
Past, Present and Future Trends in Multi-Agent System Technology

Sandali Thamalka Goonatilleke*, Budditha Hettige

Department of Computer Engineering, Faculty of Computing, General Sir John Kotelawala Defence University, Ratmalana

10390, Sri Lanka

Corresponding Author Email: goonatillekemast@kdu.ac.lk

https://doi.org/10.18280/jesa.550604 ABSTRACT

Received: 27 April 2022

Accepted: 6 June 2022

Multi-Agent System (MAS) technology is one of the cores and promising areas in the field

of Artificial Intelligence (AI) as well as in the stream of Computer Science. The

technology is comprised of multiple decision-making agents that exist in an environment

to achieve common or conflicting goals. Multi-Agent System technology has a rapid

growth and evolution due to its marvelous features such as flexibility and intelligence that

are very useful when solving complex distributed problems. This paper focuses on the

history and evolution of MAS technology, present applications, and future trends by

addressing more detailed explanations about the foundations or key principles of Multi-

Agent System technology such as agents, agent taxonomy, agent communication

approaches, MAS development frameworks as well as the history of agent technology.

The goal of this paper is to provide broad and comprehensive knowledge about Multi-

Agents System technology.

Keywords:

agents, agent classification, multi-agent

systems, MAS applications, MAS trends

1. INTRODUCTION

The world we are living in at present is similar to a

Wonderland that was described by one of the British

mathematicians named Charles Lutwidge Dodgson in his

famous novels [1]. The reason for this amazing change is due

to a various number of inventions and technologies such as

self-driving cars, smart speakers, image recognition

techniques, etc. Moreover, it could be shortly described as the

rapid development and advances in the field of artificial

intelligence (AI).

The roots of the origination of the field of Artificial

Intelligence are stepped back to the 1940s, especially back to

1942. This era can be defined as the first season of AI namely

AI spring or birth of AI. This novel concept came to the stage

with a short story named “Runaround” which was written by

an American science fiction writer named Isaac Asimov. In

1950, Alan Turing published an article named “Computing

Machinery and Intelligence” that describes creating intelligent

machines and testing their intelligence. The test was named as

Turing test which is still considered the benchmark for

artificial systems. In 1956, the word Artificial Intelligence was

officially coined as a result of the Dartmouth Summer

Research Project on Artificial Intelligence (DSRPAI) at

Dartmouth College in New Hampshire. This project was

hosted by Marvin Minsky and John McCarthy who were

considered the founding fathers of AI [2]. Since then, the

evolution of Artificial Intelligence has been progressed step by

step and classified great concepts into different subfields.

In 1975, Distributed Artificial Intelligence (DAI) was

emerged as one of the subfields of Artificial Intelligence. DAI

is also known as Decentralized Artificial Intelligence which is

mainly based on intelligent agents and their interaction. The

arisen of this concept was mostly due to the insufficiency of

the application of single agents as earlier Artificial Intelligence

research has been mostly based on single-agent environments

[3]. Accordingly, the agent evolves in a static environment and

the concept becomes impractical for the real-world

applications that contain multiple agents.

In recent years, Distributed Artificial Intelligence has

become a tremendous research area as it can be used to address

complex computing applications such as in electronic

commerce where the DAI system learns financial trading rules

from a large financial data sample, and in telecommunications

where the DAI system used to control cooperative resources

in WLAN networks, in routing where to model vehicle flow

and also in electric power systems. The entire concept and

theory of DAI can be defined by addressing three main

characteristics namely, a method of task distribution among

agents, a method of power distribution, and a method of

communication among the agents [4]. Furthermore, there are

some major advantages of using DAI such as it can be easily

used for complex learning methods, reasoning, large-scale

planning and decision making. Not only that but also, it can be

used to easily process and analyze a large amount of data and

to resolve problems very quickly. In addition, the algorithms

in the DAI can be classified into three sub-fields regarding the

methods which are used to solve different tasks. They are

Multi-Agent Systems (MAS), Distributed Problem Solving

(DPS), and Parallel AI [5]. DPS involves solving a complex

problem with the use of multiple distributed agents who have

inter-complementary knowledge. Parallel AI is involved with

designing various types of languages, architectures, and

algorithms to increase the efficiency of the classical and

traditional AI algorithms.

Generally, these three fields are not mutually exclusive and

build upon each other to some extent. When considering MAS,

it has been acquired over many years and DPS can be

introduced as a subset of MAS. When considering the

differences between MAS, DPS and Parallel AI they are as

Journal Européen des Systèmes Automatisés
Vol. 55, No. 6, December, 2022, pp. 723-739

Journal homepage: http://iieta.org/journals/jesa

723

https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.550604&domain=pdf

follows. DPS is mainly focusing on information management

aspects of the systems with several branches working together

towards a common goal while MAS mainly deals with

behavior management that contains a collection of several

independent entities. When it is so, parallel AI mainly aims to

work in a parallel mode which is very much different from

MAS and DPS.

In the 1980s, Multi-Agent Systems (MAS) concept was

originated from the field of Distributed Artificial Intelligence

(DAI) as a novel, more-developed, promising technology [6].

MAS technology shows rapid growth due to intelligence and

flexibility when solving complex distributed problems.

Mainly, the quality of the concept of MAS technology depends

on intelligent and autonomous entities named agents. In

contrast, MAS can be defined as a network that contains a

collection of individual agents who intelligently communicate

and share knowledge with others to accomplish a given

problem [7]. The agents in multi-agent systems contain four

properties such as social ability, reactivity, autonomy, and

proactivity. Accordingly, these agents perceive their

environment and react to the changes intelligently by

generating different behaviors from their standard set of rules.

In addition, these agents interact with their neighboring agents

in the model and solve the given task. Due to these advantages,

MAS technology is commonly used in the field of Computer

Science, Engineering, Supply Chain Management, Healthcare,

and Manufacturing. Figure 1 shows the timeline regarding the

evolution of the Multi-Agent Systems concept.

Figure 1. Timeline of the evolution of MAS concept

This paper presents a broad discussion about the multi-agent

systems technology considering its concept, theory,

frameworks, application domains, evaluation procedures,

research challenges, past applications, current trends, and

future enhancements and directions. Accordingly, we provide

a detailed overview of MAS that will help researchers, and

readers who are new to the area to clearly understand this

broad technology. At first, we give an introduction to agents

and gradually enter to describe the key concept and theory of

the MAS technology while encountering related concepts such

as expert systems. In the next step, we discuss different

frameworks of MAS by giving a comparison of them

considering types of characteristics. Then, we discuss past,

present applications, and research challenges. In the next part,

we discuss future trends and evaluation approaches to evaluate

the performance of MAS.

The rest of the paper is organized as follows. Section II

provides a detailed overview of agents and Section III

describes the classification of agents. Then, Section IV gives

a detailed explanation of Mult-Agent System technology

while Section V describes some of the popular and latest agent

development frameworks. Section VI has been focused on one

of the important theories in MAS which is MAS

communication approaches and Section VII gives a

comparison between MAS with other related systems such as

Object-Oriented Programming (OOP) and Expert Systems. As

the next step, Section VIII describes MAS applications while

addressing current trends and directions while Section IX

gives predictions about the future directions of MAS

technology. Finally, Section X concludes the paper with a

discussion.

2. OVERVIEW OF AGENTS

There are different definitions for the word “Agent” as it is

a universal word. Due to this reason, researchers in the field of

AI have failed to introduce a better definition for the word

“Agent” [7]. The agents can be existed in different types of

physical forms and have vastly varied application domains.

Therefore, agents have different names based on their

application domain such as softbots for software agents, and

taskbots for task-based agents. Russel and Norvig have

defined an agent as anything that receives information from its

outside environment through the sensors and perform actions

through its effectors [8]. In addition, Ye et al. [9] have defined

the agent as “an encapsulated computational system that is

situated in some environment and that is capable of flexible,

autonomous action in that environment in order to meet its

design objective”. Burgin and Dodig-Crnkovic [10] have

defined the agent as “computational systems that inhabit some

complex dynamic environment, sense and act autonomously

in this environment, and by doing so realize a set of goals or

tasks for which they are designed”. According to Russel’s and

Norvig’s definition, the agent is mostly referred to as a

physical agent while other authors' definitions are related to

the virtual agent. Figure 2 shows the agent structure and

behavior of the agent that has been explained by Russel and

Norvig. Therefore, most of these definitions are specific and

we have proposed a generic definition that can be broadly used

for different fields and disciplines.

Figure 2. Russel’s and Norvig’s Agent structure and

behavior

Agent: Any type of entity that is placed in a particular

environment to sense different parameters and make a

correct decision in order to perform necessary actions in that

environment.

The definition we have stated above contains four keywords.

Each keyword has been further described below.

724

2.1 Entity

This is the agent that can be mainly classified as a physical

entity or a virtual entity. Physical entities are referred to a

physical component in a physical system. A controller or

protection relay which is directly used to control a power

system is an example of a physical entity. A virtual entity can

be introduced as an agent that operates in a virtual

environment such as a computer system. Therefore, a virtual

entity is a piece of computer software that receives inputs and

sends outputs through a virtual environment.

2.2 Environment

This can be introduced as the place where the agent is

located and the place in which the agent is sensing information

to make proper decisions. The environments where the agents

exist have different flavors and can be classified into different

categories based on different properties.

Accessible: In an accessible environment the agent can

detect the complete state of the environment using its sensors.

This parameter also depicts the accuracy of the state detection.

Accordingly, such kind of environment is very convenient as

the agent doesn’t need to maintain internal states to keep track

of the world. In addition, in an inaccessible environment the

agent sense noisy and incomplete data.

Deterministic: The environment is deterministic whenever

the next state of the environment can be completely

determined using the current state and the actions performed

by the agents. Therefore, in this environment, the results will

be predictable as the agent precisely knows the next action to

be performed in the next state. Whenever the environment is

inaccessible, then the environment may be deterministic.

