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Patients in randomized controlled trials (RCTs) must be successfully randomized to reduce 

or eliminate bias. Because pre-treatment symptoms have prognostic significance in cancer 

patients, qualitative and quantitative tools were developed to assess similarity of baseline 

pre-treatment symptoms across different treatment arms of RCTs as one measure of 

randomization success. Clinician-reported symptom data from two colorectal cancer RCTs, 

CO.20 and CO.17, were used to demonstrate the utility of a qualitative visualization tool 

and quantitative machine learning K-means tool, which grouped patients into clusters using 

baseline symptoms. Qualitatively, reflection bar graphs (RBGs) visualized potential 

imbalances in baseline symptoms (i) across treatment arms and (ii) by corresponding patient 

clusters identified within each treatment arm. RBGs found that the treatment arms for both 

RCTs had similar symptom profiles, while the lack of significant differences in the 

proportions of patients in each cluster across treatment arms further confirmed successful 

randomization. This paper details the creation of visualization, machine-learning, and 

statistical tools to compare baseline symptoms across RCT treatment arms, demonstrating 

that the CO.20 and CO.17 trials were successfully randomized by baseline symptoms and 

are comparable. These tools can therefore be implemented easily to ensure an extra layer 

of quality assurance of the randomization process for study assessment. 
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1. INTRODUCTION

Randomized controlled trials (RCTs) provide one of the 

highest levels of evidence for evaluating the treatment efficacy 

of interventions in clinical research [1-10]. Adequate 

randomization minimizes selection bias, ensuring that 

outcomes are truly attributable to the intervention, rather than 

confounding factors [2-6]. Randomization ensures the 

formation of comparable and balanced intervention groups, 

equivalent in all known and unknown variables, except by 

chance [3-5]. Successful randomization is essential, as 

baseline imbalances of prognostic factors can significantly 

compromise the validity of study results [2-5, 7]. 

Success of patient randomization is often assessed by 

comparing baseline characteristics across treatment arms, as 

randomization itself does not always produce groups that are 

similar in all prognostic factors [2-5, 7, 8]. In practice, a given 

RCT can have one or more characteristics that are significantly 

different across treatment arms, especially in smaller sized 

studies [4, 6]. 

Assessment of baseline characteristics can identify latent 

imbalances in important prognostic variables that can be 

addressed through statistical modeling. Traditionally, only 

demographic features and a few hand-picked clinical features 

have been used to assess baseline characteristics between 

treatment arms [7, 9, 10]. A physician-assigned performance 

status is often the only feature included to account for patient 

well-being. However, unless the distributions of all key 

prognostic features are analyzed, comparison of clinical-

demographic characteristics may be insufficient [7]. 

In cancer patients, baseline symptoms are often prognostic 

of treatment response and survival [11-20]. Baseline 

symptoms in cancer patients have shown associations with 

therapeutic efficacy, toxicity, response, and survival, 

including disease progression [11-17]. Yet, there are often a 

myriad of baseline symptoms, which poses a significant 

analytical challenge. Nonetheless, comparison of baseline 

symptoms across treatment arms in cancer RCTs can lead to 

less misattribution and greater understanding of symptom and 

tolerability of the intervention studied [11, 12, 14, 18, 19]. 
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Methods assessing the impact of baseline symptoms by the 

success of creating comparable RCT treatment arms are 

lacking. Further, clinicians typically desire simple, easily 

understandable methods, rather than overly complicated 

methods of comparison, given that the clinical-demographic 

comparisons between RCT treatment arms are presented in 

manuscripts within a single table [20]. If there are statistical 

comparisons, then significance testing by Fishers exact test or 

Chi-squared tests and Student t-tests are typically presented 

[21]. 

In contrast, patient symptoms at baseline are collected from 

multiple patient-reported and clinician-reported tools in most 

RCTs. The number of variables that describe potential patient 

symptoms often number in the dozens to hundreds. Analyses 

of these baseline symptoms have been hampered by this high 

dimensionality of variables, which can range from a long list 

by organ, such as nausea, vomiting, stomach upset, and 

diarrhea for the gastrointestinal system, to muscle pains 

(myalgias), joint pains (arthralgias) in the musculoskeletal 

symptoms, among others [22]. 

To deal with this high dimensionality issue of baseline 

symptoms, in this paper, visualization and machine learning 

tools were adapted to compare detailed baseline symptoms 

between RCT treatment arms. The utility of these tools was 

demonstrated by validating the adequacy of randomization of 

baseline symptoms in the Canadian Cancer Trials Group 

(CCTG) and the Australasian Gastro-Intestinal Trials Group 

(AGITG) RCT trials, CO.17 and CO.20 [23, 24]. 

