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Researching the methods to identify and predict thermodynamic disasters during deep coal 

mining is a very important work for the design of mine emergency systems and the 

decision-making of mine rescue and personnel evacuation, however, existing studies only 

built static models without evaluating or predicting the development trend of 

thermodynamic disasters, the research on dynamic modeling methods and rescue decision-

making is insufficient, and they generally ignored the mechanism of mutual conversion 

between fire and gas explosion in deep coal mines. Thus, this paper aims to study the 

identification and prediction of thermodynamic disasters during deep coal mining. At first, 

the method for analyzing the thermal field in deep coal mining areas is introduced in detail, 

and the finite element thermal analysis method is adopted to study the thermodynamic 

disasters during deep coal mining; then, this paper establishes a thermodynamic disaster 

prediction model based on the improved Kernel-based Extreme Learning Machine 

(KELM), and introduces the improved Crow Search Algorithm (CSA) to solve the 

instability of prediction results caused by artificial selection of model parameters. At last, 

this paper uses experimental results to verify the validity of the proposed model. 
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1. INTRODUCTION

Thermodynamic disasters are a major type of disasters

during deep coal mining, they are caused by uncontrolled 

combustion and explosion in coal mines. Thermodynamic 

disasters are abrupt, quick-developing, and prone to secondary 

disasters, so the rescue is very difficult. Typical 

thermodynamic disasters include the spontaneous combustion 

of coal, fire caused by external causes, gas combustion and 

explosion, and coal dust explosion, etc. [1-9]. During rescue, 

due to the thermal effect existing in the deep coal mines, 

usually, gas and leaked air can form mixed combustible gases. 

If the ventilation in the mining area is not good enough, the 

continuous explosion caused by combustion of coal and gas 

can worsen the disaster and make the situation more 

complicated [10-16]. Moreover, the propagation of shock 

waves in complex wind networks can damage the ventilation 

system, once the decision-making misplays, it might expand 

and deepen the scope and degree of personnel damage [17-24]. 

Therefore, researching the identification and prediction 

methods of thermodynamic disasters during deep coal mining 

is a very important work for the design of mine emergency 

systems and the decision-making of mine rescue and personnel 

evacuation.  

To investigate the mechanical effects and characteristics of 

typical thermodynamic disasters in underground coal mines, 

Chen et al. [25] analyzed the stress source of coal and 

surrounding rocks, and the occurrence mechanism, evolution, 

and mechanical performance of typical thermodynamic 

disasters. Their research findings show that there are obvious 

mechanical effects during the evolution and occurrence of 

typical thermodynamic disasters. For the purpose of reducing 

the risk of coal-rock dynamic disasters during coal mine 

production, Ma et al. [26] took the coupling mechanics 

characteristics of coal and rock produced in Dingji Coal Mine 

as research object to experiment on the deformation features 

and variation rules of mechanical parameters of raw coal under 

multi-field coupling (temperature, gas, and stress), the 

research outcome suggests that the elastic modulus, peak strain, 

and peak stress of raw coal samples under the action of 

thermal-hydraulic-mechanical coupling conform to the same 

variation law within the test temperature range and all of them 

decrease linearly as the temperature increases. Zhou et al. [27] 

pointed out that the coal mine belt fire is a type of fire that 

develops very rapidly and hard to control, it can easily cause 

airflow disorder and undermine the ventilation system if not 

put out quickly, and building fire airflow control systems is a 

good way to prevent belt fire. The authors took the 5-th belt 

roadway of Kongzhuang coal mine as the subject to build a 

geometrical model for this roadway, then, based on a 

mathematical model of fire smoke flow, they simulated the CO 

volume fraction, smoke density distribution, air temperature, 

and pollutant velocity vector in the roadway before and after 

taking airflow control measures in the software Fluent.  

Now there are many research achievements in the 

evaluation and prediction of thermodynamic disasters of coal 

mines, but still there are a few defects with them in terms of 

rescue timeliness, dynamics and limitations; moreover, these 

existing studies only built static models without evaluating or 

predicting the development trend of thermodynamic disasters, 

the research on dynamic modeling methods and rescue 

decision-making is insufficient, and they generally ignored the 

mechanism of mutual conversion between fire and gas 

explosion in deep coal mines. In view of these deficiencies, 

this paper aims to study the identification and prediction of 

thermodynamic disasters during deep coal mining. In the 

second chapter, this paper introduces in detail the method for 
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analyzing the thermal field in deep coal mining areas, and 

adopts the the finite element thermal analysis method to study 

thermodynamic disasters during deep coal mining; in the third 

chapter, this paper establishes a thermodynamic disaster 

prediction model based on the improved KELM, and 

introduces the improved CSA to solve the instability of 

prediction results caused by artificial selection of model 

parameters. At last, this paper uses experimental results to 

verify the validity of the proposed model. 

