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The roll of consumption energy forecasting is very important to make planning of time-

horizon strategy, and to mitigate a great energy management. As a result, improving the 

sustainability of energy, and creating a clean environment. Aiming to develop the 

forecasting of consumption energy in different time horizons, this work gives the results 

of a new hybrid method, which combine deep echo state network (DeepESN), with Binary 

genetic algorithm (BGA). DeepESN is an extension of Echo state network (ESN), which 

integrates the strong nonlinear time series processing capability (of ESN) with the 

advanced learning characteristic of the deep learning models. BGA is another version of 

genetic algorithm optimization methods that can be applied to find the best values of 

architecture hyperparameters of deep learning models, based on binary decoding of his 

chromosoms. In this work, we compared the accuracy and performance of proposed model 

DeepESN-BGA with other deep learning methods. It is found that DeepESN-BGA have a 

fast processing compared with other models. In addition, it gives best results based on 

error metrics, compared with DeepESN without BGA, and other deep learning models, in 

different time horizon forecasting. Proposed model has been compared also with 

DeepESN-DE, DeepESN-GA, and DeepESN-PSO aiming to evaluate the performance of 

BGA in term of deep learning optimization. DeepESN-BGA gives statistically good result 

compared with other hybrid models. 
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1. INTRODUCTION

Energy is part of everyday life. Its role is extremely crucial; 

it is the driving force behind economic activity and personal 

and social development. On the one hand, due to the growth 

of human society with the increase of energy efficiency and 

the use of developed artificial intelligence techniques, on the 

other hand, the growth of population and economy leads to 

high energy consumption, which produces a major challenge 

[1]. Today, the world is facing a major double challenge in the 

field of energy. The first challenge is the lack of safe and 

adequate energy sources and the second is the large-scale 

renewable energy grid-connected power generation may have 

adverse effects on power grids [2]. Energy sectors around the 

world are under huge pressure to assure a stable and reliable 

energy supply. Depending on the data of BP Statistical Review 

of World Energy, in 2018, global primary energy consumption 

knows the biggest growth since 2013 by 2.8% [3]. 

The global transition to a smart grid is justified by the need 

to satisfy the ever-increasing electricity consumption and to 

guarantee the sustainable and secure supply of the power 

system [4]. Smart Grid is based essentially on integration of 

renewable energy sources [5]. In addition, many countries 

have opted for a renewable energy development policy due to 

rising oil prices and global climate change [6]. In these cases, 

forecasting of consumption power and renewable energy 

power production becomes more critical than ever before, in 

managing smart grid systems, which satisfies future 

sustainable needs. Under these circumstances, there are many 

methods for power forecasting, it can be classified to four main 

approaches: Mathematical approaches, machine learning 

approaches, deep learning approaches and hybrid approaches 

[7]. Mathematical technique has been applied in the past to 

predict power time series [8]. This can be classified into two 

categories: persistence model and statistical method. 

Unfortunately, it usually produces forecasts with poor 

accuracy and does not work well with non-linear data as well 

[8]. Because of these limitations, machine learning introduces 

better accuracy and performance, such as the SVM (Support 

Vector Machine) [9], ANN (Artificial Neural Network) [10], 

ELM (Extreme Learning Machine) [11].  

In recent years, The ANN methods are developed, under the 

name of deep learning [12], which are considered complex 

machine learning models with many layers, hyper-parameters 

and algorithms for making a high accuracy and reality. 

Generally, deep learning used for three problems, regression 

(prediction), classification, and clustering [13]. As a result, it 

has many models used depend a nature of problems. RNN 

(Recurrent neuron network) is a famous one for power 

forecasting as a time series data [14, 15], because of his ability 

to memorize information from the previous states [14]. 

Recently RNN has developed in many forms as LSTM (long 

Journal Européen des Systèmes Automatisés 
Vol. 55, No. 6, December, 2022, pp. 701-713 

Journal homepage: http://iieta.org/journals/jesa 

701

https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.550602&domain=pdf


 

short-term memory), GRU (Gate recurrent units), and ESN 

(Echo state network) form to deal with problems such as 

vanishing gradient, exploding gradient, longtime training, and 

optimizing the flexibility of data training [16-18]. Both the 

consumption and production power are generally non-linear, 

volatile and uncertain. In this field, the Echo state Network 

(ESN) is the best due to his ability of modeling such kind of 

time series data [18]. ESN's hidden layer is replaced by a 

dynamic reservoir composed of several weakly connected 

neurons, that should make information processing easier [18]. 

In addition, during the learning process, only the read weights 

are trained on the basis of linear regression (LR) algorithms 

[18]. As a result, ESN has a fast convergence speed and can 

attain the overall optimal solution. In recent years, the 

introduction of many layers frameworks in the RNN has 

attracted much interest [15]. Recently, the Echo state network 

has been developed to have many architectures with additional 

layers and hyper-parameters under the name of DeepESN 

(Deep Echo State Network) [19]. It plays a very powerful 

learning role and in solving difficult time-series problems [19]. 

However, this type of deep learning architecture is typically 

developed by experts through trial and error, which takes a 

long time to obtain precise results [19]. Graphics processing 

unit (GPU) performance has increased significantly in recent 

years, which has led to the widespread use of reinforcement 

learning and evolutionary algorithms to make it possible to 

automate the process of finding the best model structure [20, 

21]. Therefore, the use of a hybrid model combined between 

DeepESN and some optimization model can avoid the trial and 

error procedure and eventually obtain a strong increase in 

model performance. There are several methods to optimize 

forecasting models, generally, they can be classified into two 

big categories: Statistical methods, and Natural-inspired 

algorithms.  