2. METHODOLOGY

2.1 Population 

Data was obtained from the CO.17 and CO.20 phase III 

RCTs [23, 24]. CO.17 was an open-label, multicentre RCT 

that studied 572 patients with chemotherapy-refractory, 

incurable colorectal cancer (CRC) from December 2003 to 

August 2005 [23]. Patients were stratified by Eastern 

Cooperative Oncology Group (ECOG) performance score and 

randomized at a 1:1 ratio into cetuximab (CO.17 CET; n=287) 

or best supportive care (CO.17 BSC; n=285) treatment arms 

[23]. In CO.20, 750 chemo refractory, incurable CRC patients 

between February 2008 to February 2011 were stratified by 

ECOG performance status and randomized in a double-blind, 

placebo controlled, 1:1 ratio to receive cetuximab plus placebo 

(CO.20 CET; n=374) or cetuximab and brivanib alaninate 

(CO.20 CET-BRIV; n=376) [24]. 

Detailed methods for both RCTs have been published prior 

[23-25]. Both studies obtained approval from the relevant 

institutional review boards and written informed consent from 

the patients.  

2.2 Symptom assessment 

At baseline, symptom data was collected using the National 

Cancer Institute Common Terminology Criteria for Adverse 

Events (NCI-CTCAE) version 2.0 (CO.17) or version 3.0 

(CO.20) [23, 24], a widely-recognized standard for collecting 

clinician-reported symptoms and toxicities [22], grading each 

symptom/toxicity on a scale from 0-5; Grade 0 indicates 

absence of symptom and Grade 5 death related to symptom, 

while grades 1-4 represent increasing severity [22]. 

2.3 Data preparation 

414 NCI-CTCAE graded symptoms experienced at baseline 

were extracted prior to the treatment start date for both RCTs. 

Symptom data dimensionality was reduced to 70 symptom 

categories using clinical knowledge, collapsing symptoms 

with similar pathophysiology and variance threshold to 

eliminate symptoms of negligible prevalence and clinical 

insignificance. When combining similar symptoms, the 

highest symptom grade was kept. 

2.4 Assessing randomization success with respect to 

baseline symptoms 

Reflection bar graphs (RBGs) were created to visualize each 

symptom prevalence of any grade > 0 across treatment arms at 

baseline. The graphs reflect across the x-axis, with one 

treatment arm above the axis, and the other inverted below it. 

Smooth reflection indicates similar baseline symptom 

profiles across treatment arms. This process yields a rapid, 

visual qualitative assessment of baseline symptoms across 

RCT treatment arms that flags unusual symptom patterns for 

quality control purposes, before any quantitative analyses is 

performed. 

For a quantitative assessment of baseline symptoms, a 

method was needed that further reduced the 70 symptoms into 

a format that could be displayed easily in tabular format, 

similar to how baseline clinic-demographical data is presented 

across RCT arms to show adequacy of randomization. Thus, 

machine learning was used to cluster symptoms into 

subgroups: namely, K-Means clustering, a commonly used 

non-parametric hill-climbing algorithm in the expectation-

maximization class, was used to group each individual arm 

into subpopulations based on baseline symptom prevalence of 

any grade>0 [26]. 

Initially, each observation is assigned to a cluster, and 

optimal clustering is reached by alternating between the 

expectation phase, where centres of each cluster are computer, 

and the maximization phase, where each observation is 

assigned to its nearest cluster, until no further changes occur. 

K-means has been implemented in various health care settings

to successfully identify patient subpopulations with respect to

multiple joint variables, which makes it a useful tool for the

high dimensionality of baseline toxicity-symptom data present

in the CO.20 and CO.17 studies [27].

The Calinski-Harabatz index was used to identify the 

optimal number of subpopulations, or “clusters”, per treatment 

arm (2-6 clusters were obsessed, and 2 was chosen based on 

this index) on the basis of well-defined separation between the 

clusters; several studies have found that the Calinski-Harabatz 

index performs the best in identifying the correct number of 

clusters in pre-defined datasets [28, 29]. 

Adequately randomized treatment should produce similar 

proportions of each subpopulation between arms; thus, by 

using K-means as a quantitative partitioning tool on the CO.20 

and CO.17 high dimensionality baseline toxicity-symptom 

data, these clusters can be produced to assess randomization 

success. 

RBGs were also created again as a means of rapid quality 

control assessment to compare the different subpopulations 

identified between and across the treatment arms of each trial. 

This cross-plot format was developed to visualize smooth 

reflection of subpopulations with similar baseline symptom 

profiles across arms over the x-axis, and to compare the 
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differences of baseline symptom profiles in 

subpopulations/clusters within the same arm across the y-axis. 