 

 

2. THERMAL FIELD IN DEEP COAL MINING AREA 

 

This chapter introduces the method for analyzing thermal 

field in deep coal mining area, investigates the temperature 

abnormality in the mining area, adopts finite element thermal 

analysis to study thermodynamic disasters during deep coal 

mining based on site survey data, and proposes the method for 

identifying and predicting thermodynamic disasters. 

 

 
 

Figure 1. Heat flux density vector in deep coal mining 

 

The heat flux density of thermal field in deep coal mining 

area refers to the amount of heat transferred within per unit 

time in unit area of the roadway in deep coal mining area. 

Figure 1 shows a diagram of the heat flux density vector in 

deep coal mining. Assuming: w represents the density of heat 

flow along a certain direction; GR represents the coefficient of 

thermal conductivity; μ represents the ratio of temperature 

difference to depth difference, then the following formula 

gives the Fourier’s law: 

 

w GR= −  (1) 

 

where, w and μ are in different directions but they are on the 

same normal of the isothermal surface; w points to the 

direction of temperature rise, that is, the heat in the thermal 

field of deep coal mining area is transmitted from the high 

temperature zone to the low temperature zone. 

For the problem of two-dimensional thermal field in deep 

coal mining area, isometric line is often used to assist the 

analysis. In this paper, at first, the temperature gradient 

method was employed to quantitatively calculate the thermal 

field temperature in deep coal mining area; then, the Kriging 

Interpolation was adopted to estimate the temperature data 

except for the temperature sampling points of site survey, and 

finally a complete contour map was plotted. The principle is 

detailed as follows: 

Assuming: a is randomly-chosen temperature sampling 

point in the thermal field of deep coal mining area; C(a) is the 

temperature value collected at this point; in this mining area, 

there are a total of m random points a1, a2, a3...am; C(a) 

satisfies the intrinsic hypothesis and second 

stationary hypothesis within a fixed partition spacing range of 

the specified mining area, let n represent the mathematical 

expectation, d(f) represent the covariance function, and α(f) 

represent the variation function, then there is: 
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On the premise that the hypotheses are met, for the m 

random temperature sampling points, we can get C(a1), C(a2), 

C(a3),...,C(am), assuming μ represents the weight coefficient, 

then the following formula gives the estimate of point ao other 

than sampling points: 
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i ii
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=
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Based on the temperature sampling results of site survey and 

the gradient distribution law of thermal field in deep coal 

mining area, this paper calculated the roadway temperature in 

the mining area and the plane temperature distribution at the 

roadway elevation, so as to analyze the degree of 

thermodynamic disasters. Assuming: Pf represents the 

temperature of the calculation point; GR represents the 

temperature gradient of the calculation point; F represents the 

burial depth of the calculation point; f represents the depth of 

the constant temperature layer of the calculation point; Pr 

represents the temperature of the constant temperature layer of 

the calculation point, then there is: 

 

( )
100

f r

GR F f
P P

−
= +  (4) 

 

Assuming: F1 represents the ground elevation of the 

calculation point, then the formula for calculating Pr is: 

 

10.004 18.3rP F= − +  (5) 

 

This paper applied the method of steady-state thermal 

analysis to the two-dimensional numerical simulation of 

thermal field distribution in deep coal mining area, and the 

calculation was performed based on finite element steady state 

thermal analysis and the conservation law of energy. By 

default, the sum of the inflow heat of the thermal field system 

of deep coal mining area Win and the heat of the the thermal 

field system itself WSE is equal to the outflow heat of the 

thermal field system Wout. At this time, it is considered that the 

thermal field system of the deep coal mining area is in a 

thermal stable state and meets the following formula: 

 

0in SE outW W W+ − =  (6) 

 

When modeling the thermal field distribution in deep coal 

mining area, the structural shape of roadway and the specific 

temperature requirement of mining process make the problem 

more complicated, so conventional analysis methods can 
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hardly attain the accurate thermal field, while the finite 

element method can solve this problem. Assuming: σ 

represents the density of air in the mining area; La and Lb 

represent the thermal conductivity coefficients of air in the 

mining area along a and b directions of the roadway; W 

represents the density of heat source; Γ represents the domain 

of solutions; τ represents the field variable, then the following 

formula gives the steady state heat conduction equation for the 

two-dimensional thermal field in deep coal mining area: 

 

( )with n0 i  a al l w
a b b

 




      
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 (7) 

 

Based on the variational principle, the above formula can be 

approximately solved by the following formula: 
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Based on above formula, after inputting the known thermal 

physical parameters into the constructed simulation model of 

thermal field in deep coal mining area, the thermal field in the 

disaster area can be simulated. 