Starting with statistical methods, this kind of optimization 

models have a large bound of utilization in the field of energy 

forecasting, it is used to optimize the fitness function or loss 

function by finding the best hyperparameter or parameter 

values of the prediction model. The following lines show some 

works that used optimization statistical methods. Grid search 

(GS) was applied in [22] by Raviv et al., it is one of the basic 

methods that depend on finding the best values of 

hyperparameters, based on his performance metrics GS shift 

the values into the optimal point that represent optimal 

solution. By the way, in one of our articles [23] we used GS to 

optimize a hybrid model that constitutes from GRU and PCA 

methods to predict Global horizontal irradiations, choosing 

learning rate, bash size, dropout as optimized hyperparameters 

and MSE as loss function, so that gives a great result in term 

of efficiency and performance. Especially for neuron network 

parameters, Gradient Descent (GD) considered a conventional 

optimization algorithm that used to find the best weight values 

by moving to a minimum local point of fitness function. It has 

been reported in the literature that GD outperforms GS in the 

area of finding the best neuron network (Weight) parameters. 

It can be found countless papers that use GD, among them [24] 

written by Amarasinghe et al. Some studies as [25] and [26] 

use cross validation, which is applied mainly in the 

preprocessing of the data for prediction models. Generally, 

this method is applied in parallel to hyperparameters 

optimization, by splitting the datasets into one for training the 

model and different set to test optimized hyperparameters that 

make, to achieve the best one on a dataset. This method has 

many types including: K-fold cross-validation, leave p out 

cross-validation, hold-cross validation [27]. The community 

of researchers in the filed developing optimization methods 

applied other form of statistical and probabilistic methods in 

their works, which are named the family of Bayesian 

optimization. It is based on probabilistic equation to achieve 

the best objective function. Among the works that use these 

methods we found in Refs. [28, 29]. In this term, these papers 

find that Bayesian methods outperforms GS and CV methods. 

Nevertheless has a limitation, represented in that the 

covariance function parameters the must be tuned, which make 

the competition more complex [30]. There are also others 

statistical optimization approaches that are used in filed of 

energy forecasting as Quasi Newton Method which used by 

conzaleg et al. to optimize the weight in ARMAX model for 

time series forecasting [31]. Dynamic Integrated Forecast 

System Dicast applied by Sulaiman et al. [32]. Levenberg 

Marquardt used in [33] to optimize Self-recurrent wavelet NN 

(SRWNN) for short term load forecasting. Excavated 

association rules used in [34] for RBFNN hyperparameters 

optimization. Non-homogeneous poison process (NHPP) used 

by Yue et al. [35] and Altering Direction of Multiplier method 

used by Yu et al. [36].  

In the field of energy forecasting, the natural-inspired 

algorithms have a big attraction by researchers and developers, 

e.g. for achieving a good efficient energy management, the 

paper [37] targets energy generation forecasting from 

renewable sources by using ANN model optimized by 

differential evolution (DE), which can deal with multiple 

hyperparameters of forecasting model. DE can be considered 

as a technique for the global optimization of nonlinear and 

non-differentiable continuous space functions or objective 

function. In literature, genetic algorithm (GA) used in many 

works related to prediction models situation. E.g. in [38], 

which used it to optimize hyper-parameters and parameters of 

Deep learning model with stacked auto-encoders aiming to 

forecast wind power. Moreover, GA was used in one of our 

works [39], with other form which is Binary GA (BGA), this 

version shows great result in term of architecture 

hyperparameters (i.e. number of units and number of layers) 

optimization of deep learning models (i.e. Simple RNN, 

LSTM, GRU). GA can be found also in another form, which 

named micro genetic algorithms (MGA), among the papers 

that used this method, we found [40], so that it was applied as 

an optimizer of weight of relevant vector machines, to predict 

electricity price. One of the most famous optimization 

algorithms is told Particle swarm optimization (PSO) that is 

used to look for the maximum or minimum of a function 

defined on a multidimensional vector space, which represent 

hyperparameters bound values. Raza et al. in [41] used both 

the gradient learning techniques and PSO to optimize the 

parameters of neuron networks as Feed forward neuron 

network (FFNN), back propagation neuron network (BPNN) 

to predict electricity load demand and he found that the 

gradient learning has a poor convergence performance, 

leading to inefficient model training. On the other hand, PSO 

address the optimization with height performance leading to 

obtain the best forecasting model. There are also many other 

natural inspired algorithms as Cuckoo Search Algorithms 

(CSA) using by Xiao et al. to optimize the coefficient weight 

of NN models [42], Modified firefly algorithm (MFA) which 

was used in many works, among them [43], which hybridize 

SVR with MFA to achieve better short-term load forecasting. 

Quasi oppositional artificial Bee colony optimization 

(QOABCO), which has a great impact to the forecasting model 
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for electricity price and load, in the published work of 

Shayeghi et al. [44]. Novel shark search algorithm (NSSA) 

which is can be found in work [45], that represent an improved 

Elman NN by using (NSSA) to predict short-term load 

electricity. The family of meta-heuristic algorithms also 

applied in some works, as can be found in paper of Artich of 

Chou and Ngo [46], which used a hybrid version of ARMA 

and SVR model tuned using one of meta-heuristic methods. 

This family of methods can be seen also in [47], so that the 

authors here proposed an LSTM model aiming to forecast 

electricity price and demand, some hyperparameters of this 

model optimized using jaya optimization algorithm which is 

considered as one of the meta heuristic optimization family. 