Episodic: The environment is episodic when the agent’s

experience is divided into multiple episodes. An episode is

comprised of agents perceiving and acting. These episodes are

independent of other episodes. Accordingly, subsequent

actions do not depend on the actions that were occurred in

previous episodes. Due to this reason, episodic environments

are much simpler.

Static: If the environment is changed while the agent is

perceiving inputs and performing actions, then the

environment is dynamic for the agent, otherwise it is static.

When the environment is dynamic, the decision-making

process becomes much more difficult as previously acquired

data may no longer be accurate. Therefore, the agents in the

dynamic environment should always sense the state of the

environment and need to update sensed information. Therefore,

static environments are easier to deal with as the acquired data

can be used to make decisions during the lifetime of the agent.

Discrete: The environment is known as discrete when there

are clearly defined distinct number of percepts and actions.

Otherwise, the environment is continuous.

These five types of environments share similarities and

differences. The major similarity between accessible

environment, deterministic environment, and episodic

environment is that the agent in those environments can

observe or sometimes can’t observe its environment. In

addition, the difference between an accessible environment

and a deterministic environment is, that when the agent exists

in the accessible environment, the agent gives its full access to

the complete state of the environment while when the agent

exists in the deterministic environment, it doesn’t have full

access to the complete state and the next state is only

determined by the current state. In brief, it can be described as

whenever the environment is inaccessible, then the

environment may be deterministic. Moreover, another

similarity between all of these environments is that they could

be existed as static or dynamic at different times while

highlighting their unique property.

2.3 Parameters

Parameters are the different types of information that the

agent sense from the environment. For instance, the

parameters of a robot that plays chess are the positions of the

opponents.

2.4 Actions

They are the reactions/outputs that the agent gives for the

sensed information. Accordingly, an agent can perform a set

of discrete or continuous actions. If the actions are continuous,

the agent performs unlimited actions while the actions are

discrete, it performs a discrete number of actions.

The aim of any agent is to solve a dedicated task(s) with

some other constraints such as a deadline. To fulfill this aim,

at first agent senses different parameters from its environment

and get a piece of knowledge about the environment. When

there are many agents, the agent should use the knowledge of

its neighbors. Finally, the agent performs the correct and

appropriate actions considering the knowledge and previous

actions. The agents share four main characteristics to solve a

variety number of complex tasks with a broad application

capability.

Autonomy: The agents can be operated without any direct

intervention of human beings. They have particular control

over their internal states and actions.

Sociability: The agents have the ability to communicate

with other agents like humans using an agent-communication

language (ACL).

Reactivity: The agents sense the changes in the environment

and can react in a timely fashion manner.

Pro-activeness: The agents depict a goal-directed behavior.

Accordingly, the agent changes its behavior dynamically to

achieve its desired goals successfully. In this process, the agent

uses sensed parameters, data from other agents, and past

actions to meet the goal effectively.

The agent senses its environment to acquire different

parameters and perform necessary actions to fulfill a particular

goal by sharing common characteristics. While they share

similar properties, they can be broadly classified into different

types.

3. CLASSIFICATION OF AGENTS

The agent topology is a wide classification with many

categories. Primarily, the agents that exist in the world can be

divided into three main categories as physical agents, mental

agents, and structural or informational agents. Human beings,

animals, and robots are the physical agents who have a

physical structure and exist in the real world. Software agents

which are related to computing systems and exist in a virtual

environment are examples of mental agents. The head of the

Turing machine is an example of a structural agent.

Furthermore, the physical agents can be divided into three

categories such as biological agents, artificial agents, and

725

hybrid agents. Living beings such as humans, animals, and

microorganisms are examples of biological agents while

robots are examples of artificial agents. Hybrid agents are

agents who have both biological and artificial parts [10].

Figure 3 shows the general classification of agents.

Figure 3. General classification of agents

Mizzaro [11] has classified the agents considering three

parameters such as perception, reasoning, and memory. At

first, he has classified the agents considering their levels of

perception. Complete perceiving agents are the highest

perceiving agents who have a complete perception of their

environment while opposite to perceiving agents are the agents

who are completely isolated from the environment. Secondly,

agents have been classified considering their reasoning

capability. The highest-level reasoning agents are known as

omniscient agents who have high logic reasoning capabilities.

These agents can derive new knowledge components using

their existing knowledge while nonreasoning agents are

unable to do the reasoning activities. Thirdly, there are agents

with permanent memories who will never lose any small

portion of their knowledge while no-memory agents are

unable to maintain the knowledge state. Figure 4 shows the

summary of agent classification by Stefano Mizzaro.

Figure 4. Summary of agent classification by Mizzaro

Agents can be categorized into six main categories based on

attributive dimensions such as intelligent/cognitive agents,

dynamic criterion, interaction criterion, autonomy criterion,

learning criterion, and cooperation criterion. Agents can be

divided into five subcategories based on intelligence or

cognitive criteria. Intelligent or cognitive agents use their

skills and resources to achieve their desired goal. The

significance of these agents is they have extended intellectual

capabilities and they are designed according to the BDI

(Beliefs, Desires, Intentions) architecture [12]. The five

subcategories of intelligent/cognitive agents have been briefly

described below.

3.1 Simple reflex agents

They are also known as tropistic or behavioristic agents.

Simple reflex agents have a fast response time and therefore,

they may facilitate emergent behaviors. They sense the

environment and make decisions with the use of a condition-

action rules database and perform behaviors with the help of

the action selection module. These agents depict very simple

behaviors and the behaviors are only dependent on current

percepts rather than the percept history. Figure 5 shows the

structure of the simple reflex agent.

3.2 Model-based agents

Simple reflex agents are not suitable for partially observable

environments and model-based agents have been designed to

overcome that limitation. Model-based agents perform

behaviors based not only on current percepts and also on

previous percepts. These agents maintain an internal state that

contains percept history and unobserved aspects of the present

percepts. Figure 6 shows the structure of the model-based

agent.

Figure 5. The structure of the simple reflex agent

Figure 6. The structure of the model-based agent

726

3.3 Goal-based agents

These agents are directed by goals that are initially defined

by the user. Goal-based agent receives percepts from the

environment and its memory manager stores these percepts in

the percept memory. Then, these percepts will be used by the

action selection module to perform appropriate actions to

reach the desired goal. Goal-based agents can take more

elaborate decisions as they have a collection of percepts. Goal-

Based agents can be mainly classified into two types based on

their goal model as task-oriented model and state-oriented

model. In the task-oriented model, the agents live in a task-

oriented domain and the agent’s goal is performing a finite set

of tasks. In the state-oriented model, the agent lives in a state-

oriented domain and its environment is comprised of

sequential finite sent of states. The goal of the agent is a final

state that it tries to reach by passing states sequentially. Figure

7 shows the structure of the goal-based agent.

Figure 7. The structure of the goal-based agent

3.4 Utility-based agents

These agents are a little bit different from other agents as

they are using a performance measurement index which is

named as utility function to evaluate their behavior. Utility-

based agents use a specific path that optimizes a given utility

function to reach their desired goals. These agents recognize

the specific goal, identify different paths to achieve the goal,

and among them choose the best path to reach the goal. Figure

8 shows the structure of the utility-based agent.

Figure 8. The structure of the utility-based agent

3.5 Learning agents

A learning agent can be a simple reflex agent, model-based

agent, goal-based agent, or utility-based agent who frequently

learns to reach the goal effectively. They can modify their

behavior while communicating with the environment and as a

result, they can perform the given task very confidently. The

main advantage of a learning agent is, it can also be operated

in an unknown environment and become more competent as it

always updates the knowledge. Figure 9 shows the structure of

the learning agent.

Agents can be categorized into two main categories based

on their dynamicity. Static agents are entities that cannot move

from one place to another place. Agents in a computer system

are one of the best examples of static agents. Secondly, mobile

agents are capable of moving to some extent of freedom and

mobility can be realized on different levels. Mobile robots are

ideal mobile agents. Further, these mobile agents can be

classified into two groups based on the method of moving.

Effector mobile agents are the agents that use effectors for

their movement. The second category is receptor mobile

agents who are also known as sensor mobile agents. These

agents mainly use receptors for their movement [13].

Figure 9. The structure of the learning agent

The third classification is based on the agent’s interaction.

Accordingly, the agents can be mainly classified into two

groups such as deliberative agents and reactive agents.

Deliberative agents are also known as proactive agents which

have the ability to think by searching behaviors, maintaining

an internal state, and predicting their actions. The significance

of such an agent is that it has an explicit view of its

environment and decisions are taken by logical symbolic

reasoning. Therefore, these deliberative agents try to anticipate

the change which is going to happen in the environment and

organize their activities considering the predictions

accordingly. Reactive agents are also known as sensing/acting

agents who do not maintain internal states and have pre-set

behaviors. Using these behaviors, they respond to the changes

happening in their environment in a timely fashion manner.

Agents can be categorized into two main groups based on

the autonomous criterion. They are autonomous agents and

dependent agents. Autonomous agents are widely used in

virtual environments such as software and also, and they have

been embodied in physical environments such as an

autonomous robots. According to the explicit meaning of the

word “autonomous”, such an agent is independent of its user

or owner and capable of performing a particular task without

any external help by controlling its actions and internal states.

Dependent agents’ characteristic prevails on the opposite side

of the autonomous agents as they are dependent on their user

or owner and acquire external help to perform a particular

action [14].

The agents can be classified into three main groups

considering the learning criterion and they are learning agents,

remembering agents, and conservative agents. Learning agents

are the most complex agents in the agent family and they can

perform functions very well in an unknown environment. In

addition, they require a very long time to improve their

behavior to an intelligent level. They gain much knowledge

about the environment and take complex decisions. The

727

second category of remembering agents is also known as

memorizing agents which are the lowest level of learning.

