them. 

Step2: Calculate the output of the hidden layer node: 

( )H g WX b= +  (5) 

 

Step3: Calculate the output weight β according to Eq. (6). 

 

1
,

1
,

T T

T T T

H H H X N n
c

H H H H X N n
c



 
+ 

 
= 

  +    

 (6) 

 

where, C is the network regularization parameter, which is 

introduced to improve the generalization performance of the 

ELM-AE method; x is the input sample matrix; n is the number 

of neurons in the hidden layer; N is the number of input 

samples, and g(i) the activation function. By training ELM-AE, 

unsupervised mapping of samples to depth features is realized. 

DELM is built on the principle that the output weights of 

ELM-AE can map the learned features back to the input data, 

and the transpositions of the output weights can map the input 

data to the features. DELM is formed by stacking multiple 

layers of ELM-AE, and the input weights of hidden node of 

each layer are the transpositions of the output weights between 

that layer and the previous layer of ELM-AE, so that each layer 

is realized to abstractly extract the features of the previous 

layer, and this method is expressed as: 

 

( ) 1, 1
T

k k kH g H k −=   (7) 

 

 
 

Figure 5. Schematic diagram of DELM 

 

Different from other deep learning methods, DELM does 

not require fine-tuning. both the ELM-AE and the final DELM 

regression layers use least squares methods and only one-step 

inverse computation to obtain updated weights. Therefore, 

DELM has a fast training speed and is a suitable model for 

online modeling and real-time prediction of NOx emission. 

 

4.2 Sparrow search algorithm (SSA) 

 

Sparrow search algorithm(SSA) is a novel population 

intelligence optimization algorithm which is proposed in 2019 

by Xue et al. [24]. In the SSA algorithm, the sparrows in the 

population are usually divided into producer and scrounger, 

and their identity is dynamically changing. Each sparrow will 

be given an initial position and a fitness degree determined by 

the fitness function, the magnitude of the fitness value 
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indicates the strength of the discoverer's ability to search for 

food. and the producer's position is updated during the 

iteration as follows: 

 

, 21
max,

, 2

exp  if 
 iter 

 if 

t

i jt

i j

t

i j

i
X R ST

X

X Q L R ST

+

  −
   

=   
 + 

 (8) 

 

where, t indicates the current iteration, j represent dimension. 

represents the value of the jth dimension represent dimensions 

of the ith sparrow at iteration t. itermax is a constant which 

indicates the maximum number of iteration. α∈ (0,1] is a 

random number. R2 represents the alarm value (R2∈[0,1]) and 

ST(ST∈[0.5,1.0]) is the safety threshold respectively. Q is a 

random number which obeys normal distribution. L shows a 

matrix of 1×d for which each element inside is 1. When R2<ST, 

which means that there are no predators around, the producer 

enters the wide search mode. If R2≥ST, it means that some 

sparrows have discovered the predator, and all sparrows need 

quickly fly to other safe areas. 

As for the scroungers, they need to enforce the rules (9) and 

(10). As mentioned above, some scroungers monitor the 

producers more frequently. Once they find that the producer 

has found good food, they immediately leave their current 

position to compete for food. If they win, they can get the food 

of the producer immediately, otherwise they continue to 

execute the rules (10). The position update equation for the 

scrounger is described as follows: 

 

,
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,
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4.3 DELM hyperparameters optimization based SSA 

 

In this paper, the sparrow optimization algorithm is applied 

to DELM to find the optimum of its parameters. The output 

layer weights and thresholds of DELM are updated by the least 

squares method, while the input layer weights and thresholds 

are randomly generated by the orthogonal matrix. Therefore, 

SSA is used here for parameter optimization of the input layer 

weights and thresholds. 

The optimization process is as Figure 6, and specific steps 

are as follows:  

(1) Initialization. This process includes the population size 

N, the number of producers pNum, the number of warning 

sparrows SNum, the dimensionality of the objective function D, 

the upper and lower bounds on the initial values, the maximum 

number of iterations and the solution accuracy. 

(2) Calculate the fitness value, select the current best fitness 

value and its corresponding position, and the worst fitness 

value and its corresponding position. 

(3) Iterative and update. The fitness value of each sparrow 

is calculated again after one iteration and the location 

information of the discoverer, joiner and scout is updated. 

(4) Evaluate. According to the current state of the sparrow 

population, update the optimal and worst positions and fitness 

values of the whole population, determine whether the 

maximum number of iterations or the solution condition is 

reached, and if yes, output the optimal value, if not, return (2). 

(5) The results are applied to the DELM model. The whole 

optimization process is shown in Figure 6. 

 

 
 

Figure 6. Flow chart of SSA optimized DELM 

 

The DELM network is constructed using three hidden layers. 

Through repeatedly simulating trials, the number of nodes in 

the three hidden layers is determined to be 30, 20, and 10 

respectively. The network activation function is the tanh 

function, and the Tikhonov regularization is set to 1012. The 

population number, iteration times, percentage of discoverers, 

and warning value of SSA are 30,60, 0.6, and 0.7, respectively. 