Final natural inspired algorithm optimization method in our 

review is the Improved Environment Adaption Algorithm, 

which is applied by Singh et al. in his work [48], his 

application targets to tune the weights and the 

hyperparameters of ANN model, as a result giving to the 

model more precision and capability to overcome the over and 

under fitting issues. All of these methods can give relatively a 

pretty good result, by achieving the optimal values of certain 

parameters and hyperparmeters of Deep learning model. 

However, in the field of deep learning architecture 

optimization PSO, GA and DE are the most used. To 

summarize this related works, it is found that the PSO is the 

best one in term of accuracy compared with others but is 

suffering from low speed of computing. In addition, it is found 

that the GA achieves good fitness function value compared 

with DE. The BGA has significant optimization in this field 

and better in term of computing processing speed than simple 

GA.  

In general, the hyperparameters can be divided into two 

categories training hyperparameters and architecture 

hyperparmeters [49]. The training hyperparameters are the 

variables which deal with how deep learning is trained (e.g. 

learning rate and bash size in RNN) or (e.g. Leaking rate and 

spectral radius in ESN). While the architecture hyperparmeters 

indicate the structure of network of deep learning. The BGA 

will be used in this work to select the best architecture of 

DeepESN by finding the adequate number of deep ESN units 

(neurons) and hidden layers, as result improving performance 

of DeepESN. In this study, a presentation of theoretical basis 

of ESN and DeepESN and there Architectural and learning 

hyperparameters will be presented, including different 

advantage of DeepESN compared with ESN in term of 

minimizing forecasting error and their ability to deal with long 

time series data as consumption power. This work also will 

show the capability of BGA to find best values of architectures 

hyperparameters. So that will be compared with other 

optimization algorithm as simple GA, PSO and DE. In 

addition, this paper gives a comparison of different hybrid 

deep learning models i.e. RNN-BGA, LSTM-BGA, GRU-

BGA, ESN-BGA with DeepESN-BGA. The comparison of 

results will be based on MSE, RMSE and MAE as evaluation 

metrics to get the best model in term of accuracy, and it will 

base on computation time to compare the processing duration 

of different models. 

In general, the motivations of this work are based in first on 

the optimisation of the architectural part of the DeepESN using 

binary genetic algorithms that can improve the prediction of 

the energy consumption by the deep learning mode. Testing 

the proposed model in the prediction of different cases of 

short-term time horizons. Achieving the best time computation 

with high accuracy and performance in different short 

horizons. Finally, finding the best way to deal with 

architectural hyperparameters of DeepESN, by testing 

different optimization models. The contribution of this study 

can be identified as follows:  

• To the best of our knowledge, there is no work has 

optimized the architected hyperparameters of DeepESN by 

using our proposed model can improve the prediction 

operation of deep learning.  

• The prediction in this work has been used for 

different time horizon (1 min, 5min, 10 min, 20 min) aiming 

to evaluate the model in different case of short-term prediction.  

• A comparison between different deep learning 

models and DeepESN-BGA, in term of accuracy and time 

computation, DeepESN has been shown great outperformance 

in this field.  

• A comparison between hybrid DeepESN-BGA and 

other hybrid models i.e. DeepESN-GA, DeepESN-PSO, 

DeepESN-DE. This comparison is the first one for 

consumption power forecasting. BGA has been given optimal 

values of architecture hyperparameters (i.e. number of units of 

each layer, number of layers).  

This paper is organized as follows: Section 2 general 

description of the data used for forecasting. Sections 3 for 

descriptions of GA and BGA and their proprieties. Sections 4 

describe the basic ESN. Section 5 for proposed Deep ESN and 

their advantage respectively. Section 6 introduces the 

experimental models used and his application. Section 7 shows 

the representation of the results and the discussions. Finally, 

Section 8 for conclusions and summarizes the directions for 

future research. 

 

 

2. DATA DESCRIPTION  

 

Generally, there are four kinds of time horizon prediction, 

very short term, short term, medium term, and long time. Each 

of time horizon types has specific applications in smart grid. 

Very short term forecasting gives the prediction from 1 second 

to 30 minutes time range, it applied for power smoothers and 

the stability and regulation of grid systems. Short term 

forecasting has a time step of 1 h to 1 days, it is used for 

economic dispatch and unit commitment. Medium term 

concentrates on range of some weeks, this forecasting used for 

maintenance scheduling. Finally, long term forecasting uses 

the range of months or years, it is applied for systems planning 

[50]. 

In this study, the data represents 1 min time step of 

multivariate data of active power consumption, this data are 

taken from a Households in Sceaux (7km of Paris, France) 

during 1 years. Which have 7 variables represent: Global 

active household power consumption (KW), the overall 

reactive power required by the household (KW), Means 

voltage (volts), Average current intensity (amps), 𝐸𝑎1, which 

is sub-measure of active energy for the kitchen (Wh), 𝐸𝑎2, 

which is Sub-measure of active energy for laundry (Wh), and 

𝐸𝑎3, which is Sub-measure of active energy for climate 

control systems (Wh), all of this data represented in Figure 1. 

To obtain greater precision, the rest of active energy sub-

measure 𝐸𝑎4, is included by using this equation.  

 

𝐸𝑎4 = (𝑃𝑎 × 1000⁄60) − (𝐸𝑎1 + 𝐸𝑎2 + 𝐸𝑎3) (1) 
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Figure 1. Model input variables according to the global 

active power 

3. BINARY GENETIC ALGORITHM

3.1 Genetic algorithm 

Nature has always been a great source of inspiration for all 

humankind. Genetic Algorithms (GA) are search algorithms 

based on the concepts of natural selection and genetics. GAs 

are a subset of a much larger branch of computing known as 

evolutionary computing. It is frequently used to solve 

optimization problems in research, specifically, in the task of 

parameters of machine learning and deep learning [51]. The 

GA process is divided into two parts: 

• Identify the appropriate chromosomal encoding to be used

as solutions or parameters to be tested. 