 

 

3. THERMODYNAMIC DISASTER PREDICTION 

MODEL FOR DEEP COAL MINING AREA 

 

 
 

Figure 2. Network structure of KELM 

 

Now coal mining is going down deeper into the ground, the 

multiple disaster factors such as underground coal and gas, 

possible ignition sources in the goaf, and ignition 

characteristics can affect each other, which makes the mining 

conditions of the site even worse, and the coupling of disaster 

factors and the ventilation system makes the disaster 

prediction even more difficult, and the conventional prediction 

methods can hardly meet the actual requirements of deep coal 

mining areas. This paper constructed the thermodynamic 

disaster prediction model based on improved KELM, and 

introduced the improved CSA to solve the instability of 

prediction results caused by artificial selection of model 

parameters. 

Compared with the conventional extreme learning machine 

models, KELM has the merits of less adjustable parameters, 

stable prediction results, and high prediction efficiency. Figure 

2 shows the network structure of KELM. In kernel-based 

learning methods, the kernel matrix Φ is used to replace the 

random matrix FFT in conventional extreme learning machine, 

which can effectively solve the problem of dimension disaster 

and reduce the loss of raw data features of multiple influencing 

factors of the complex disasters, that is: 

 
T

KELM FF =  (9) 

 

Assuming: (a) represents the output function of the extreme 

learning machine model; L(ai, aj) represents the kernel 

function, then the activation function h(a) of conventional 

extreme learning machine can be written in the form of a 

kernel function as follows: 

 

( ) ( ) ( ), ,i j i j i jf a f a L a a = • =  (10) 

 

To ensure that the characteristic root of FFT is not zero, the 

parameter diagonal matrix I and normalized parameter D are 

introduced into the main diagonal elements of FFT to 

determine the weight vector γ*. Through above steps, the 

prediction stability and generalization performance of the 

KELM model can be effectively improved. γ* can be 

transformed by the formula below: 

 

( )
1
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−

= +  (11) 

 

Assuming: F represents the hidden layer matrix; FT 

represents generalized inverse; L(ai, aj) represents the 

introduced kernel function matrix; P represents the predicted 

target vector, then the formula below gives the expression of 

the output function of KELM:  
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 (12) 

 

After careful analysis and repeated verification, it is found 

that for the prediction of thermodynamic disasters in deep coal 

mining area and such kinds of problems, under the condition 

of normal numbers of data features and samples, taking the 

Gaussian radial basis kernel function as the kernel function of 

the model enables the model to attain better performance in 

identifying and predicting thermodynamic disasters. 

Assuming: ε represents the width parameter of the kernel 

function, by substituting the expression of Gaussian radial 

basis kernel function into the above formula, the output 

function could be attained as follows: 
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According to Formula 13, the output value of KELM is 

determined by D and ε. 
 

 

4. OPTIMIZATION ALGORITHM FOR THE 

THERMODYNAMIC DISASTER PREDICTION 

MODEL OF DEEP COAL MINING AREA 
 

To improve the prediction speed and accuracy of 

thermodynamic disasters in deep coal mining area, this paper 

improved the conventional Crow Search Algorithm (CSA) and 

used it to optimize the KELM, which was then applied to the 

prediction of thermodynamic disasters in deep coal mining 

area and effectively prevent the occurrence of such disasters. 

Figure 3 shows the flow of the improved CSA. 
 

 
 

Figure 3. Flow of the improved CSA 

 

To improve the global optimal-searching ability of the 

algorithm, at first, this paper introduced the Tent chaotic 

sequence into the conventional CSA, that is, to use the 

randomness of chaotic variable to enrich the diversity of crow 

population. The expression of the Tent chaotic mapping 

function is given by the following formula: 
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Assuming: Am represents the upper limit of each dimension 

of each crow individual, Ai  represents the corresponding lower 

limit, A represents the crow individual after mapping, then, in 

order to initialize the crow population, this paper mapped the 

variable created by the Tent mapping to crow individuals 

based on the following formula: 

( ) 1i i m lA A A A A += + −  (15) 

 

To overcome the shortcoming of global search and local 

search imbalance of conventional CSA, this paper introduced 

a key parameter, the adaptive perception probability, to make 

sure that the AP value of the crow population won’t alternate 

between high and low suddenly during the iteration process, 

that is, to stabilize the performance of the algorithm. Assuming: 