Thirdly, conservative agents do not gain knowledge about the

environment and therefore, they do not learn [15].

The final classification of agents is based on the cooperation

criterion. The agents in this criterion can be classified into

three groups such as competitive agents, individualistic agents,

and collaborative agents. The competitive agents are

individual agents who have non-aligned goals and their main

aim is maximizing their gains. The significance of such agents

is that they do not collaborate with other agents and only

compete with others to reach their desires. As the name implies,

individualistic agents also like to be alone and do not interact

with other agents. But they do not compete with other agents

like competitive agents. Collaborative agents do not compete

with other agents and strongly collaborate to reach their goals

[16]. Figure 10 shows the summary of agents according to the

attributive dimension criteria.

Figure 10. Summary of agents according to the attributive dimension criteria

4. MULTI-AGENT SYSTEMS (MAS)

Multi-agent systems technology is a novel and promising

area in computer science that was mainly derived from the

field of distributed artificial intelligence (DAI) and the

extended version of agent technology. The whole theory and

principle of MAS are mainly depending on and dealing with a

compound of relatively intelligent and loosely connected

autonomous entities named agents. These agents exist and act

in a certain environment which could be dynamic,

unpredictable, and open to achieving a common goal by

competing or cooperating, sharing or not sharing knowledge

with other agents. The core functionality of a multi-agent

system is the interaction between agents. These interactions

can be described as distributing organized structure that

operates within agent communities and as modes of

cooperation which is a combination of collaboration,

coordination, negotiation, and conflict resolution between

individual agents to accomplish a given goal. This interaction

phenomenon in-order to solve a problem can be identified as a

result of collective behavior by mainly modeling the problem

as a structured set of entities that are able to act in a particular

environment. Accordingly, these agents perceive their

environment locally and adapt their behaviors according to the

received perceptions and also possess their resources, skills,

tendencies, and objectives which could be explicit or implicit,

and finally communicate and cooperate with neighboring

agents by formulating, and sending individual messages to

fulfill the given common task [17].

The multi-agent system technology is comprised of several

different characteristics which make the technology more

promising and popular. Openness can be defined as one of the

challenging characteristics in MAS which refers to the ability

to create new agents, leaving and joining agents into the

environment. However, this characteristic makes it more

difficult and complex to understand and analyze the behavior

of the multi-agent system. Other main characteristics of a

MAS are autonomy (the capacity of control that an agent has

over a result of a certain decision-making process), complexity

(related to learning, reasoning, and decision-making),

adaptability which describes the adjustment of agents'

activities according to the changes in the environment,

communication methodology among agents (inter-agent,

intra-agent), mobility which describes the movements in

between different platforms and environments, distribution

(agents are frequently operating on different hosts which

distributed over a network), security and privacy.

The multi-agent systems are rapidly becoming very popular

due to four salient and outstanding features such as efficiency,

flexibility, reliability, and low cost. The efficiency of a multi-

728

agent system is very high as the overall task or the operation

is divided into smaller parts and assigned each task to a

particular agent. As a result of this feature, the energy required

for the processing is existed at a very low level which often

results to have a low-cost solution. Flexibility can be defined

as the most important promise of multi-agent technology. This

feature for the multiagent system is mainly as each agent

solves its dedicated task with a pre-defined knowledge. In

addition, the distributed nature of problem-solving makes the

multiagent system more reliable [5].

At present, Multi-Agent System technology has generated

many excitements due to seven promising and important

features such as leadership, mobility, topology, heterogeneity,

agreement parameters, time delays, and frequency in data

transmission [5]. A brief introduction of each feature is

mentioned below.

4.1 Leadership

Multi-Agent System can be introduced as an agent team that

contains several agents who are working together to achieve a

common goal. The agent team may or may not contain a leader

that defines tasks or goals to other agents in order to achieve

the common global goal. The leader can be a predefined agent

or an agent who has been collaboratively chosen by other

agents in the system. Accordingly, the overall system can be

classified into two categories considering the existence of a

leader as leader-follow and leaderless. In a leader-follow

system, the leader agent defines actions for the followers (i.e.,

other agents). Secondly, in a leaderless system, agents

autonomously decide their actions based on their own goals.

4.2 Mobility

The agents in a Multi-Agent System can be classified into

two categories as static agents and mobile agents considering

their dynamicity. A static agent is an agent who is always

located in the same position while the mobile agent is the agent

who can freely move around in its environment. The

significance of such a mobile agent is that it shares and uses

its neighbor agent’s resources and monitors them.

4.3 Topology

The word “Topology” with the means of agents, defines the

structure of the network of agents. Furthermore, it describes

the way the agents are interconnected with their neighbor

agents and their locations. Therefore, the Multi-Agent

Systems can be divided into two sections based on the

topology such as static and dynamic. If the topology is static,

the position and the connection of the agents remain

unchanged over the lifetime of agents. The dynamic topology

is also known as switching topology and in this topology, the

position and connection of the agents' changes. Accordingly,

in the dynamic topology agents establish new connections or

communications, move, join, and leave the Multi-Agent

System.

4.4 Heterogeneity

Homogeneity can be identified as one of the important

concepts that relate to the uniformity of a substance.

Considering the heterogeneity of the agents in an agent system,

the multi-agent systems can be mainly divided into two

categories, homogeneous multi-agent systems and

heterogeneous multi-agent systems. The homogeneous MAS

contains agents who have the same characteristics and

functionalities while heterogeneous MAS consists of agents

with diverse features as they may comprise many subagents

which are not uniform throughout.

4.5 Agreement parameters

Agreement parameters are matrices that should be agreed

upon by the agents in a multi-agent system for certain types of

applications. According to the number of matrices, the MAS

can be categorized as first-order MAS, second-order MAS,

and higher-order MAS. If the multi-agent system is first order,

the agents of that system agree on one parameter or metric. As

the name implies, the agents in the second-order MAS agree

on two parameters. Finally, the high-order MAS agrees on

more than two metrics.

4.6 Time delays

Time delays are a common factor in any system. Similarly,

in a multi-agent system, agents will have delays due to

different sources while they perform tasks. Generally, these

delays can be occurred in a multi-agent system due to the

problems in communication media, performance drawbacks in

the agent communication approach, and also when allocating

resources for agents. Moreover, considering those delay types,

the multi-agent system can be simply classified as delay MAS

and non-delay MAS.

4.7 Frequency in data transmission

The agents in a multi-agent system always perceive their

environment, collect sensed data and share these data with

other agents. Accordingly, in real-time multi-agent systems,

the frequency of data transmission between the agents in the

network is inevitably constrained. There are different methods

to reduce the communication costs which take place in

communication among agents. Therefore, the multi-agent

systems can be divided into two categories such as event-

triggered MAS and time-triggered MAS. When the MAS is

event-triggered, the agent only perceives its environment

when a certain event occurs while in time-triggered MAS, the

agents perceive the environment in fixed periods. The

summary of MAS feature categorization is shown in the Table

1.

Table 1. Summary of MAS feature categorization

Feature Categories

Leadership
Leader-follow

Leaderless

Mobility
Static

Mobile

Topology
Static

Dynamic

Heterogeneity
Heterogeneous

Homogeneous

Agreement Parameters

First-order

Second-order

High-order

Time Delay
Delay MAS

Non-delay MAS

Data Transmission Frequency
Time-triggered

Event-triggered

729

5. MULTI-AGENT SYSTEMS DEVELOPMENT

FRAMEWORKS

Multi-agent system can be generally identified as an agent-

oriented system that can be treated as a first-class abstraction.

Moreover, it can be identified with a programming perspective

such as Agent-Oriented Programming (AOP). In an agent-

based programming language, agents can be defined as the

building blocks and programs that can be derived from agents’

behaviors, their goals, and their interoperations.

The concept of Agent-Oriented Programming first emerged

in the year of 1993 as a specialization of Object-Oriented

Programming (OOP). Gradually, different types of reasoning

and cognitive models have been designed for agent-oriented

programming. Mainly, there are three models which were used

in the past as well as at present that laid the foundation to

design different agent programming languages. They are the

Procedural Reasoning System (PRS), Belief-Desire-Intention

(BDI) model, and Situation Calculus. Among these three

models, the BDI model is the most common and widely used

[18].

There are many types of multi-agent system development

frameworks that have been designed considering and

following the above-mentioned three main models and other

models. In addition, most of these frameworks have been

implemented using Java by gaining the advantage of its Java

Virtual Machine. This section is going to discuss some of the

latest and most popular frameworks which have been used

over the past five years (2015 – 2020). They are ASTRA,

Chromar, GOAL, Jason, Gwendolen, JADE, JADEL, Jadex,

LightJason, JaCaMo, MaSMT, PLACE. A brief description of

these frameworks has been given below.

5.1 ASTRA

ASTRA can be introduced as a new version of AgentSpeak

language and contains a number of extensions to the traditional

AgentSpeak language. AgentSpeak(L) or more popularly

AgentSpeak is a type of agent-oriented programming language

that is based on logic programming and follows the BDI

architecture for autonomous agents. Similarly, ASTRA also

shares the same features and is based on JAVA [19].

5.2 Chromar

Chromar is a rule-based notation that consists of stochastic

semantics that are based on a continuous-time Markov chain

(CTMC). Chromar contains objects named as agents and they

have different attributes which are defined at the type level.

Chromar is embedded in Haskel which can better provide an

increased expressive power [20].

5.3 GOAL

GOAL is one of the agent programming languages that

follow an agent-oriented programming paradigm. Moreover, it

can be defined as a logic-based or rule-based agent

programming language which is designed to handle cognitive

agents. Accordingly, the philosophy of GOAL is that create

programs by writing rules that can be chosen for each situation.

In addition, these rules are set which facilitates acquiring a

priority on what needs to be done first by an agent. Using this

language can design agents that can maintain a mental state

which comprised of goals and beliefs and also these agents are

capable of performing actions using their beliefs and goals.

