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The super-resolution of images has seen remarkable progress, especially with the use of 

deep learning models. This technique allows having a better-quality image from one or 

more low-resolution versions. Super-resolution, therefore, aims at enriching a low-

resolution image with additional pixel density and high-frequency detail. This paper 

presents a comprehensive empirical study based on a systematic review of deep learning-

based models for single image super-resolution (SISR), exploring the set of techniques 

offered by deep learning technology and used for SISR. In this paper, we present a global 

and complete state of the art on deep learning model based on reference metrics (mainly 

Peak Signal to Noise Ratio -PSNR- and Structural SIMilarity -SSIM-) in the field of 

computer visualization and image reconstruction. This study was done on several deep 

learning designs with 90 different models tested on 7 reference datasets in the computer 

vision domain. Thus, our goal is to present a benchmark to demonstrate the performance 

and limitations of these models as well as to guide future research in the field of super image 

resolution to develop efficient algorithms. Moreover, our study covers different neural 

network architectures (Generative Adversarial Networks -GAN-, Convolutional Neural 

Networks -CNN-, and Recurrent Neural Networks -RNN-...), using different techniques and 

technologies. 
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1. INTRODUCTION

The rapid development of technology makes the image 

central to the evolution of computing so computer vision is the 

branch of artificial intelligence (AI) that deals with how 

computers can gain high-level understanding from images, it 

seeks to understand and automate the tasks that the human’s 

visual system can perform [1]. Thus, computer vision is 

important for event management, object tracking (autonomous 

vehicle for example) [2], image reconstruction, and others. 

Super-Resolution (SR) is increasingly in demand due to the 

need for higher-quality images for sensitive domains such as 

spatial remote sensing [3], medical imaging [4], environmental 

monitoring [5], and other domains requiring high-resolution 

images. Moreover, this technique improves other deep 

learning processes for vision using images such as 

classification [6] and segmentation [7]. 

To have images of better resolution the intuitive idea is to 

replace the image sensor, but this solution is expensive and 

sometimes impossible as for example the case of satellite 

images where the acquisition sensor is airborne. Therefore, the 

solution is to use SR methods. 

This article is an extension of our article [8] benchmarking 

some models for SR, which was limited to three types of 

architectures, and only according to the scaling factor. 

This paper focuses on SR through the presentation of an 

empirical study of the most recent algorithms that have 

demonstrated better performances than the standard method, 

which is the bicubic interpolation through experimental results 

and a synthetic summary of metrics and criteria. Indeed, 

relevant comparisons are made from different angles. 

The principle of super-resolution consists in generating a 

high resolution (HR) or very high resolution (VHR) image 

from a low resolution (LR) image by passing through a method, 

thus finding details not existing on the original image. 

The development of neural network architecture and 

associated techniques has allowed us to have today a multitude 

of SR algorithms that have shown better performance. These 

algorithms differ according to the type of dataset used for 

training, the architecture used, the loss function, the depth of 

the network, the performance metrics, and the scaling factor. 

Faced with the array of these algorithms, the user finds it 

impossible to choose an efficient algorithm for a given image 

in each context. Thus, this study aims to address the following 

issues: 

•Guide the user in choosing an efficient algorithm for SR

based on these constraints. 

•Why one algorithm is better suited for SR with better

performance. 

•Present a reliable and credible comparison of deep learning

models for SR. 

This study aims to be a reference in design and model 

selection for SR. This study was done through an 

understanding of the SR problem, combined with an 

understanding of image descriptors and a thorough analysis of 

learning models for SR. The objective is to guide the selection 

of existing models for super-resolution or to advance research 

in the field of SR in order to identify features that can improve 

the techniques and architectures in the implementation and 

design of deep learning models to do image super-resolution 

in an efficient way. 

Our approach aims at guiding the correct choice of model 
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for SR, which uses the "No Free Lunch" theorem [9] that states 

that no Machine Learning model is efficient for any problem. 

The main contributions of our research work are 

summarized in the following: 

•Proposal of a framework for the study of SISR.

• Presentation of a taxonomy of existing models, main

datasets, performance metrics, and methods. 

•Proposal of a complete study of the main existing SISR

learning-based methods according to their architectures. 

•Global comparison of the evaluated models for each

scaling factor. 

•Assistance to users in choosing a suitable model.

• Presentation of some challenges and researcher's

orientations for future work. 

This document is structured as follows. The preliminary and 

related works of SISR are briefly introduced in Section II. In 

Section III, the Methodology that is, evaluation and empirical 

study for SISR learning based are described. Section IV 

presented the result of the study by the scale factor. The 

discussions and orientations are presented in Section V. 

Finally, Section VI concludes this work and analyzes future 

research directions of SISR. 

2. PRELIMINARY AND RELATED WORKS

A digital image is a 3D matrix composed of pixels (which 

means PICture Element). To visualize an image, we assign to 

each band a colored filter by additive synthesis of the 3 

primary colors Red, Green, and Blue so we speak of RGB 

image.  