• Determine the fitness function to be used to test the

solutions obtained from the GA to determine if they are 

suitable to be used as next-generation solutions. 

Genetic algorithms are carried out in different steps as 

shown in Figure 2 above. Firstly, it is important to initialize a 

population, which is a group of individuals who can solve the 

problem in question. An individual is characterized by a set of 

factors called genes and when these genes are linked together, 

they are called a chromosome and a group of chromosomes 

makes a population. After selection of the population, test the 

solutions got from GA whether it is appropriate to be used as 

a next generation solution or not by using fitness functions. In 

this study, Fitness Function is Mean Square Error (MSE).  

The operation of mating the individuals makes a new 

solution from the old solutions, this operation named crossover, 

allowing the algorithms to have many solutions and to select 

the best of them. After this, mutation step, that gives to the 

solutions more variety, which can support the algorithms to be 

unpredictable and to be not blocked in an unending loop of 

selections or crossovers. 

3.2 Binary genetic algorithm 

Binary GA, is another version of GA, this version steal has 

the same algorithm method. The difference here in 

representation of individuals which are the solution of fitness 

function, so that it be initialized as binary number, to present 

a binary chromosomes of gens of 1 or 0, then BGA try to 

assemble these chromosomes to create a population of binary 

number. The fitness function is represented in function of  

chromosome. After selection of the population, test the 

solutions got from BGA whether it is appropriate to be used as 

a next generation solution or not by using fitness functions. 

The description of each step of the mechanism of BGA is 

presented as follow:  

Figure 2. Flowchart of genetic algorithm 

Firstly, it is important to define the fitness function which is 

minimized, the variables which represent in this work the 

architecture hyperparameters of the deep learning model, and 

all parameters related with BGA as number of bites per gen, 

population size, mutation rate, selection process, mating 

process, and convergence condition. Secondly, it must 

initialize population, according to the number of 

hyperparameters and the population size. Thirdly, the 

population, including the chromosome is decoded to produce 

a solution space of variables. Then, the fitness function of each 
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chromosome is calculated and listed, aiming to minimize them. 

Additionally, the operation of natural selection is operated in 

the process, the BGA here create what is named offspring in 

each generation by making the selection of linked 

chromosomes, this operation based on selecting a set of fittest 

chromosomes from which the parent will be chosen, and all 

relative chromosomes are thrown and be substituted by 

produced offspring. Once the natural selection is finished, the 

mating step start. Generally, three approaches can be used to 

perform the mating: single point crossover, double point 

crossover and uniform crossover. In the first one, a random 

selecting of a crossover point between the first and last bit of 

the chromosomes by swapping the bites. In the second one, 

here the exchange of the chromosomes bites is existing 

between two crossover points. In the third one, the gens here 

are chosen arbitrary, based on one of the relative genes of the 

parent chromosomes. After the production of offspring, the 

mutation happens, that enable the BGA to give populations 

new information, in the case of less efficiency of population in 

term of cost, this population will be rejected during the next 

iteration. In this term, the mutation rate indicates the number 

of bits is mutated in the population. Finally, the Algorithm 

verifies whether all the given convergence condition is met. If 

they are met, the operation stops by achieving the most likely 

variables that can minimize the fitness function. If it is not, the 

iteration of several generations is activated by an algorithm, 

which repeats all of his process, including decoding, cost 

computation, mating and mutation.  

 

 

4. ECHO STATE NETWORK  

 

 
 

Figure 3. Simple ESN architecture 

 

ESN represents one model from models of reservoir 

computing methods [52], with the strong simplification of his 

architecture as shown in Figure 3, it has a reservoir instead of 

hidden layer that make him offers a wide range of dynamic 

features. Among deference characteristics, it has capability to 

deal with nonlinear time series data very simply tanks of fully 

connected recurrent or simple units in his reservoir. These 

units are interlinked to achieve a high treatment efficiency and, 

accordingly, obtain good forecasts [19]. Typically, there are 

three kinds of neuron in ESN distributed such as this: 

𝑁𝑖  neurons of input layer that represent the variable input, 

𝑁𝑟 neurons in reservoir layer shall be responsible for setting 

up inside information, and 𝑁𝑜  neurons in output layer which 

has forecasting data. Considering In time step 𝑗 , the Eqns. (2), 

(3) and (4) are respectively the input, hidden and output array 

of ESN represented as follows:  

 

𝑈(𝑗) = [𝑈1(𝑗), 𝑈2(𝑗), 𝑈3(𝑗), ⋯ , 𝑈𝑘(𝑗)]𝑇 (2) 

 

𝑋(𝑗) = [𝑋1(𝑗), 𝑋2(𝑗), 𝑋2(𝑗), ⋯ , 𝑋𝑛(𝑗)]𝑇 (3) 

 

𝑌(𝑗) = [𝑌1(𝑗), 𝑌2(𝑗), 𝑌2(𝑗), ⋯ , 𝑌𝑜(𝑗)]𝑇 (4) 

 

In ESN the reservoir and output states are adjusted under 

treatment by using Eqns. (5) and (6). As shown Figure 3, ESN 

architecture has four weight matrices, represents 𝑤𝑖𝑛  , that link 

the input and reservoir neurons, 𝑤  for weighting the 

connection between reservoir units, 𝑤𝑏𝑎𝑐𝑘 is a weight between 

output and reservoir, and 𝑤𝑜𝑢𝑡  in order to weight the 

connection of the reservoir units and output units.  