2.5 Statistical analysis 

The proportions of patients in the K-means partitioning 

algorithm-based subpopulations for ech of the four treatment 

arms (CO.20 CET-BRIV, CO.20 CET, CO.17 CET, CO.17 

BSC) were summarized using counts and percentages in a 

clinical-demographic table. Fisher’s exact test was used to 

assess the correlations between the K-means generated 

clusters and the two arms in each trial. 

The K-means clustering package was used in R. 

Visualizations were created using matplotlib in Python. All 

other data processing and analyses were performed in 

Microsoft Excel. 

3. RESULTS

3.1 Reflection bar graphs by treatment arm 

The RBGs created to compare overall baseline symptom 

profiles across treatment arms within each trial are shown in 

Figure 1, by depicting the 70 symptoms for each treatment arm 

flipped over the horizontal axis, the RBGs allows for easy 

verification of symptom balance across trial arms. 

Figure 1. Reflection bar graphs of baseline symptom 

prevalence of any grade >0. (A) Symptoms are shown in 

order of most to least prevalent for the CO.20 CET-BRIV 

(top blue) and CO.17 CET (bottom red) arms respectively. 

(B) Only the 70 clinically relevant and prevalent symptom

categories identified are shown 

Both CO.20 and CO.17 RBGs show a smooth reflection 

across the x-axis, with no major variance between the 

symptom prevalence experienced at baseline between the two 

treatment arms. The similar baseline symptom profiles across 

treatment arms of the same trial support the verification of an 

adequate patient randomization. RBGs helped us identify and 

fix coding errors for the “fatigue” symptom and resolve 

concerns over baseline differences across CO.17 and CO.20 

trials for the baseline “rash” symptom due to initial imbalances 

between trial arms.  

3.2 Subpopulations identified through K-means Clustering 

Each treatment arm was clustered into two distinct 

subpopulations: Cluster A had fewer patients who experienced 

a higher prevalence of symptoms at baseline, while Cluster B 

had more patients who experienced a lower prevalence of 

baseline symptoms. The cross-plot RBGs created to visualize 

and compare the symptom profiles of the subpopulations are 

shown in Figure 2, which provides a graphical representation 

of the symptom profiles of the patients in each cluster to assess 

cluster reproducibility. 

Figure 2. Reflection bar graphs of baseline symptom 

prevalence of any grade >0 for CO.20 & CO.17 

subpopulations. (A) Clustering produced two subpopulations 

for each of the four treatment arms: a smaller subpopulation 

with higher symptom prevalence (the right graphs) and a 

larger subpopulation with lower symptom prevalence (left 

graphs). (B) Symptoms are ordered from greatest to least 

prevalence for the CO.20 CET-BRIV (top panel) and CO.17 

CET (bottom panel) arms respectively. (C) Bars are sorted 

according to the symptom prevalence of the top right (Cluster 

A) sub-panel of each panel

For the most part, there was symmetrical reflection across 

the x-axis (showing that each arm had corresponding clusters) 

and poor reflection across the y-axis (showing that different 

clusters in each arm differed in prevalence of symptoms). 

Minor differences in the reflection across the x-axis did not 

change the fact that different clusters clearly corresponded to 

each other, a critical step that RBG visualization provides 

effectively. Table 1 further demonstrates that the proportions 

of each subpopulation are similar across arms, serving as 

evidence of adequate randomization producing trial arms with 

patients with similar baseline symptom profiles. 
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Table 1. Summary statistics of K-means clustering demonstrating proportion of patients in Cluster A & Cluster B for each of the 

four treatment arms 

Cluster a CO.20 trial b CO.17 trial 

CET-BRIV arm n=376 CET arm n=374 CET arm n=287 BSC arm n=285 

Cluster A c 95 (25%) 99 (26%) 87 (30%) 93 (33%) 

Cluster B 281 (75%) 275 (74%) 200 (70%) 192 (67%) 
a Clustering was performed separately for each trial arm separately. 

b Fisher’s exact tests were non-significant (p=0.71 for CO.20 arms and p=0.44 for CO.17 arms). 
c Clusters were assigned alphabetically in ascending order of number of patients in each cluster. 

4. DISCUSSION

The purpose of this manuscript is to describe methods that 

can be used to determine the success of the randomization 

process in a RCT, based on similarities and differences in the 

baseline symptoms of each RCT treatment arm. Tools that can 

generate data that are easily understood by clinicians, in a way 

that can be incorporated into the current clinician framework 

for comparing clinical-demographic variables between RCT 

treatment arms are essential for acceptability of clinical use. 