GOAL agents have a knowledge base to represent conceptual

and domain knowledge and use Prolog to represent the

knowledge, beliefs, and goals of an agent. Unlike other agent

programming frameworks, GOAL provides facilities to

develop high-level strategies for agents and this feature can be

identified as one of the strengths of GOAL.

The design of the GOAL is comprised of two parts as basic

reasoning cycle and the modular programming section. The

basic reasoning cycle has two phases and the first phase is used

to process all the events including messages and precepts by

updating the agent’s mental state. Accordingly, in the first

phase, the agent acquires and processes all information sensed

from its outside environment. The second phase has been

allocated for decision-making activities and the agent will

decide the action which is needed to do next. Finally, after the

completion of the second phase, the cycle will be repeated.

The modular programming section is considered as the main

programming construct in GOAL that is constructed to

structure and write very large agent programs. Not only that

but also, GOAL supports communication between agents and

these communications can be either agent-to-agent

communication or broadcasting communication [21].

5.4 Jason

Jason can be introduced as an open-source interpreter for an

extended version of AgentSpeak which was developed by

Jomi F. Hubner and Rafael H. Bordini. Moreover, it is a logic-

based agent-oriented programming language written in Java

that facilitates the developers to design and build complex

multi-agent systems that are capable of working in such

environments previously considered too unpredictable for

computers to handle. One of the advantages of this framework

is that it can be easily customized and is very suitable to

implement reactive planning systems through BDI

architecture. Furthermore, Jason is available Open Source and

is distributed under GNU LGPL [22].

5.5 Gwendolen

Gwendolen was initially started as a small subset of Jason

in-order to develop verifiable agent programs. However, at

present, it has been grown up with its syntax and semantics.

Moreover, it is designed to exhibit many typical features of

BDI languages. The programs in Gwendolen are presented as

a library of plans and those plans will be enabled when such

an agent has beliefs and goals to attain a goal. Accordingly,

agents in Gwendolen distinguish two types of goals such as

achievement goals and performance goals. Achievement goals

make statements about beliefs the agent wishes to hold and

remain those goals until the agent acquires a proper belief.

Secondly, perform goals simply introduce a sequence of deeds

to be performed and cease to be a goal quickly when that

sequence is completed [23].

5.6 JADE

JADE or Java Agent Development Framework is an open-

source software framework that was fully implemented using

the JAVA language. The JADE framework was distributed by

Telecom Italia which is a copyright holder, under the terms

and conditions of the LGPL (Lesser General Public License)

version 2 license. This framework is used to simplify the

implementation of multi-agent systems with the help of a

middle-ware that complies with FIPA specifications and also

730

through a set of graphical tools that help at the debugging and

deployment phases. In addition, JADE-based systems can be

distributed across machines that do not have the same

operating system and the configuration can be controlled via a

remote graphical user interface. The JADE software model can

be divided into two key categories such as agents who are also

named as peers and secondly, as services that can be

introduced as non-autonomous components, which can run on

a single node or cooperatively on multiple nodes. In addition,

these services can be triggered by the peers in the system. The

peers in the JADE environment can be appeared and

disappeared in the system considering the needs of the

application and requirements. In addition, these agents are

fully distributed across both wireless and wired networks. The

communication strategy between these agents is completely

symmetric and every single peer can play both initiator and

responder roles.

JADE contains libraries which are the Java classes that are

needed to develop agent applications and the run-time

environment in-order to offer basic services. Besides, each

instance of the JADE run-time is known as a container as it

comprises agent(s) and a set of containers is named as a

platform which provides a homogenous layer to hide the

diversity and the complexity of tiers such as operating system,

hardware, network, and the JVM.

JADE is comprised of very important driving principles

which are mentioned below.

 Interoperability – Due to FIPA specifications, the

peers (agents) in the JADE can interoperate with

other peers sharing the same standard.

 Uniformity and portability – JADE has a

homogenous set of APIs which are independent of its

network and provides the same APIs for the JEE, JSE,

and JME environments.

 Easy to use – The complexity of the middleware is

hidden behind a simple and intuitive set of APIs.

 Pay-as-you-go philosophy – The programmers do not

need to use every feature provided by the middleware

and also if the programmer didn’t use any feature,

they do not require to know anything about them.

Compared with other MAS development frameworks JADE

has become the most comprehensive and most popular FIPA-

complaint agent platform due to various reasons. The main

reason is documentation of JADE APIs and a wide variety of

extensions are clear and exhaustive. This reason will mainly

lead to developing various agent applications such as smart

emergency applications and localization [24].

5.7 JADEL

Although JADE is considered the most popular and

comprehensive MAS development framework, there are some

major drawbacks and issues with this framework. At first, one

of the main problems is the complexity of the JADE

framework as it highly requires not only expert knowledge in

the area of MAS and also deep knowledge to understand the

JADE mechanism. Secondly, the lack of a fixed agent model

leads to cause unclear and incorrect utilization of different

agent technologies. At last, sometimes the procedures and

patterns of JADE are repetitive, hence not clear considering

the concepts of AOP due to the gap between the AOP

paradigm and OOP paradigm. As a solution for these

mentioned problems, JADEL came to the stage and it can be

introduced as a novel programming language that supports

development agents and Multi-Agent Systems using JADE

and without directly using Java. Moreover, it can be further

identified as an extension of JADE.

JADEL is an agent-oriented DSL (Domain Specific

Language) that mainly aims to reduce the complexity of JADE

agents and multi-agent systems to make the model more clear

and visible by avoiding technical and implementation details.

Accordingly, JADE provides a new syntax which is

completely relying on agent abstractions and this syntax will

lead to creating expressions and constructs to write very

simple and clear agent programs. This framework is mainly

developed with the Xtext framework. The main reason to

endorse this Xtext framework is that it provides strong

integration with the JVM and this will cause to have a more

specific language named Xtend, a dialect of Java that can be

used as a host language of the DSL. Accordingly, the

advantage of using this specific language is that the JADEL

programs generate an easily readable Java source code that

runs fast. Due to these reasons, JADEL is much more

straightforward for Java and JADE users [25].

5.8 Jadex

Jadex is a BDI reasoning engine that allows to create

intelligent agents and multi-agent systems using Java and

XML. This framework is very flexible compared with others

and can be used on top of different middleware infrastructures.

Jadex framework provides some promising features such as

multiple interaction styles, a runtime infrastructure for the

agents, an extensive runtime tool suite, simulation facilities,

and automatic overlay network formation [26].

5.9 LightJason

LightJason is a concurrent BDI model multi-agent system

framework that supports to create of multi-agent systems with

Java. This framework has been inspired by AgentSpeak and

Jason frameworks. LightJason which is a newly designed

software paradigm provides novel concurrent semantics for

the agent development as well as a very efficient

implementation of agent perception compared with Jason.

Moreover, this framework caters considerable extensions to

the AgentSpeak which is a logic programming language such

as parallel executions, thread-safe variables, muli plans, multi-

variable assignments, lambda expressions, and explicit repair

actions. Not only that but also, LightJason offers a modular

runtime system [27].

5.10 JaCaMo

JaCaMo framework has been derived from a specific

programming model called JaCa. JaCaMo is a multi-agent

system development framework that programs agent

organizations in Moise and programs autonomous agents in

Jason. Furthermore, this framework is working in shared

distributed artifact-based environments which are

programmed in CArtAgo. Accordingly, JaCaMo deals with

these three platforms and as a result, this framework has its

own set of programming abstractions as well as its reference

programming model and the meta-model. Due to this

significant feature, JaCaMo is considered as a keystone to

define the global programming meta-model [28].

731

5.11 MaSMT

MaSMT is a free and lightweight multi-agent system

development framework that is fully implemented through the

Java environment [29]. This framework mainly contains three

types of agents named ordinary agent, manager agent, and root

agent. The root agent is capable of handling a group of

manager agents and the manager agent is capable of handling

a set of ordinary agents. This framework also supports

different types of agent communication through its message

header. MaSMT was originally designed for the purpose of

machine translation through communication among different

types of language agents [30].

5.12 PLACE

PLACE or Planning-based Language for Agents and

Computational Environments is an agent-oriented

programming language that contains a syntactic structure that

is very much closer to the BDI model. Some of the frameworks

which are using the BDI model made different assumptions

and sometimes unrealistic to develop real-world applications.

As a result, the PLACE framework attempts to fill the above-

mentioned limitation by following a look-ahead planning-

based approach. In that approach, the actions of the agents are

durative, priorities have been assigned to goals and plans have

been repaired. In addition, Hierarchical Task Network (HTN)

planning techniques have been used to do the plan synthesis of

the PLACE framework. This framework uses a proactive-

reactive plan merging algorithm in-order to streamline the

tasks properly. The important point is that the actions in the

existing plan can be executed in a parallel manner and without

postponing higher priority tasks. Furthermore, the agents in

this framework can constantly monitor the execution plans

without causing any failure to the original plan when sudden

unexpected changes happen in the environment. Not only that

but also, this framework is easier for the users to monitor the

agent’s executions as their environments have been modeled

visually. Finally, this framework offers a notable difference as

it presents a new language with its syntax and semantics

though it provides Java APIs for the programming

environment [31].

Table 2 shows the summary of the Agent Programming

Languages (APL) or frameworks respective to their type of the

model and implementation language.

Table 2. Summary of agent programming languages and

frameworks

APL/Framework Model
Implementation

Language

ASTRA BDI Java

Chromar Rule-based Haskell

GOAL Rule-based Java

Jason BDI Java

Gwendolen BDI Java

JADE FIPA Java

JADEL DSL Java/JADE

Jadex BDI and OOP Java

LightJason BDI Java

JaCaMo BDI Java

MaSMT FIPA Java

PLACE BDI, HTN

There are many different APLs and their differences mainly

exist with respect to the model or architecture they are using

such as BDI, DSL, FIPA, rule-based and also respect to the

implementation language. Not only that but also, most of these

languages are extended versions of the pre-existing languages.