 

𝑋(𝑗 + 1) = 𝐹(𝑤𝑖𝑛𝑈(𝑗 + 1) + 𝑤𝑋(𝑗) + 𝑤𝑏𝑎𝑐𝑘𝑌(𝑗)) (5) 

 

𝑌(𝑗 + 1) = 𝐺(𝑤𝑜𝑢𝑡𝑋(𝑗 + 1)) (6) 

 

With F and G are the activation functions of the output and 

reservoir layers respectively. Depending on the characteristics 

of the data, these functions may be linear or non-linear. The 

choose of 𝑤𝑖𝑛 , 𝑤 and 𝑤𝑏𝑎𝑐𝑘  is random in the beginning, then 

remain the same [53, 54]. 

Generally, the principal hyperparmeters in ESN, are the 

spectral radius 𝜌, the LR algorithms, the connectivity rate, and 

the reservoir scale N. The connectivity rate α , which is 

showing the links of neurons inside the reservoirs. α can deal 

with sparsely or densely connecting of weights, as a result 

obtain a good reservoir reliability. In general, with reference 

to review of experience, α is chosen between 1%-5% [55]. The 

reservoir scale N, is a significant hyperparameter related to the 

total number of internal weights in the reservoir ( N2 ). In 

general, N is linked to the level of complexity of the task and 

the sample size of the training. Same studies illustrate that the 

best values that can be chosen are between [ 
T

10
, 

T 

2
], with T is 

the training samples size [55]. 

 

 

5. DEEP ECHO STATE NETWORK  
 

5.1 Architecture and algorithm of DeepESN 

 

 
 

Figure 4. DeepESN architecture 

 

DeepESN model is a new extended model of ESN, the most 

important character of DeepESN is the stacked hierarchy of 

reservoirs it could be has many reservoir layers as shown in 

Figure 4. The input of the first reservoir layer in each step 𝑗 is 

equal to the outside input directly, while the previous layer 

output fed another reservoir layer. In order to make it more 

convenient, reservoir layers have identical number of 

neurons  𝑁𝑟 . Moreover, 𝑁𝑙  indicate the total number of 

reservoir layers, and the 𝑋[𝑁𝑙](𝑗)  gives the states of the 

705



 

reservoir layer at time j, the reservoir states of the first layer 

and those layers at levels higher than 1 are updated with Eqns. 

(7) and (8) respectively: 

 

𝑋(𝑗)
[1]

 =F (𝑤𝑖𝑛 × 𝑈(𝑗) + �̃�(1) ×  𝑋[1](𝑗 − 1)) (7) 

 

𝑋(𝑗)
[𝑙]

=F (𝑤(𝑙) ×  𝑋[𝑙−1](𝑗) + �̃�(𝑙) ×  𝑋[𝑙](𝑗 − 1)) (8) 

 

𝐹 = [𝐹(1), 𝐹(2) ⋯ 𝐹(𝑁𝑙)] (9) 

 

𝐹(𝑙)(𝑙 = 1,2,3 … . , 𝑁𝑙) (10) 

 

With 𝑙 = 1,2,3 … . , 𝑁𝑙, illustrate the evolution of reservoir 

states at layer l, assuming that F represents the function of 

activation for reservoir states in each layer (Eqns. 9 and 10). 

DeepESN have weights metric as ESN model, in addition to 

𝑤(𝑙)  matrix, which describe the relation between 𝑁𝑙 × 𝑁𝑙  

represent the internal recurrent weights for layer l, and �̃�(𝑙) the 

inter-layer connection weights from layer 1 to layer 𝑁𝑙 , 

accordingly. 

In ESN, each of the 𝑤𝑖𝑛 and 𝑤𝑏𝑎𝑐𝑘  is created at random 

according to a uniform distribution from the range [0, 1] and 

maintained throughout all phases of training, the same things 

for 𝑤𝑖𝑛  and 𝑤(𝑙) of DeepESN model. The 𝑤 of ESN, and �̃�(𝑙) 

of DeepESN are a scattered matrix initiated randomly, and 

they are scaled by using the relation as 
𝜌×𝑤

|𝛾𝑚𝑎𝑥|
 or 

𝜌(𝑙)×�̃�(𝑙)

|𝛾(𝑙)
𝑚𝑎𝑥|

. With 

|𝛾𝑚𝑎𝑥| or |𝛾(𝑙)
𝑚𝑎𝑥

| represent the spectral radius which is 

means the highest absolute intrinsic value of 𝑤, and 𝜌 or 𝜌(𝑙) 

is a hyperparametres of setting the spectral radius [56], 

with 𝑙 = 1,2,3 … . , 𝑁𝑙. In order to enable the current internal 

states of the reservoir are simply associated with the input 

history over a few iterations, the spectral radius 𝜌 has to be 

less than 1 [19, 55]. Within the learning procedure, only 

the 𝑤𝑜𝑢𝑡  has to be trained based on the LR algorithms, which 

allows for highly successful learning [56].  