An image is characterized by its definition which represents 

the total number of pixels (Height X Width), its resolution 

which represents the number of points per inch, its depth 

which represents the number of bands, the coding of the colors 

which represents the number of bits by pixel (the coding RGB 

24 bits is the most used), its format which represents the way 

in which the image is stored according to the algorithm of 

compression used. 

SISR is an exciting research topic [10, 11] given its practical 

importance for image texture enhancement. This technique 

consists in applying a degradation function on an HR image in 

order to obtain an LR image. Thus, these algorithms can be 

classified into specific models (graphic illustration [12]), face 

[13], scenes [14], etc.), and other generic models for the 

processing of complex images. 

LR= D(HR,f) (1) 

D is the degradation function and f is the scaling factor 

which is the parameter of this function. So, the SR consists in 

learning the function of Eq. (1) inverse in order to reconstruct 

the HR image from an LR version by applying the function. 

HR=SR(LR,f) (2) 

SR involves both images and videos [15, 16] such that 

image SR is mainly divided into SISR (single image SR) and 

MISR (multiple image SR) [17]. SISR provides a higher-

quality image based on a single input image, while MISR 

provides a high-resolution image from a set of merged images 

of the same image [18]. 

SISR is used more than MISR because of the performance, 

simplicity of processing, and support from researchers as well 

as the flexibility of use [19]. 

To date, traditional SISR algorithms are mainly divided into 

three categories: interpolation-based methods that use pixel 

adjustment based on spatial structure (Neighborhood) [20], 

reconstruction-based methods that sample scenes from an 

image sequence [21], and learning-based methods [22] as 

shown in Figure 1 The classification of reconstruction-based 

and interpolation-based algorithms has been done in other 

studies [23, 24], these methods have average performance 

given several limitations deep learning has solved [11]. We 

note that among the classical methods bicubic interpolation is 

the most used, which makes it still used as standard input for 

several deep learning models. 

The field of super-resolution of images does not cease 

developing because of its practical applications in many fields. 

This paper focuses on deep learning methods as these 

algorithms are gaining in performance and attention from 

researchers today due to their better reconstruction capabilities 

[19] and most SISR methods are based on deep learning [25];

without forgetting the reference method which is bicubic

interpolation [26] and which is part of interpolation based.

Deep learning models for super-resolution have been 

classified according to several; so, for our study, we adopt the 

classification by type of learning model. Thus, Figure 2 shows 

an example of super-resolution by different models 

Figure 1. Classification of image super-resolution method 

Figure 2. Super Resolution of an image by several models [27] 

A historical problem for SISR is that it is an ill-posed 

inverse problem (i.e., one must know the degradation function 

(1) in order to apply the inverse function (2) to have a high-

resolution image), this assumption is not always achievable, it

is also noted that the quality of recovery of the target image is

influenced by the learning of features within the training

images taken as samples [28].

The development of neural networks and associated 

technologies allows us today to have powerful algorithms for 

deep learning allowing SISR in an efficient way with better 

performances thanks to the technological development 

offering several architectures like CNN [29], GAN [30, 31], 

and others (Table 1); as well as many adapted loss functions 

[32].  

Several works have performed benchmarks for SR, but they 

address this problem from different angles, which remains 

useless for users to guide their choice of model for SR. For 

example, Chen et al. focused on real-world single image super-

resolution (RSISR) to address the problem of SR degradation 

on synthetic data [19]. Other works are not recent and address 

methods that are outdated today as the case for [23, 33]. Zhang 
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et al. [34] worked on Ultra High Definition (UHD), 

introducing two datasets UHDSR4K and UHDSR8K which 

remain limited to this type of image. Liu et al. [35] have 

worked on recent networks but this work focuses on the 

optimization capacity of the architectures by addressing only 

12 networks. 

Table 1. Classification of SISR models by architecture 

CNN CNN 
Residual 

Networks 
RNN GAN 

Attention 

Networks 

Random 

Forest 

CAR [36] MFSRCNN [54] BTSRN [70] BSRN [83] 4PP-EUSR [93] ABPN [102] FAFR [100] 

CSNLN [37] CARN [71] 
DBPN-RES-MR64-

3[84] 

Edge-informed SR 

[94] 
DRLN [72] JMPF+ [93] 

CSRCNN [38] MDSR [55] CARN-M [71] D-DBPN [84] HiFaceGAN [13] HAN+ [103] 

CMSC [39] MWCNN [56] DRLN+ [72] DRCN [72] 
Nearest neighbors 

[77] 
SelNet [104] 

DnCNN [40] N3Net [57] EDSR [73] DRRN [85] ESRGAN [82] SRRAM [105] 

FALSR-A [41] DnCNN-3[40] IKC [74] HBPN [86] ProSR [95] PASSRnet [106] 

FSRCNN [42] 
Perceptual Loss 

[58] 
REDNet [75] DSRN [87] RFN [96] SAN [107] 