For example, ASTRA is the new version of AgentSpeak

language that shares many functions similar to the AgentSpeak

and the difference between them is ASTRA contains a many

number of extensions and additional features to the traditional

AgentSpeak language. In addition, both of them are following

the same BDI architecture. However, comparing

ASTRA/AgentSpeak language with Chromar, the main

difference between them is the model or the architecture as

ASTRA/AgentSpeak follows the BDI architecture while

Chromar follows a rule-based architecture. Whilst, these agent

programming languages will be different from each other due

to their programming language. For example, compared with

other APLs GOAL has a particular knowledge base to

represent conceptual and domain knowledge and uses Prolog

as the programming language. More importantly, unlike other

agent programming languages/frameworks, GOAL provides

facilities to develop high-level strategies for agents and this

feature can be identified as one of the strengths of GOAL.

Moreover, Jason can be identified as an extended version of

AgentSpeak as same as ASTRA but the major difference

among them is Jason is an open-source platform. In addition,

it can be identified as a more enhanced APL and facilitates

developers to design and build complex multi-agent systems

that are capable of working in such environments previously

considered too unpredictable for computers to handle and this

can be noted as one of the strengths of Jason.

6. AGENT COMMUNICATION APPROACHES

Multi-Agent Systems perform distributive problem solving

with the involvement of agents by coordinating their actions.

As a result, agent communication takes place with individual

agents to interact using cooperation and by information

sharing. Moreover, the communication can be classified by

considering the mechanist manner such as via the sendee-

addressee link and considering the nature of the medium.

Therefore, the communication can be point-to-point, broadcast

or mediated. If the communication is point-to-point, an agent

can directly communicate with another agent while if the

communication is broadcast, an agent sends some information

to a group of agents. Thirdly, when the communication is

mediated, the communication between two agents is mediated

by a third party such as facilitators.

Apart from the discussed basic communication methods,

there are three common and widely used communication

approaches that have been studied for over 50 years such as

speech act, blackboard method and message passing method.

A brief introduction of each approach is given below.

6.1 Speech act approach

Speech act communication approach was first introduced by

a British philosopher named J.L Austin in 1975 in his well-

known book of “How to do things with words”. Generally, the

speech act communication consider the language as a sort of

action rather than a medium that convey and express.

Furthermore, he named several utterance verbs or sentences as

speech acts that change the physical environment.

Accordingly, using this approach, an agent can act as a speaker

who produces utterances to change the beliefs of the hearer. In

the year of 1990, SAT was used as one of the design tools in

732

AI to establish and maintain inter-agent communication.

However, in most research work, SAT has been combined

with agent communication and used to design and develop

agent communication languages. Accordingly, there are two

agent communication languages that are based SAT. Among

them, one language was proposed by the Foundation for

Intelligent Physical Agents (FIPA-ACL) while the other

language was named Knowledge Query Manipulation

Language (KQML) which is a standard agent communication

language. In 2008, a general agent automated negotiation

protocol was presented that was based on SAT. More recently,

in the year of 2017, an approach named ACMICS was

discovered and presented to simulate the communication

between agents in a crown simulation system. Accordingly,

this new approach uses a message structure that was based on

SAT [32].

6.2 Message passing approach

Message passing method facilitates agents to directly

communicate with other agents using broadcast and point-to-

point methods. For an example, if there are two agents namely

agent A and agent B, agent A can directly talk to agent B if he

knows the address of agent B. When it comes to the broadcast

method, agent A sends the message to all its neighbors. In

addition, to maintain the message interpretability, the agents

must use an agreed structure when maintaining the

communication. In one of the recent works, researchers named

Ermon, Gomes and Selman have modified an existing

message-passing approach to multi-agent gaussian inference

for dynamic processes [33].

6.3 Blackboard approach

Figure 11. Message passing approach

This approach is much different and special from other

approaches as all the agents collaboratively share data with

other agents using a central repository which is named

Blackboard. Accordingly, each agent can save its data on the

blackboard and other agents can read the data. Moreover, in-

order to control the access of the agents, the blackboard

approach uses a control knowledge and agents can read

multiple data which are defined in the control knowledge.

Recently, the blackboard approach has been modernized with

the involvement of Bayesian machine learning settings, using

agents to add and remove Bayesian network nodes. Secondly,

the blackboard approach has been used to construct large-scale

intelligent systems [34]. Figures 11 and 12 shows the message-

passing approach and blackboard approach respectively.

Figure 12. Blackboard approach

7. MULTI-AGENT SYSTEMS VS. OTHER RELATED

SYSTEMS

Multi-Agent Systems (MAS), Expert Systems, and Object-

Oriented Programming (OOP) almost seem to be similar

concepts as they are all involved with decision making and

knowledge sharing. When considering an expert system, it

senses the environment, learns the knowledge, and finally

makes a decision to solve a particular task. Unlike MAS has

the capability of agent-agent communication, the expert

system can only communicate and exchange data with pre-

defined entities. In addition, there is a significant difference

between the decision-making process between MAS and

expert systems. The final decision of an expert system as well

as in MAS is based on the perceived data that are sensed from

its environment. However, according to the decision, the

expert system advises the controller to perform relevant action,

and sometimes the controller can reject the given decision as

it is a separate system while according to the final decision,

the agents in the MAS directly act on the environment [35].

Secondly, In OOP, an object (object z) can share its

knowledge and resources with pre-defined objects by creating

a public function. When the other objects need to

communicate with that object z, they should invoke the created

public function. Accordingly, when the object z permits other

objects to use its functions, the object z will be unable to

control the frequency of its function. Whilst in MAS, an agent

can communicate with any node in the network as well as can

control the frequency although other agents request their

resources. In OOP, the objects have a limited number of pre-

defined inputs while in MAS agents use multiple inputs. Table

3 shows the comparison between MAS, OOP, and Expert

Systems.

733

Table 3. Summary of Key Differences between MAS, OOP and Expert Systems

Parameter MAS OOP Expert System

Decision Making Inputs, Knowledge, Goal Inputs Inputs, Knowledge

Autonomy
Sense, Make decisions, Act on the

environment autonomously

Objects with pre-defined actions

and inputs
Sense and make decisions

Communication Strategy With agents With Objects With entities

Action Performance in the

Environment
Agent behave according to the decision

Perform actions according to the

pre-defined actions

The controller performs

actions according to the

given decision

8. MULTI-AGENT SYSTEMS WITH PRESENT

DIRECTIONS

Artificial intelligence and its branches such as Multi-Agent

System technology, Natural Language Processing, Machine

Learning, and Robotics are progressing rapidly into diverse

areas in modern society. Accordingly, they have become

inseparable areas with people in the modern world. Among

those novel technological areas, the Multi-Agent System

technology provides a powerful platform for modeling and

solving real-world problems very efficiently and effectively.

This section provides MAS applications based on broad

disciplines which are currently encountered in the modern

world.

8.1 Agents for power engineering applications

Power Engineering or power system engineering is one of

the sub-fields which has been developed within Electrical

Engineering that mainly deals with the generation,

transmission, distribution, and utilization of electric power.

MAS technology is being used as a novel technology to

address challenges in power engineering by addressing a large

range of applications such as condition monitoring,

diagnostics, power system restoration, market simulation,

network control, and automation. Moreover, these

applications can be further classified into four categories

considering overall applications and aspects.

8.1.1 Monitoring and diagnostics

Multi-Agent System technology is widely used for the

management and interpretation of data of power engineering

and diagnostic functions. This is mainly because MAS

technology is one of the best tools to collect and manipulate

distributed information and knowledge. As an example, can

consider transformers as power plant items and can use

different types of sensors to monitor those transformers such

as UHF monitoring and acoustic monitoring of partial

discharge and also online dissolved gas in oil measurement. In

such situations, the MAS technology can be applied and the

agents of the system can monitor the output of the UHF

sensors and accordingly can inform the engineer about the

detected significant partial discharge activity. Moreover, can

consider some promising properties cater by MAS technology

such as flexibility of the system and extensible MAS

architecture that allows integration of available diagnostic data,

information, knowledge, and the introduction of new sensors

and interpretation algorithms seamlessly to the system

respectively [36].

Using these facts, some developers have designed and

developed condition monitoring systems for transformers

using MAS technology. Accordingly, McArthur, Strachan,

and Jahn have developed a multi-agent transformer condition

monitoring system to employ data generated by the UHF

monitoring of partial discharge activity. Furthermore, it

describes the rationale behind the MAS techniques and the

problems overcome through the technology. Not only that but

also they give a detailed explanation about the design and

performance of the intelligent interpretation techniques [37].

8.1.2 Distributed control

The operation of modern power systems has been become

very complex due to the introduction of distributed power

generation, market operations, the complexity of distributed

networks, and their interconnections. However, at present,

MAS technology is being used to control these modern power

systems very flexibly by ignoring the past solution/approach

which was the central SCADA systems and smaller distributed

SCADA systems. As a result, intelligent agents have been

allocated to distribute the management and control functions.

8.1.3 Modelling and simulation

Modeling and simulation using traditional methods have

been become challenging tasks due to the complex operations

of modern power systems.

Marketplace simulation is one of the applications that uses

intelligent agents to represent autonomous actions. Therefore,

this method is used beneficially for the energy markets, energy

networks, complex power systems, and energy utilization.

Marketplace simulation is mainly used to support decision-

makers. It goes beyond traditional concepts based on

analytical approaches, such as the Bass model by modeling

market behavior and innovation diffusion from a micro-level

perspective thereby taking into consideration heterogeneous

market players such as producers, intermediaries, or

consumers and their (inter)actions such as word-of-mouth

communication. Accordingly, these stakeholders are

represented as agents with individual preferences, knowledge

(beliefs), and behaviors. Therefore, innovation diffusion

emerges in the course of the simulated period during which

agents act and react.