GZ1 represents the maximum perception probability, GZ2 

represents the minimum perception probability, ϕmax represents 

the maximum number of iterations, FITmax represents the 

maximum fitness under current iteration conditions, FITAV  

represents the average fitness under current iteration 

conditions, then the following formula calculates the adaptive 

perception probability: 
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In order to balance the local searching ability and global 

optimal searching ability of CSA, this paper introduced the 

adaptive adjustment step, assuming C represents the distance 

between leader y and the current individual x, κ represents the 

scaling factor, then there is: 
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In later iterations of the algorithm, the step size was 

automatically reduced to shorten the distance between the 

current crow individual and the optimal crow individual, in 

this way, the local searching ability could be improved and the 

diversity of crow population could be balanced, then there is: 
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At last, this paper introduced the random motion process, 

namely the Brownian motion, into conventional CSA. 

Assuming: variable Y(p) simulates the Brownian motion path 

on [0, P], Y(p) needs to satisfy three conditions: 1) In the initial 

state, Y(0)= 0; 2) For any p>r, Y(p)-Y(r) is independent of the 

previous process: :0≤v≤r; 3) For any p>r, Y(p)-Y(r)~M(0, p-r). 

Assuming: a and b represent one-dimensional Brownian 

motion; when sy<GZa,ϕ, the crow individual y adopts the 

random search method to confuse tracker x; D represents a 

constant number; υ represents a random number between 0 and 

1; RB represents the Brownian motion; Tbest represents the 
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optimal position found by crows in the current population, 

then there is: 
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5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

 
 

Figure 4. Sampling point temperature distribution in deep 

coal mining area 

 

Figure 4 shows the distribution of sampling point 

temperature in the deep coal mining area. According to the 

figure, the temperature of sampling points in the mining area 

is mainly affected by the absolute length of the roadway. In the 

event of a thermodynamic disaster, hot air and smoke would 

spread along the roadway. To figure out the impact of the 

absolute length of roadway on the smoke flow at high 

temperature, the temperature of sampling points in the deep 

coal mining area was simulated under different absolute 

lengths of roadway, and the results show that, with the change 

of the absolute length of roadway, the smoke backflow 

distance near the center of the disaster area increases, and the 

sampling point temperature in the deep coal mining area rises 

with fluctuations. 

In this paper, since the thermal field in deep coal mining 

area is a two-dimensional heat conduction model, for the 

setting of hypothesis condition of the fixed partition spacing 

range of mining area, four boundaries were set (upper, lower, 

left, and right boundary), wherein the left and right boundaries 

correspond to the inlet and outlet positions of the deep coal 

mining area. In this paper, it is assumed that the heat in the 

thermal field system of deep coal mining area does not 

exchange with the outside, and the upper and boundary 

conditions were respectively set as the temperate of the 

constant temperature layer and the predicted temperature of a 

certain depth. Table 1 gives the temperature values of the deep 

coal mining area in finite element numerical simulation. Based 

on the analysis method given in this paper, it is known that the 

temperature of the constant temperature layer and the depth of 

roadway have determined the set value of lower boundary 

temperature. Combining with the temperature data actually 

measured at the site during survey, the predicted air 

temperature values of the lower boundary at different ground 

elevations were calculated. The temperature contour map of 

the lower boundary of the model can be attained via Kriging 

interpolation, and the temperature values of the boundary 

within the range of the next partition spacing could be attained.  

 

Table 1. Temperature of the deep coal mining area during 

finite element numerical simulation 

 
Ground 

elevation 

(m) 

Upper boundary 

temperature 

(℃) 

Ground 

elevation 

(m) 

Lower boundary 

temperature 

(℃) 

2200-2300 9.258 3200-3300 5.263 

2300-2400 8.247 3300-3400 5.481 

2400-2500 8.263 3400-3500 4.629 

2500-2600 8.925 3500-3600 4.325 

2600-2700 7.421 3600-3700 3.271 

2700-2800 7.629 3700-3800 3.152 

2800-2900 7.385 3800-3900 3.928 

2900-3000 6.128 3900-4000 2.152 

3000-3100 6.352 4100-4200 2.306 

3100-3200 5.294 4200-4300 1.274 

 

 
 

Figure 5. Fitness curves of different optimization algorithms 

 

To verify the validity of the KELM optimized by the 

improved CSA, we designed experiments to compare the 

fitness of different optimization algorithms, including the 

Particle Swarm Optimization (PSO, reference algorithm 1), 

Artificial Fish School (AFS, reference algorithm 1), and Ant 

Colony Optimization (ACO, reference algorithm 3). Figure 5 

shows the fitness curves of different optimization algorithms. 