 

 
 

Figure 5. Flowchart of DeepESN method 

 

As ESN model hyperparameters, the DeepESN has LR, 

connectivity rate α, spectral radius ρ, and instead of N, it has 

the reservoir scale 𝑁𝑟 in each reservoir. In addition, of these 

hyperparametres, the number of stacked reservoir layers 𝑁𝑙 is 

very important in DeepESN. For the calculation of output, 

Figure 3 illustrates how the state-output connected. The global 

stat is showed in Eq. (11), then it updates in Eq. (13). The 

relation between reservoirs and output layer are weighted by 

using 𝑤𝑜𝑢𝑡of 𝑁𝑜 ∗ ( 𝑁𝑟 ∗ 𝑁𝑙). By using this connection state-

output method, the playback component can attribute various 

weights to the dynamics supplied by each layer [57]. The 

output function is applied for collecting the complete state I of 

(𝐽 − 𝐽0 + 1) × (𝑁𝑟 ∗ 𝑁𝑙) and the target vector T of (𝐽 − 𝐽0 +
1) ∗ 𝑁𝑜 , with the 𝐽0  is the washout time step, based on 

condition of  𝐽0 ≤ 𝐽 , after this compute the weights of the 

output based on this Eq. (12). Figure 5, represent the different 

steps of DeepESN methods functionality.  

 

𝑋(𝑗) = [𝑋(𝑗)
(1)

, 𝑋(𝑗)
(2)

, … , 𝑋(𝑗)

(𝑁𝑙)
] (11) 

 

𝑤𝑜𝑢𝑡 = (𝐼−1 ∗ 𝑇)𝑡 (12) 

 

𝑌(𝑗) = 𝑤𝑜𝑢𝑡 ∗ 𝑋(𝑗) (13) 

 

5.2 Advantages of DeepESN  

 

DeepESN have three advantages in comparison with simple 

ESN, among them: 

 DeepESN has more wealthy layer states, which gives him 

specific characteristics of a dynamic system elaborated in 

different reservoirs. This feature approved in the result of an 

experience in [58]. Some other works in the field of 

dynamical system theory illustrate that the dynamics of 

reservoirs state change in relation with their contractility 

[59].  

 DeepESN has a very powerful short-term memory capacity 

(STMC). Considering that the STMC is applied for knowing 

the ability to recall the last input based on present states [58]. 

According to some work as [60], the DeepESN is better than 

simple ESN in STMC, in case of the same number of 

recurrent neurons.  

 DeepESN has a great calculating ability, due to the removed 

of connections from the input layers to the reservoir layers 

higher than one and the connection between the grater and 

lower reservoir layers. That allows to minimize the number 

of non-zero recurring links [61, 62]. In addition, In the case 

of the overall number of recurrent neurons is 𝑁𝑟 ∗ 𝑁𝑙  , the 

updating of each state for DeepESN are 𝐿(𝑁𝑙 ∗ 𝑁𝑟
2) , but for 

ESN are 𝐿(𝑁𝑙
2 ∗ 𝑁𝑟

2) [63]. As a result, clearly, the loss of 

DeepESN is less in comparison to ESN. 

This work aims to apply the advantage of DeepESN to deal 

with energy consumption prediction problems.  

 

 

6. APPLICATION  

 

 
 

Figure 6. Flowchart of proposed model 
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In this study, the model of DeepESN has been developed 

using the Python framework created by C. Gallicchio [61] in 

2018, named DeepESN framework. For using the BGA, this 

work based on Distributed Evolutionary Python (DEAP) 

library [63]. For the comparative prediction models, Keras has 

been used as a deep learning framework. The framework, 

which is used for other comparative optimization methods is 

mealy, it has many natural-inspired algorithms that can be 

applied to Deep learning models. All of these frameworks 

support the CPU and GPU hardware. It is found that the 

implementation of the proposed model is not expensive, and 

the requirements can be met with similar or more powerful 

hardware. The data in this study are normalized between 0 and 

1, then they splatted into 60% for training, 20% for validation 

and 20% for testing.

Table 1. The hyperparameters values of prediction models 

MLP RNN LSTM GRU ESN DeepESN DeepESN-PSO DeepESN-DE DeepESN-GA DeepESN-BGA 

𝑵𝒊 8 8 8 8 8 8 8 8 8 8 

𝑵𝒓 20 18 17 17 20 20 [10,60] [10,60] [10,60] [10,60] 

𝑵𝒍 3 2 2 2 1 3 [2,10] [2,10] [2,10] [2,10] 

𝑳𝑹 0.001 0.01 0.01 0.01 - - - - - - 

𝑩𝑺 128 128 128 128 - - - - - - 

𝜶 - - - - 0.05 0.03 0.03 0.03 0.03 0.03 

𝝆 - - - - 0.98 0.97 0.97 0.97 0.97 0.97 

F Tanh Tanh Tanh Tanh Tanh Tanh Tanh Tanh Tanh Tanh 

G Relu Relu Relu Relu Relu Relu Relu Relu Relu Relu 

Epoches 40 30 30 30 - - - - - - 

Dropout 0.1 0.1 0.1 0.1 - - - - - - 

To obtain the adequate number of units and the number of 

layers (Figure 6). Firstly, the solutions of BGA initialized 

randomly, by decoding them from a binary array into decimal 

form. In order to optimize DeepESN, first the genetic 

algorithm will randomly initialize the values of a 10-bit binary 

array by using random Bernoulli distribution, corresponding 

to 4 bits for the number of layers and 6 bits for the number of 

units. Based on these values, the DeepESN trained given the 

Fitness function of the solutions in a current generation, in this 

phase, validation datasets used as input to forecast the active 

power of households. Then, the random Bernoulli distribution 

is equally applied for the random initialization of crossover, 

mutation and selection. In the end, the model that generates the 

minimum value of the fitness function, i.e. the one that 

provides the best numbers of layers and units, will be applied 

in the training and testing process, given the forecasting values. 