8.1.4 Protection

The protection aspect of the field of power system

engineering is the connection between agents and protective

devices. Accordingly, most of the systems have used

protection relays and other associated equipment as the agents

and all the relevant functionalities have been augmented. In

addition, at present many novel protection schemes for fault-

tolerant and self-coordinating are being developed by the

researchers.

8.2 Agents for smart grids

A smart grid concept is a novel form of the power grid that

mainly aims to upgrade the existing power system

734

infrastructure into an efficient, intelligent, and robust

electricity grid. Furthermore, it is a combination of

information technology, communication technology, and

power system engineering. As an intelligent electrical network,

a smart grid is deployed to enhance the reliability, security,

efficiency, flexibility, and sustainability of the network by

making it controllable, automated, integrated, and observable.

In addition, the grid has a digital structure that is comprised of

different types of sensors and two-way communication [38].

The smart grid is a combination of software and hardware

protocols in-order to exchange status and control signals.

Recently, this task was achieved by using SCADA

(Supervisory Control and Data Acquisition) system and at

present, it has been moved to mixed with MAS technology.

Mainly, MAS technology is used in the area of smart grids as

a development tool that helps designers to create sophisticated

supervisory and control applications. Therefore, intelligent

agents in a smart grid can be classified into two groups as one

group embodies the energy management, market the energy,

price and schedule the energy while the other group is

responsible for efficiency, security, reliability, and fault-

handling. Besides, these agents have been designated

according to the function they are performing at the smart grid

such as consumer agents, device agents, distributed resource

agents, intelligent response control agents, intelligent

prevention control agents, and graphical user interface (GUI)

agents. Moreover, unified-energy agents can be named as the

base agents in the near future of advanced smart grids.

Multi-Agent technology is used to control the smart grid

and also to meet the technological requirements. In addition, it

also helps for information processing, analyzing electricity

consumer behavior, market integration, and agent-oriented

decision support. Considering those advantages offered by the

agent technology, many researchers have applied the

technology for the smart grids and several applications have

been discussed below. Rahman and others have used agent

technology to improve the transient stability of smart grids in-

order to avoid the loss of synchronous operation in a power

system [39]. Jin et al. [40] have done an analysis using cloud

computing to develop smart grids. Accordingly, they have

used the power of agent technology to control the nodes of the

network with the use of the cloud architecture of the smart grid.

Moreover, MAS technology can be applied to improve the

performance of the smart grid significantly. This has been

further discussed in detail and reported in ref. [41]. Table 4

represents a comparison between grip operation via a

conventional mode and using MA technology. According to

the comparison, it can be observed that the variability in power

consumption and generation in the grid that uses MAS

technology is very much low.

Table 4. Grid operation comparison between different modes

Smart Grid

Operation

Peak Power

Consumption (W)

Peak Power

Generation (W)

Conventional 5500 7000

MAS 850 800

The novel and the enhanced smart grid concept is known as

the “soft grid” that uses software to coordinate the control of

the grid. Dillon and others have mixed the power of software

technology with web technology to design the architecture of

the grid. Moreover, this approach has been helped to overcome

the limitations of the existing web-architecture-based grids.

Not only that but also Kamdar and others have introduced a

LABVIEW software-based MA approach to control and

restore the grid during faulty and outage events [42].

8.3 Agents for healthcare

The Healthcare industry is one of the most rapidly growing

sectors in any country in the world. At present, many countries

even the developed nations are also facing different types of

challenges due to the rapid growth of the population.

Accordingly, the demand for health services is also increasing

which results in a huge challenge. However, Multi-Agent

System technology provides a more convenient powerful

platform to model and solve existing real-world healthcare

problems. Generally, two major specific technologies can be

used to model healthcare problems with the involvement of

agents such as Wireless Sensor Networks (WSN) and Body

Area Sensor Networks (BASN) [43].

A wireless sensor network can be identified as a collection

of nodes that are organized into a cooperate network where

each node is capable of sensing, processing, and

communicating. Wireless sensor networks share two distinct

properties such as agents being homogenous and numerous.

Therefore, the agents or nodes in the network are the same or

share the same hardware, software, and ability as well as they

make more sense with real-world applications respectively.

Secondly, the body area sensor network (BASN) is a special

type of wireless sensor network that gathers information about

the human body using sensors as its main goal. Accordingly,

BASN also shares the same properties as wireless sensor

networks and also some distinguished properties such as

heterogeneity, a smaller number of agents, and the quality of

the wireless signal.

Healthcare applications can be classified into three groups

considering two major specific technologies such as

telemedicine, daily living, and monitoring, detection, and

assistance.

8.3.1 Telemedicine

Telemedicine mainly facilitates monitoring the patient

remotely and also establishing and maintaining real-time

communication with the physician. Accordingly, sensor nodes

have been attached to the body of the patient and provide a

facility to monitor different biological properties. In addition,

these properties are available in real-time and this results from

the physician communicating directly with the patient. This

communication can be established and continued over various

mediums such as phone calls, emails, and video conferencing

technology. Many applications have been designed and

developed considering this novel area.

8.3.2 Daily living and monitoring

Applications in this area mainly use wearable and

implantable sensors to monitor the vital signs of the patients

unobtrusively. The significance of such systems is that they

have been designed to store very important historical records

of the patients, provide insight, and report abnormalities. Most

of the medical cases such as brain tumors, cancer, diabetes,

and different physical disabilities have been benefited from

these applications.

8.3.3 Detection and assistance

This category is similar to the daily living and monitoring

applications with additional functionality such as providing

assistance for the patients when deemed necessary.

735

At present, there are many existing healthcare applications

that were mixed with MAS technology. Therefore, many of

these applications focus on heart rate monitoring using ECG,

pulse oximetry, fall detections, gait analysis, and Parkinson's

episode detection. Camarinha-Matos et al. [44] have designed

an application named TeleCARE which is a configurable

framework focused on virtual communities for elderly support.

Therefore, virtual communities help elder people to stay at

home and to maintain their typical lifestyles. Moreover, this

project has been mixed with MAS technology as the base

infrastructure instead of using TCP/IP over the Internet due to

two major reasons. The first reason is to provide real-time

responses by continuously providing services by reducing

dependencies and delays of the network. The second reason is

to build mobile agents and to send them for remote executions

in-order to achieve high flexibility and scalability.

A unified body sensor network is a combination of two

technologies such as Wireless Sensor Networks (WSN) and

Body Area Sensor Networks (BASN). One of the applications

of the Unified body sensor network is MADIP which stands

for Multi-Agent Distributed Information Platform.

Furthermore, it is a mobile agent-based distributed

information platform for pervasive health care monitoring that

was designed using JADE. MADIP is capable of automatically

notifying the responsible care provider, offering distance

medical advice, and performing continuous health monitoring.

Not only that but also, this application is well suited for daily

living and monitoring areas as it provides a well detection and

assistance for elder people. This system contains six types of

agents such as user agent, resource agent, physician agent,

diagnostic agent, knowledge-based data server agent and

agents for external services. User agents act as intelligent

gateway interfaces for patients and physicians and execute

according to the user requests. Secondly, the resource agent

mediates agents’ access to resources in the system and

operates at a higher level of trust while the physician agent is

used by medical staff to perform tasks as a mobile agent. Then,

the diagnostic agent can be considered as a data-analysis

engine that is a static agent and it mainly analyzes the data of

the patients and indicates/predict the sudden change of the

patients’ status while the Knowledge-based data server agent

contains two information repositories such as user status and

profiles and used to store physiological information collected

by the physician agent.

8.4 Agents in robotics

Research regarding multi-agent-based robot systems has

been started conducted in the 80s to provide more robust and

efficient robotic systems. Moreover, it has been started to

study formally with the aid of the first article which was

published in 1996, specially outlined the advantages and

disadvantages of agents in robotics. As a result of such kind of

research, two heterogeneous multi-agent robots named

ALLIANCE and ACTRESS have been developed. In addition,

different cooperative multi-agent robot applications such as

soccer robots, unmanned guided vehicles (UGVs), and

unmanned aerial vehicles (UAVs) were developed gradually

[45].

According to Ismail et al. [46], cooperative multi-agent

robotic systems have focused on three main elements as a type

of agent such as homogenous or heterogenous, the control

architecture such as reactive, deliberative, and hybrid, and

finally the type of communication such as implicit and explicit.

Accordingly, to facilitate efficient coordination among those

agent-based robots, the control architecture and the

communication type must process a coherent behavior with

the agents.

Robots and robotic systems are widely used in the field of

agriculture for four decades. Arguenon et al. [47] have

developed multi-agent-based agriculture robots which are

employed in the harvesting of a vineyard. Accordingly, this

system contains three types of robots such as harvesting robots,

small transport robots, and large transport robots that have

specific tasks to accomplish. The harvesting robot is

responsible for harvesting and waiting for a transportation

robot while the large transportation robots are responsible for

three roles such as moving to one of the small transport robots,

moving to the processing center, and waiting for the relevant

instructions. Then the small transportation robot also has three

roles such as move to one of the large transport robots, move

to one of the harvesting robots, and also wait for instructions.

Therefore, all of these communications are done with the aid

of multi-agent system technology that follows ORIS platform.

Duan et al. [48] have proposed an agent-based soccer robot

to study the complexity of their decision-making capability.

Accordingly, in this system, the robots are grouped into

multiple teams. Accordingly, the agents learn knowledge

about the opponent team by perceiving their environments as

well as sharing those learned knowledge with other agents in

the team. In addition, reinforcement learning has been used

with probabilistic neural networks to increase the accuracy of

the decision-making capability of the agents.