According to the figure, compared with the fitness of other 

optimization algorithms, the optimal fitness value of the 

proposed algorithm is more than ten orders of magnitude lower, 

so the performance of the proposed algorithm in optimal-

searching is the best compared with the other three algorithms. 

Because the initial weight vector of KELM was selected 

randomly, as the network training continues, the number of 

hidden layer neurons of the model changed accordingly, so in 

order to test the validity and reliability of the output results of 

the thermodynamic disaster prediction model, 10 groups of 

experiments were carried out, and the average value of all 

experimental groups was calculated. Figure 6 compares the 

average and true values of verification samples and test 

samples. 
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Table 2 gives the prediction results of the safety level of 

thermodynamic disasters in deep coal mining area. According 

to Table 2, in the 100 test results, only 3 are inconsistent with 

the real situation. Table 3 gives the incorrect prediction data of 

safety level of thermodynamic disasters in deep coal mining 

area. 

According to statistical results, the prediction accuracy of 

the model for the safety level of thermodynamic disasters 

reached more than 97%. Although there are large errors in the 

prediction results of a small number of samples during model 

training, the average value of the prediction results is not much 

different from the real value, so it can be considered that the 

predicted thermodynamic disaster in deep coal mining area is 

the same as the real situation. Therefore, in actual application 

scenarios, the proposed model needs to be trained a few more 

times, and the average value of the training results will be 

output as the final prediction result. According to above 

experimental results, the prediction performance of the model 

is stable and has strong generalization ability, the model can 

be used to predict the thermodynamic disasters in other deep 

coal mining areas. 

 
 

Figure 6. Comparison of verification samples, test samples, 

and real values 

 

 

Table 2. Prediction results of the safety level of thermodynamic disasters in deep coal mining area 

 
Sample No. 1# 2# 3# 4# 5# 6# 

Real value of safety level 3 3 3 4 4 4 

Evaluation result of 

test sample 

Group 1 2.3067 2.4185 2.6158 2.5174 2.0415 3.4172 

Group 2 2.5185 2.9614 2.3958 2.3629 2.6291 2.0369 

Group 3 2.3014 2.0143 2.3514 2.3857 2.3417 2.3417 

Group 4 1.2693 2.6258 2.3025 2.1041 2.5028 3.6258 

Group 5 2.5184 2.9581 1.3629 1.9583 2.3629 2.5385 

Group 6 2.3052 2.1524 2.3658 2.3147 2.5182 3.6298 

Group 7 1.3026 1.3026 2.4175 2.3528 3.6295 2.3528 

Group 8 1.5247 1.5289 1.6392 1.2518 3.6259 2.0141 

Group 9 1.6295 2.3051 1.2058 1.0241 2.1528 2.5195 

Group 10 1.3025 1.2417 1.6295 1.6295 2.6395 2.3052 

RMSE 0.9258 0.2369 0.2182 0.2517 0.2147 0.2156 

Average output value of test samples 2.1041 2.1427 2.9528 2.3062 2.6958 3.6285 

Average evaluation result 3 3 3 4 4 4 

Table 3. Incorrect prediction data of the safety level of 

thermodynamic disasters in deep coal mining area 

 

Sample No. 

 

Test group 

True value Prediction result Description 

Safety level 
Predicted  

value 

Safety 

level 
 

Group 3 4 2.5281 3 Safe 

Group 6 5 4.1027 5 Danger 

Group 9 5 4.3629 6 Very danger 

 

 

6. CONCLUSION 

 

This paper studied the identification and prediction of 

thermodynamic disasters in deep coal mining area. At first, the 

paper introduced in detail the method for analyzing thermal 

field in deep coal mining area, and adopted finite element 

thermal analysis to study thermodynamic disasters during 

deep coal mining; then, a thermodynamic disaster prediction 

model was establishes based on improved KELM, and the 

improved CSA was introduced to solve the instability of 

prediction results caused by artificial selection of model 

parameters. Combining with experiments, this paper plotted 

the distribution of sampling point temperature in the deep coal 

mining area, gave the temperature values of the deep coal 

mining area in finite element numerical simulation, calculated 

the predicted air temperature values of the lower boundary at 

different ground elevations, and further attained the 

temperature values of the boundary within the range of the 

next partition spacing. Moreover, this paper designed 

experiments to compare the fitness of different optimization 

algorithms, and verified the validity of the KELM optimized 

by the improved CSA. At last, the verification samples, test 

samples, and real values were compared, and the prediction 

result of the safety level of thermodynamic disasters in deep 

coal mining area was given, which has demonstrated that the 

model has stable prediction performance and strong 

generalization ability. 
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