The values of optimization hyperparameters for DeepESN and 

ESN are selected by using the Trial and error method, 

including Spectral radius, and connectivity rate 𝜶 . The 

activation function of the model is Tanh as hidden layers 

function, and Relu in output, all these parameters illustrate 

Table 1. Proposed model has been compared also with 

DeepESN-PSO, DeepESN-DE, DeepESN-GA, to evaluate the 

ability of BGA in term of optimizing architecture 

hyperparameters. The parameters of BGA and GA, which are 

chosen in this work, 3 for Generation number (GN), 10 for 

Genes size (Gs), and 4 as a populations size (PS). PSO tuned 

by using PS, local coefficient (LC), global coefficient (GC), 

weight minimum of bird (WBmin) and maximum of bird 

(WBmax). DE parameterized by using weighting factor (WF) 

and crossover rate (CR) in addition to PS. All parameter values 

of optimization methods (BGA, GA, DE, PSO) parameters are 

illustrate in Table 2. DeepESN-BGA also has been compared 

with other deep learning model, which are RNN, LSTM, GRU, 

MLP, ESN, and DeepESN without BGA, aiming to approve 

the efficiency and the performance of proposed model. The 

hyperparameters (bash size (BS), learning rate (LR)) of 

comparative models are selected by trial and error methods, 

the values of these hyperparmeters in addition of activation 

functions are illustrate also in Table 1. To evaluate the 

accuracy of the proposed model, it is important to use metric 

errors, in this work, root mean square error (RMSE), mean 

square error (MSE), and mean absolute error (MAE). The 

formulas of these metrics are shown in Eqns. (14), (15), and 

(16) 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑(𝑌𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡) − 𝑌𝑡𝑟𝑢𝑒(𝑡))2

𝑁

𝑖=1

(14) 

𝑀𝐴𝐸 =
1

𝑚
∑|𝑌𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡) − 𝑌𝑡𝑟𝑢𝑒(𝑡)| 

𝑁

𝑖=1

(15) 

𝑀𝑆𝐸 =
1

𝑚
∑(𝑌𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡) − 𝑌𝑡𝑟𝑢𝑒(𝑡))2

𝑁

𝑖=1

(16) 

With m is the number of samples, 𝑌𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (𝑡) is the output

of the prediction models at time t, and 𝑌𝑡𝑟𝑢𝑒(𝑡) is the actual

values at time t. 

Table 2. The values of optimization algorithms parameters 

Method Parameters Values 

PSO 

PS 10 

LC 2.05 

GC 2.05 

WBmin 0.4 

WBmax 0.9 

DE 

PS 10 

WF 0.8 

CR 0.9 

GA 

PS 10 

GN 3 

Gs 10 

CR 0.7 

MR 0.03 

BGA 

PS 4 

GN 3 

Gs 10 

CR 0.7 

MR 0.03 
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7. RESULTS AND DISCUTION  

 

The result of this work, for four time horizons prediction (1 

min, 5 min, 20 min, 30 min) are presented in Figures 7, 8, 9, 

and 10. In addition, the values of evaluation metrics error 

according to different time horizon prediction illustrated in 

Tables 4 and 5. Based on his ability to select the best 

architectures hyperparameters (Table 3), DeepESN-BGA has 

very interesting accuracy in term of RMSE, MSE, and MAE 

compared with other models based on Table 4. From the same 

table, it can be seen that DeepESN predict better than ESN 

based on two errors metrics. In comparison, between 

Reservoirs computing methods and RNN methods, the results 

of LSTM, GRU, and simple RNN have a larger error than ESN 

and DeepESN, in very short term horizon (1 min, and 5 min), 

that because the characteristics of dealing with non-linearity in 

RC-RNN, and his sophistical algorithms. The poor results in 

term of performance are of MLP, due to his architecture, 

which did not have memory capacity. In terms of forecasting 

horizon, the accuracy reduces according to the augmentation 

of time horizon values as it illustrated in Table 5. Regarding to 

the training performance of the models, it can be seen in Figure 

11 that ESN and DeepESN trained faster than RNN, LSTM, 

GRU and MLP, thanks to his specific architecture, which 

allows the computation more flexible. In addition, DeepESN-

BGA has also a good time for processing compared with 

LSTM and GRU, according to the illustrated results in Figure 

11.  

 

Table 3. The best values of architecture hyperparameters of 

DeepESN chosen based optimization algorithms 

 
 Time-horizon Nl Nn 

DeepESN-PSO 

1 min 5 47 

5 min 8 49 

20 min 9 50 

30 min 10 50 

DeepESN-GA 

1 min 7 47 

5 min 8 44 

20 min 7 44 

30 min 9 45 

DeepESN-DE 

1 min 7 30 

5 min 5 30 

20 min 6 38 

30 min 10 55 

DeepESN-BGA 

1 min 6 20 

5 min 5 25 

20 min 8 30 

30 min 8 32 

 