Using RBG visualization and patient clustering by baseline 

symptoms in both the CO.20 and CO.17 trial datasets, 

reproducible clustering was demonstrated in this paper across 

treatment arms into similarly sized subpopulations with 

similar pre-treatment symptom pattern distribution. These 

results provide evidence that the treatment groups were well-

balanced with respect to important symptom-based baseline 

prognostic factors. Furthermore, the proportions of patients in 

each cluster can easily be added to the typical RCT table that 

compares clinical-demographic information by treatment arm, 

whilst the RBG visualizations can easily be added to the 

supplementary tables of RCT publications. This simplicity of 

summarizing complex high dimensionality sets of symptoms 

in these qualitative and quantitative fashion is a prime example 

of how to translate standard machine learning approaches into 

clinical applications. 

Hypothesis testing to compare baseline characteristics in 

RCTs is generally disapproved of, and the preferred method 

evaluates the prognostic strength of the measured variables 

and the magnitude of chance imbalances [3, 4, 8, 30]. RBGs 

allow for simple visualization of the magnitude of imbalances 

by identifying regions of poor reflection, and data can be 

summarized quantitatively as proportions of patients in 

baseline symptom-based patient clusters.  

Both the RBGs and clustering algorithms are 

straightforward to generate and to interpret. Inclusion of 

baseline symptom comparison through such visualization 

tools thus adds a layer of assurance to the randomization 

process by ensuring that no known or unknown prognostic 

features are neglected. While the primary analyses would 

remain unchanged in instances where chance imbalances are 

identified, sensitivity analyses could also then be applied [31]. 

Of the various scales and indices developed to assess the 

quality of RCTs, each method asks a series of binary questions 

to assess aspects of RCT validity including randomization, 

allocation concealment, baseline characteristics, blinding, co-

interventions, compliance, participant withdrawal, and 

incomplete outcome data [9, 10]. 

Pre-treatment symptoms have been identified as having a 

strong prognostic association (i.e., greater disease progression 

at follow-up, higher risk of hospitalization, poorer 

progression-free and overall survival) in patients with 

advanced CRC, including nausea and vomiting, pain, dyspnea, 

sleep disturbances, fatigue, lack of appetite, depression, 

anxiety, diarrhea, and constipation [12-14]. The authors 

suggest incorporating baseline symptom assessment into these 

scales and indices because of their strong relevance to patient 

treatment outcome; ensuring adequate baseline symptom 

balance across trial arms through successful randomization is 

then necessary to significantly reduce the risk of bias.  

The quantitative K-means method described in this paper is 

especially important to sufficiently summarize baseline 

symptom data that oftentimes has high dimensionality due to 

many recorded symptoms/toxicities. K-means has proven its 

utility for large-scale data through analysis of Internet text data; 

it has also been used effectively in oncological research in 

microarray breast cancer data clustering [32, 33].  

While patient-reported symptoms in this instance were 

recorded through the NCI-CTCAE adverse event grading, 

Eastern Cooperative Oncology Group (ECOG) performance 

status and patient quality of life have been noted to have strong 

prognostic associations as well, suggesting that they can be 

used with this approach to assess study randomization success 

[13, 17, 34, 35]. 

There are several limitations to this approach. Symptom 

data was recorded using the NCI-CTCAE and was designed to 

assess toxicities resulting from treatment effects [12]. Its use 

and efficacy in the reporting of baseline symptoms unrelated 

to the treatment of interest has not been widely studied.  

Furthermore, patient-reported symptoms at baseline may be 

more predictive of survival outcomes and disease progression 

than clinician-reported scales, perhaps due to under-reporting 

of symptoms by clinicians, thus reducing sensitivity of this 

approach in detecting different patient clusters [12, 18]. This 

approach, however, is pragmatic, as it compares across 

treatment arms, regardless of the many causative factors for 

patient symptoms being present or absent prior to treatment 

initiation, including disease burden, comorbidities, prior 

treatments, and concomitant medications [18]. The current 

design of the RBGs is best suited to RCTs with two treatment 

arms and two clusters, though the design could be adapted to 

accommodate more treatment arms and multiple clusters per 

arm. Though symptom prevalence was used primarily in this 

paper, analyses were also performed using mean grade with 

similar results.  

Finally, a simpler future approach may be to stratify by 

performance status during randomization, since performance 

status is often correlated with baseline symptoms; nonetheless, 

the methods that we have developed would still be helpful to 

verify the success of randomization.  

5. CONCLUSIONS

In summary, machine learning and visualization tools were 

adapted to assess the adequacy of RCT randomization with 

respect to prognostically significant baseline symptom. These 

concepts were then applied to two colorectal cancer RCTs, 
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CO.17 and CO.20. This study also demonstrates how to 

summarize and interpret such data within a clinical-

demographic table.  

These tools could be applied in clinical trial reporting 

particularly the inclusion of patient baseline symptom cluster 

data in tables of baseline characteristics of RCTs, in situations 

where there are known prognostic effects of baseline 

symptoms data, to ensure an extra layer of necessary quality 

assurance of the randomization process. 
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