In addition to those applications, MAS technology has been

commonly applied for agricultural tasks and applications these

days mainly to model and automate agricultural tasks.

Accordingly, the technology is used to develop simulation

models. Goonatilleke et al. [49] have developed a system to

establish and maintain the communication platform between

the key persons in the rice production industry using the power

of MAS technology. Accordingly, these key persons such as

farmers, buyers and transporters act as agents and

communicate effectively mainly to reduce transport costs.

9. FUTURE DIRECTIONS OF MULTI-AGENT

SYSTEM TECHNOLOGY

Future trends and directions of Multi-Agent System

technology can be guessed to be mixed with some of the

disciplines such as Machine Learning (ML), Complex

Adaptive Systems, Robotics and Parallel Computing. When

considering the current world and the future world that we are

living in is surrounded by data and everything around us is

connected to a data source. Therefore, data can be introduced

as the new DNA of the 21st century and upcoming future. As

a result of this, information extraction using data is used to

create various types of applications in different fields, and in

order to achieve this, it is very much needed some different

types of data management tools can extract data very quickly

and intelligently. However, at present, Machine Learning

technology is being used as a promising technology that can

analyze data and develop real-world applications intelligently

using a diverse array of different ML algorithms. Moreover,

Machine Learning is considered as one of the most popular

and rapidly using technologies in the near future. Whilst there

are some drawbacks of ML due to several limitations such as

data acquisition problems as ML needs a massive data set with

736

inclusive, unbiased, and good quality. Secondly, it requires

more time to let the algorithms learn with an amount of

accuracy and relevancy and more resources which means an

additional requirement of computer power. The third

challenge is the ability to interpret results generated by the

algorithms accurately. In addition, another disadvantage is

while ML is autonomous it is highly susceptible to errors.

However, most of the ML researchers face problems currently

with their data set. This is because the current level of ML is

capable of dealing with a static and given data set that mainly

works with supervised learning algorithms. However, this

problem can be solved with MAS technology. Therefore, one

of the future trends of the technology is going to mix Machine

Learning and Multi-Agent System Technology. Agent-Based

frameworks can be used to uplift the intelligent decision-

making capability in Machine Learning in a dynamic and

complex environment.

In Machine Learning or Deep Learning, the learning

algorithm and the capacity of the data set are the key facts to

produce the best effective solution. At this level, ML has the

capability to provide the solution using the existing data set.

Unfortunately, at present, it can’t deal with dynamic and

complex environments, especially with dynamic data sets.

Entering new data set means the environment of ML becomes

dynamic and it leads to have a complex scenario. Accordingly,

in this situation, it is very difficult to follow the traditional

Machine Learning mechanism because the scenario is always

changing with time. As a result of this, it is needed to propose

a new mechanism to produce the best and most effective

solution as it works in an adaptive environment. In such cases,

Multi-Agent System technology is very useful. This is mainly

due to the “learning” feature of both Machine Learning and

Multi-Agent Systems technology. The word “learning” is

common for both technologies. As a result of this, a learning

agent can be placed to learn in a timely changing environment

in-order to make the intelligent, effective best solution.

Moreover, Expert Systems can also be combined with

Machine Learning to give efficient live solutions. Accordingly,

it is very much clear that the future of the Multi-Agent System

technology will be mixed with Machine Learning and come

with Hybrid systems that can handle the complexity of the

existing systems.

The second future trend of MAS technology can be thought

will join with Complex Adaptive System technology. At

present, Complex Adaptive System technology is capable of

making centralized decisions with the help of simple agents

that are working together to achieve a common goal. However,

in the future, Complex Adaptive System will be mixed with

MAS and will be capable to take decentralized decisions that

will be lead to overcoming drawbacks of exiting technology

and facing better dynamic environmental conditions. Not only

that but also, many technologies today have a static ontology.

However, due to the advancements and evolutions of

technology in the future, there will be ontology-changing

incidents. To overcome this issue, MAS technology can be

used as it helps to increase the adaptability of systems.

The future of the MAS technology with its agents can be

thought to develop with different features. This is because, at

present agents are considered as simple or small entities that

follow rules to achieve a common task. Accordingly, these

agents generally have simple tasks to be performed to achieve

the common goal. However, in the future, it can be guessed

that the agents in the system will be capable of performing a

single complex task such as Machine Learning applications

and will be led to perform an extremely complex task.

Moreover, they will perform very complex tasks and will

communicate with others to give very intelligent efficient

solutions.

As the next future trends of MAS can be thought to mix with

the area of parallel computing where agents are collaboratively

engaging to streamline different types of actions

simultaneously. Weerasinghe and others have developed a

system named ITray which is a multi-agent solution for LAN-

based file sharing. In this research, MAS technology has been

applied to handle the complexity of the computer network,

gain better performance, and reduce resource wastage. This

system presents a distributed multi-agent system that can be

used to reduce resource wastage in the Local Area Network.

This system is comprised of a managing agent and four

ordinary agents such as a file send agent, file receive agent,

download agent and load balancing and dynamic scheduling

agent. Accordingly, when the user feeds an URL to the system

for download, the system communicates with other manager

agents in the Local Area Network and checks whether the file

is available or not. If the file is available, get that file from that

client. Otherwise, the system will download the file through

the file download agent. When the user feeds several URLs,

the system follows the previous procedure and allocates

downloading tasks to other clients through the load balancing

and dynamic scheduling agent when they are free. Task

allocation, file sending and reserving has been done, through

agent-agent communication. Accordingly, this system depicts

the behavior of parallel computing with the involvement of

MAS technology [50, 51]. Secondly, when considering a high-

performance cluster computer, it has individual multiple nodes

that run parallelly. Accordingly, each node can be considered

as an agent as these nodes are working individually while

communicating with other nodes to give a high performance.

In such a case parallel computing/ distributed computing is

mixed with MAS technology. Furthermore, the main

application areas are endorsed with high-performance cluster

computers and computer networks. In addition, robotic

technology also will be mixed with MAS technology. The

automation and the coordination of the entire robotic system

can be guided by agents.

10. CONCLUSION

This paper presented a broad explanation of Multi-Agent

System technology by addressing many MAS-related topics.

Chapter 1 of the paper has given a very clear detailed overall

explanation of Multi-Agent System technology by deeply

presenting the birth point and evolution of the technology.

Moreover, it provides a clear development history of MAS

technology. In the next step, the paper gave a detailed

explanation of agents which are the key entity of the

technology by stating different definitions. Moreover, the

paper has given a very detailed classification of agents. As the

next step, the paper has been focused on the MAS technology

by addressing its features, communication approaches and

comparisons between other related systems. Then, it has given

existing MAS applications that are mostly and widely

available in different disciplines by explaining the current

directions of the technology. Finally, several future trends of

the MAS technology have been noted. We expect this article

will be insightful and comprehensive material on MAS for

researchers in the area.

737

REFERENCES

[1] Haenlein, M., Kaplan, A. (2019). Guest editorial to the

special issue, A brief history of AI: On the past, present,

and future of artificial intelligence. California

Management Review, 61(4): 5-14.

https://doi.org/10.1177/0008125619864925

[2] Turing, A.M. (1950). I.-Computing machinery and

intelligence. Mind, 59(236): 433-460.

https://doi.org/10.1093/mind/LIX.236.433

[3] Chaib-Draa, B., Moulin, B., Mandiau, R., Millot, P.

(1992). Trends in distributed artificial intelligence.

Artificial Intelligence Review, 6(1): 35-66.

https://doi.org/10.1007/BF00155579

[4] Vlassis, N. (2007). A concise introduction to multiagent

systems and distributed artificial intelligence. Synthesis

Lectures on Artificial Intelligence and Machine Learning.

https://doi.org/10.2200/S00091ED1V01Y200705AIM0

02

[5] Dorri, A., Kanhere, S.S., Jurdak, R. (2018). Multi-agent

systems: A survey. IEEE Access, 6: 28573-28593.

https://doi.org/10.1109/ACCESS.2018.2831228

[6] Bouquet, F., Chipeaux, S., Lang, C., Marilleau, N., Nicod,

J.M., Taillandier, P. (2015). Introduction to the agent

approach. In Agent-based Spatial Simulation with

NetLogo, pp. 1-28. https://doi.org/10.1016/B978-1-

78548-055-3.50001-0

[7] Balaji, P.G., Srinivasan, D. (2010). An introduction to

multi-agent systems. Innovations in Multi-Agent

Systems and Applications-1.

https://doi.org/10.1007/978-3-642-14435-6_1

[8] Drozdov, V.N., Kim, V.A., Lazebnik, L.B. (2011).

Modern approach to the prevention and treatment of

NSAID-gastropathy. Experimental & Clinical

Gastroenterology, 2011(2): 106-110.

[9] Ye, D., Zhang, M., Vasilakos, A.V. (2016). A survey of

self-organization mechanisms in multiagent systems.

IEEE Transactions on Systems, Man, and Cybernetics:

Systems, 47(3): 441-461.

https://doi.org/10.1109/TSMC.2015.2504350

[10] Burgin, M., Dodig-Crnkovic, G. (2009). A systematic

approach to artificial agents. arXiv preprint

arXiv:0902.3513.

[11] Mizzaro, S. (2021). Towards a theory of epistemic

information. http://www.dimi.uniud.it/˜mizzaro.

[12] Roche, R., Lauri, F., Blunier, B., Miraoui, A., Koukam,

A. (2013). Multi-agent technology for power system

control. In Power Electronics for Renewable and

Distributed Energy Systems, pp. 567-609.

https://doi.org/10.1007/978-1-4471-5104-3_15

[13] Kallem, S.R. (2020). artificial intelligence in the

movement of mobile agent (robotic).

www.iaeme.com/ijcet.asp.