Table 4. The results of the prediction models in each time horizon 
 

 Time horizon ESN DeepESN LSTM GRU RNN MLP DeepESN-BGA 

MSE 

1 min 

5 min 

20 min 

30 min 

0.00062 

0.0023 

0.00498 

0.00591 

0.000684 

0.002329 

0.00494 

0.005804 

0.000596 

0.00214 

0.004709 

0.00556 

0.00062 

0.00210 

0.004621 

0.005542 

0.000653 

0.00226 

0.00485 

0.005702 

0.000632 

0.00228 

0.00486 

0.005705 

0.000558 

0.002206 

0.004841 

0.005714 

MAE 

1 min 

5 min 

20 min 

30 min 

0.01135 

0.0259 

0.0422 

0.04853 

0.01238 

0.02511 

0.042061 

0.047844 

0.01028 

0.02331 

0.04015 

0.04698 

0.01111 

0.02272 

0.03969 

0.04696 

0.01226 

0.0236 

0.04036 

0.04638 

0.0113 

0.02396 

0.0403 

0.04655 

0.00941 

0.024071 

0.041913 

0.047344 

RMSE 

1 min 

5 min 

20 min 

30 min 

0.02507 

0.0498 

0.07057 

0.07692 

0.02616 

0.04809 

0.0703 

0.07618 

0.02441 

0.04635 

0.0686 

0.074592 

0.02523 

0.04587 

0.067978 

0.07445 

0.02556 

0.047564 

0.069669 

0.075516 

0.02515 

0.04782 

0.0697 

0.075535 

0.02363 

0.04697 

0.06958 

0.07559 
 

Table 5. The results of optimized model's prediction in each time horizon 
 

 Time horizon DeepESN-PSO DeepESN-DE DeepESN-GA DeepESN-BGA 

MSE 

1 min 

5 min 

20 min 

30 min 

0.000553 

0.002201 

0.004831 

0.005705 

0.00057 

0.00241 

0.00499 

0.00619 

0.00056 

0.00235 

0.00489 

0.00614 

0.000558 

0.002206 

0.004841 

0.005714 

MAE 

1 min 

5 min 

20 min 

30 min 

0.00932 

0.02403 

0.04182 

0.04721 

0.00948 

0.02419 

0.04923 

0.04736 

0.00946 

0.02408 

0.04191 

0.04734 

0.00941 

0.02407 

0.04191 

0.04734 

RMSE 

1 min 

5 min 

20 min 

30 min 

0.02361 

0.04692 

0.06949 

0.07545 

0.02371 

0.04699 

0.06961 

0.07562 

0.02365 

0.046 

0.06958 

0.07559 

0.02363 

0.04697 

0.06958 

0.07559 

 

In term of optimization algorithms comparison, it can be 

seen that the values of hyperparameters are selected optimally 

to find the minimum fitness function by using BGA. It 

outperforms some comparative methods (GA and DE) based 

on their accuracies as it can be illustrated in Figures 11, 12, 13, 

14 and Table 5. DeepESN-PSO has achieve good results 

especially in long term forecasting. However, PSO takes a 

long time in processing to select the best hyperparameters 

values. 

Figure 15 and 16 shows the time processing of each 

prediction model. As can be seen in Figure 15, the fastest 

model in terms of computation time is the ESN, while the 

slowest is the GRU. The proposed model, even when coupled 

with a BGA, is still better than GRU, LSTM and RNN. In 

Figure 16, hybridization with BGA outperforms that with 

other optimization models. Due to his binary characteristic 

BGA that lead to achieve best solution rapidly compared with 

others. These results indicate that the proposed model 
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statistically has very interesting results, which make it a 

powerful method in the field of short-term power prediction. 

 
 

Figure 7. The comparison between prediction methods and 

true values for 1 min time horizon 

 

 
 

Figure 8. The comparison between prediction methods and 

true values for 5 min time horizon 

 

 
 

Figure 9. The comparison between prediction methods and 

true values for 20 min time horizon 
 

 
 

Figure 10. The comparison between prediction methods and 

true values for 30 min time horizon 

 

 
 

Figure 11. The comparison between optimized Deep-ESNs 

and true values for 1 min time horizon 

 

 
 

Figure 12. The comparison between optimized Deep-ESNs 

and true values for 5 min time horizon 

 

 

8. CONCLUSIONS 

 
A new combination between DeepESN and BGA are 

developed in this work, for obtaining an enhanced 

optimization models to predict a multi time horizon of 

household consumption in Paris, based on multivariate input. 

The performance of our proposed model is validated by 

analyzing the result of best hyperparameters using BGA, and 

comparing the accuracy and time training of different deep 

learning models. By combining DeepESN with BGA, the 

709



proposed method contains three advantages: Firstly, the 

property of basic ESN, which can deal properly with 

nonlinearity of time series, secondly the strong efficiency of 

deep learning computation, thirdly the ability to select the best 

and adequate architecture hyperparameters of the model. In all 

time horizons, the DeepESN-BGA has an excellent result in 

terms of accuracy compared to GRU, LSTM, RNN, MLP, 

ESN and DeepESN models. In addition, proposed model 

outperforms some of hybrid model as DeepESN-GA and 

DeepESN-DE in term of accuracy, especially in short term 

forecasting, by selecting best architecture hyperparameters. It 

can be seen also that the DeepESN-PSO predict better than 

proposed model in difference time horizon, but its processing 

takes a long time to find the best values of the hyperparameters. 

In the other hand, BGA has the fast computing processing 

compared with PSO, GA, and DE. With respect to all these 

results, DeepESN-BGA models achieved a high level of 

energy consumption forecasting in different time horizons, 

especially in the very short term. In addition, the combination 

of DeepESN and BGA is used for the first time in the literature. 

This gives it a new contribution in the field of deep learning 

prediction. Specifically, it is a new method to predict 

consumption energy for smart grid application.  

In future work, the proposed models can be used for the 

prediction of energy production, and consumption price, and 

then this prediction will be used to manage the operation of the 

micro-grid in real time, by implementing the prediction model 

in hardware-embedded systems. 

Figure 13. The comparison between optimized Deep-ESNs 

and true values for 20 min time horizon 

Figure 14. The comparison between optimized Deep-ESNs 

and true values for 30 min time horizon 

Figure 15. Processing time of different prediction models 

Figure 16. Processing time of different optimized prediction 

models 
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