 

 

5. ANALYSIS OF PREDICTED RESULTS 

 

In this article, the DELM algorithm was used to model NOx 

emission concentration The DELM-based prediction results 

are compared with the operating results and compared with 

ELM, deep belief network (DBN), and deep neural network 

(DNN) algorithms. The prediction performance is evaluated 

by root mean squared error (RMSE), coefficient of 

determination (R2), mean absolute error (MAE), and accuracy 

(Acc). All the definitions of these evaluation indicators are 

shown as Eqns. (11)-(15). 
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i i

i

if y y e
c

 −
= 
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 (15) 

 

where, n is samples number; �̅�𝑖  represents average value of 

NOx measured values, yi is NOx measured values; �̂�𝑖 indicates 

predicted values of NOx. e is the acceptable threshold error, 

the value of e is selected as 5 mg/m3, 20 mg/m3 and 50 mg/m3. 

 

5.1 Effect of feature selection on prediction results 

 

In the process of NOx prediction, the impact of feature 

selection on the prediction results mainly relies on the 

selection of input variables. The input variables must be 

selected from the processes related to NOx generation. This 

section analyzes the comparison of the results of NOx 

modeling without feature selection and XGBoost feature 

selection. Twenty-five variables affecting NOx emission 

concentration were selected according to the XGBoost, and 

effectiveness of the prediction model was verified on the 2000 

operating data of the power plant. Table 1 summarizes the 

results of the comparison. The MAE of the prediction model 

after XGBoost feature selection is reduced by 4.05%, the R2 is 

improved by 2.94% and the RMSE is reduced by 6.16%. It can 

be seen from the Table 1 that better prediction results can be 

obtained by the XGBoost feature selection method, because 

feature selection can avoid too many redundant variables in 

the selection of input variables. 

 

Table 1. The results of feature selection 

 
Indicators SSA-DELM XGboost-SSA-DELM 

MAE 2.96 2.84 

R2 0.954 0.982 

RMSE 7.30 6.85 

 

5.2 Comparation of different model algorithms 

 

 
 

Figure 7. Accuracy comparison of different algorithm 

To verify the effectiveness of the model, the DELM model 

was compared with three prediction algorithms: ELM, SVR, 

and DBN. Meanwhile, the comparison before and after the 

optimization of SSA algorithm applied to DELM algorithm 

was carried out. 25 relevant parameters were selected as the 

input variables by XGBooost feature selection, and the data set 

was the 2000 DCS operation data. Figure 7 presented the 

accuracy comparison of different algorithms. For the case of e 

smaller than 20 mg/m3, the accuracy obtained by SSA-DELM 

is approximately 100%. The greatest obtained accuracies for 

each case are, in descending order, the SSA-DELM, DELM, 

DBN, ELM and SVR. 

Table 2 listed the performance comparison of the different 

models. It can be seen that two models all achieve good 

performance. The RMSEs obtained by SSA-DELM achieves 

6.85 mg/m3, and MAE achieves 2.84 mg/m3, and R2 achieves 

0.982, respectively. According to the results, the prediction 

effect is increased after optimization of DELM input layer 

weights and thresholds, which indicated that the accuracy of 

model can be improved through SSA hyperparameter 

optimization. 

 

Table 2. Performance comparison of different algorithm 

 
Indicators DBN SVR ELM DELM SSA-DELM 

MAE 4.89 7.43 6.24 3.37 2.84 

R2 0.945 0.866 0.936 0.963 0.982 

RMSE 8.17 10.16 9.34 7.36 6.85 

 

5.3 Influence analysis of CFD simulation data 

 

Table 3. The results of feature selection 

 
Indicators DCD DCD+CFD 

MAE 2.84 2.58 

R2 0.982 0.990 

RMSE 6.85 6.44 

 

 
 

Figure 8. The error boxplot of different data set 

 

In order to evaluate the data fusion model, the 25 variables 

mentioned above were still used as the input variables of the 

model and SSA-DELM algorithm was used to model. Two 

data sets were used for comparative analysis, one with 1840 

DCS data and 160 CFD data for fusion, and one with all 2000 
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DCS data. In the modeling process, 1500 samples were used 

for training and 500 samples were used for testing. As was 

shown in Table 3, the prediction performance of the data 

fusion model for NOx generation with R2 is improved by about 

1%. It was proved that the CFD data improved the 

generalization and expression ability of the model. Because of 

the addition of CFD data based on combustion mechanisms, 

more possible combustion conditions were generated and 

enriches the knowledge of the data set. 

The absolute error boxplot of the two data sets is shown in 

Figure 8. We can intuitively see that the absolute errors of 

DCS-CFD data set is less than DCS data set. The boxplots of 

absolute error of the DCS-CFD data model is the narrowest, 

the smaller distance between the upper and lower edges, and 

the smaller between the upper and lower quartiles. We can 

conclude that the DCS-CFD data set model has better fitting 

effect and prediction ability.  

 

 

6. CONCLUSION 

 

This work has presented a NOx emission prediction model 

for 350MW coal-fired units based on XGBoost-SSA-DELM 

and validated by fusing DCS operation data with CFD 

simulation results. The results show that the model can predict 

NOx concentration with high accuracy. The R2 of the test data 

set is more than 0.98%, and the MAE and RMSE are lower 

than 3 and 7 mg/m3, respectively. The following conclusions 

are obtained:  

(1) XGBoost feature selection is used to reduce the 

dimensionality of input variables and to improve the 

prediction accuracy;  

(2) The data-driven model is sensitive to data, the fusion of 

DCS data and CFD data as the training set enriches the 

diversity of working condition.  

(3) SSA is applied to the parameter optimization of DELM, 

which reduces the randomness of selection of the input layer 

weights and thresholds, and achieves better NOx prediction 

results. It can be used as the basis for the optimal adjustment 

of combustion process and accurate control of denitrification 

system. 
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