[14] Bösser, T. (2001). Autonomous agents. International

Encyclopedia of the Social & Behavioral Sciences, 1002-

1006. https://doi.org/10.1016/B0-08-043076-7/00534-9

[15] Vitek, M., Peer, P. (2020). Intelligent agents in games:

Review with an open-source tool. Advances in

Computers, 116(1): 251-303.

https://doi.org/10.1016/BS.ADCOM.2019.07.005

[16] https://www.researchgate.net/publication/221622801_A

n_Overview_of_Cooperative_and_Competitive_Multia

gent_Learning.

[17] Berna-Koes, M., Nourbakhsh, I., Sycara, K. (2004).

Communication efficiency in multi-agent systems. In

IEEE International Conference on Robotics and

Automation, 2004. Proceedings. ICRA'04. 2004, New

Orleans, LA, USA, pp. 2129-2134.

https://doi.org/10.1109/robot.2004.1307377

[18] Cardoso, R.C., Ferrando, A. (2021). A review of agent-

based programming for multi-agent systems. Computers,

10(2): 16.

https://doi.org/10.3390/COMPUTERS10020016

[19] Collier, R.W. (2015). PRIMA 2015: Principles and

practice of multi-agent systems. 18th International

Conference, Bertinoro, Italy, October 26-30, 2015,

Proceedings. https://doi.org/10.1007/978-3-319-25524-8

[20] Honorato-Zimmer, R., Millar, A.J., Plotkin, G.D.,

Zardilis, A. (2019). Chromar, a language of

parameterised agents. Theoretical Computer Science,

765: 97-119. https://doi.org/10.1016/j.tcs.2017.07.034

[21] Hindriks, K.V., Dix, J. (2014). GOAL: a multi-agent

programming language applied to an exploration game.

In Agent-Oriented Software Engineering, pp. 235-258.

https://doi.org/10.1007/978-3-642-54432-3_12

[22] Bordini, R.H., Hübner, J.F., Wooldridge, M. (2007).

Programming Multi-Agent Systems in Agentspeak

Using Jason. John Wiley & Sons.

[23] Dennis, L.A., Farwer, B. (2008). Gwendolen: A BDI

language for verifiable agents. In Proceedings of the

AISB 2008 Symposium on Logic and the Simulation of

Interaction and Reasoning, Society for the Study of

Artificial Intelligence and Simulation of Behaviour, pp.

16-23.

[24] Bellifemine, F., Caire, G., Poggi, A., Rimassa, G. (2008).

JADE: A software framework for developing multi-agent

applications. Lessons learned. Information and Software

technology, 50(1-2): 10-21.

https://doi.org/10.1016/j.infsof.2007.10.008

[25] Bergenti, F., Iotti, E., Monica, S., Poggi, A. (2017).

Agent-oriented model-driven development for JADE

with the JADEL programming language. Computer

Languages, Systems & Structures, 50: 142-158.

https://doi.org/10.1016/J.CL.2017.06.001

[26] Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.F.

(2005). Multi-agent programming: languages, platforms

and applications. New York Springer, Multiagent Syst.

Artif. Soc. simulated Organ.

https://doi.org/10.1007/b137449

[27] Aschermann, M., Dennisen, S., Kraus, P., Müller, J.P.

(2018). LightJason, a highly scalable and concurrent

agent framework: Overview and application. In AAMAS,

Stockholm, Sweden, pp. 1794-1796.

[28] Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi,

A. (2013). Multi-agent oriented programming with

JaCaMo. Science of Computer Programming, 78(6):747-

761. https://doi.org/10.1016/j.scico.2011.10.004

[29] Hettige, B., Karunananda, A., Rzevski, G. (2016). A

multi-agent solution for managing complexity in English

to Sinhala machine translation. International Journal of

Design & Nature and Ecodynamics, 11(2): 8-96.

https://doi.org/10.2495/DNE-V11-N2-88-96

[30] Hettige, B., Karunananda, A.S., Rzevski, G. (2021).

MaSMT4: The AGR organizational model-based multi-

agent system development framework for machine

translation. In Inventive Computation and Information

Technologies, 691-702. https://doi.org/10.1007/978-

981-33-4305-4_50

738

[31] Hashmi, M.A., Akram, M.U., Fallah-Seghrouchni, A.E.

(2017). Place: Planning based language for agents and

computational environments. In International Workshop

on Engineering Multi-Agent Systems, Sao Paulo, Brazil,

pp. 142-158. https://doi.org/10.1007/978-3-319-91899-

0_9

[32] Austin, B.J., Heine, V., Sham, L.J. (1962). General

theory of pseudopotentials. Physical Review, 127(1): 276.

https://doi.org/10.1103/PhysRev.127.276

[33] Ermon, S., Gomes, C., Selman, B. (2011). A message

passing approach to multiagent gaussian inference for

dynamic processes. In The 10th International Conference

on Autonomous Agents and Multiagent Systems-

Volume 3, Taipei, Taiwan, pp. 1277-1278.

[34] Jagannathan, V. (1989). Blackboard architectures and

applications. Elsevier.

[35] Al-Azawi, R.K., Ayesh, A. (2013). Comparing agent-

oriented programming versus object-oriented

programming. In Proceedings of the ICIT 2013 The 6th

International Conference on Information Technology,

Amman, Jordan, pp. 8-10.

[36] McArthur, S.D., Davidson, E.M., Catterson, V.M.,

Dimeas, A.L., Hatziargyriou, N.D., Ponci, F., Funabashi,

T. (2007). Multi-agent systems for power engineering

applications-Part I: Concepts, approaches, and technical

challenges. IEEE Transactions on Power Systems, 22(4):

1743-1752.

https://doi.org/10.1109/TPWRS.2007.908471

[37] McArthur, S.D., Strachan, S.M., Jahn, G. (2004). The

design of a multi-agent transformer condition monitoring

system. IEEE Transactions on Power Systems, 19(4):

1845-1852.

https://doi.org/10.1109/TPWRS.2004.835667

[38] Colak, I., Sagiroglu, S., Fulli, G., Yesilbudak, M., Covrig,

C.F. (2016). A survey on the critical issues in smart grid

technologies. Renewable and Sustainable Energy

Reviews, 54: 396-405.

https://doi.org/10.1016/j.rser.2015.10.036

[39] Rahman, M.S., Mahmud, M.A., Pota, H.R., Hossain, M.J.

(2015). A multi-agent approach for enhancing transient

stability of smart grids. International Journal of Electrical

Power & Energy Systems, 67: 488-500.

https://doi.org/10.1016/j.ijepes.2014.12.038

[40] Jin, X., He, Z., Liu, Z. (2011). Multi-agent-based cloud

architecture of smart grid. Energy Procedia, 12: 60-66.

https://doi.org/10.1016/j.egypro.2011.10.010

[41] Palicot, J., Moy, C., Résimont, B., Bonnefoi, R. (2016).

Application of hierarchical and distributed cognitive

architecture management for the smart grid. Ad Hoc

Networks, 41: 86-98.

https://doi.org/10.1016/j.adhoc.2015.12.002

[42] Kamdar, R., Paliwal, P., Kumar, Y. (2018). Labview

based multi-agent approach towards restoration in smart

grid. Materials Today: Proceedings, 5(2): 4684-4691.

https://doi.org/10.1016/j.matpr.2017.12.040

[43] Shakshuki, E., Reid, M. (2015). Multi-agent system

applications in healthcare: current technology and future

roadmap. Procedia Computer Science, 52: 252-261.

https://doi.org/10.1016/j.procs.2015.05.071

[44] Camarinha-Matos, L.M., Afsarmanesh, H. (2004).

TeleCARE: Collaborative virtual elderly support

communities. Proceedings of TELECARE 2004 - Int.

Workshop on Tele-Care and Collaborative Virtual

Communities in Elderley Care.

https://doi.org/10.5220/0002677300010012

[45] Dudek, G., Jenkin, M.R., Milios, E., Wilkes, D. (1996).

A taxonomy for multi-agent robotics. Autonomous

Robots, 3(4): 375-397.

https://doi.org/10.1007/BF00240651

[46] Ismail, Z.H., Sariff, N., Hurtado, E.G. (2018). A survey

and analysis of cooperative multi-agent robot systems:

challenges and directions. In Applications of Mobile

Robots, pp. 8-14.

https://doi.org/10.5772/INTECHOPEN.79337

[47] Arguenon, V., Bergues-Lagarde, A., Rosenberger, C.,

Bro, P., Smari, W. (2006). Multi-agent based prototyping

of agriculture robots. In International Symposium on

Collaborative Technologies and Systems (CTS'06),

Vegas, NV, USA, pp. 282-288.

https://doi.org/10.1109/CTS.2006.57

[48] Duan, Y., Cui, B.X., Xu, X.H. (2012). A multi-agent

reinforcement learning approach to robot soccer.

Artificial Intelligence Review, 38(3): 193-211.

https://doi.org/10.1007/S10462-011-9244-8

[49] Goonatilleke, M.A.S.T., Jayampath, M.W.G., Hettige, B.

(2018). Rice express: A communication platform for rice

production industry. In International Conference of the

Sri Lanka Association for Artificial Intelligence,

Moratuwa, Sri Lanka, pp. 269-277.

https://doi.org/10.1007/978-981-13-9129-3_19

[50] Weerasinghe, L.D.S.B., Hettige, B., Kathriarachchi,

R.P.S., Karunananda, A.S. (2016). ITray: Multi-agent

solution for LAN based file sharing. Proceedings in

Computing, 9th International Research Conference-

KDU, Sri Lanka, pp. 81-86.

[51] Thepperumal, S.K., Margabandu, V., Radhakrishnan, R.,

Amaladas, J.R., Ananthakrishnan, S.V. (2021).

Machinability investigations on aerospace custom 450

alloy using TiAlN/TiCN, TiCN/TiAlN coated and

uncoated carbide tools. Journal Européen des Systèmes

Automatisés, 54(2): 325-334.

https://doi.org/10.18280/jesa.540215

739