CNF [43] ESPCN [59] LCSCNet [76] LapSRN [77] SFT-GAN [97] STSR [108] 

CSCN [44] RC-Net [60] LapSRN [77] MemNet [88] SPSR [98] SwinIR [27] 

Deep CNN Denoiser 

[45] 
ScSR [61] PMRN+ [78] GMFN [89] S-RFN [99]

IMDN [46] SRCNN [29] RCAN [79] SCN [90] SRGAN [30] 

ENet-E [47] SRMDNF [62] RDN [80] SRFBN [91] Super-FAN [100] 

IA [48] SRNTT-l2[63] RL-CSC [81] NLRN [92] BSRGAN [101] 

IDN [49] ZSSR [64] SRResNet [30] SESR [92] 

RED30[50] 
WaveletCNN 

[65] 
ESRGAN [82] 

SPBP-L+ [51] PFF [66] 

LFFN-S [52] CRAN [67] 

VDSR [53] AdderNets [68] 

SRWarp [69] 

Table 2. Classification of SISR models by scale factor 

X2 X2 X3 X3 X4 X4 X4 X8/X16 

BTSRN SRCNN Bicubic LFFN-S 4PP-EUSR FSRCNN REDNet Bicubic 

CARN SRMDNF BTSRN MDSR ABPN GMFN RFN SRCNN 

CMSC SRRAM CARN MemNet Bicubic HAN+ RL-CSC FSRCNN 

CNF VDSR CMSC 
MWCN

N 
BSRN HBPN SAN MFSRCNN 

CSCN ZSSR CNF PMRN+ BTSRN HiFaceGAN SCN SCN 

D-DBPN CAR 
Deep CNN 

Denoiser 
RCAN BTSRN IA SelNet VDSR 

DnCNN DRLN+ DnCNN RDN CAR IDN SESR LapSRN 

DRCN HAN+ DRCN RED30 CARN IKC SFT-GAN MemNet 

DRLN CSNLN DRLN REDNet CMSC IMDN SPSR MSLapSRN 

DRRN PMRN+ DRLN+ SCN CNF JMPF+ SRC.AX EDSR 

EDSR HBPN DRRN SelNet CSNLN LapSRN SRCNN D-DBPN

FSRCNN SRFBN EDSR SRCNN DBPN-MR64 LFFN-S SRFBN RCAN

IA SPBP-L+ FSRCNN SRFBN D-DBPN LopSRN S-RFN DRLN

IDN IMDN HAN+ 
SRMDN

F 
DnCNN 

Manifold 

Simplification 
SRGAN 

DBPN-

MR64-

LapSRN MWCNN IDN SRRAM DnCNN-3 MDSR 
SRGAN + 

Residual 
DRLN+ 

MDSR FALSR-A IKC STSR DRCN MemNet SRMDNF HAN+ 

MemNet CARN IMDN VDSR DRLN MWCNN SRNTT-l2 ABPN 

RCAN RED30 LapSRN ZSSR DRLN+ nearest neighbors SRRAM HBPN 

RDN LFFN-S LCSCNet DRRN NLRN SRResNet CSRCNN 

REDNet DRCN DSRN PASSRnet Super-FAN DeepRED 

SCN DnCNN-3 
Edge-informed 

SR 
Perceptual Loss SwinIR ABPN 

ScSR N3Net EDSR ProSR VDSR 

SelfExSR VDSR ENet-E RCAN Wavelet CNN 

SelNet CSRCNN ESPCN RC-Net ZSSR 

CRAN RC-Net ESRGAN RDN PFF 

AdderNet

s 
IKC FAFR RED30 

SRWarp 
Deep CNN 

Denoiser 
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3. METHODOLOGY (EVALUATION AND 

EMPIRICAL STUDY)

Our methodology in this work is based on a systemic review 

[109] of deep learning models for SISR through a thorough

scientific review in order to influence decisions in the selection

and design of neural networks for SR. This approach respects

the principles of knowledge synthesis characterizing systemic

review as stated in the PRISMA (Preferred Reporting Items

for Systematic Reviews and Meta-Analyses) statement [110],

in order to provide the essentials of learning-based SISR, also

exploiting the results of several studies on state-of-the-art

super-resolution neural networks with varied datasets.

This study provides quantitative and qualitative 

comparisons between the set of models studied in terms of 

visual and perceptual quality, this comparison is 

complemented by other criteria such as design details and 

model parameterization mainly for the first 3 networks for 

each scaling factor.  

In this study, we proceed to in-depth systematic analysis in 

order to study the technical and architectural constraints of the 

selected models in terms of deep learning techniques 

combined with the specific domain of SISR. 

Our empirical study in this paper is based on 3 pillars, 

namely: the choice of deep learning models for SISR, the 

choice of datasets to train and test these models, and finally the 

choice of performance measurement metrics. This research 

synthesis consists in evaluating SISR algorithms from the 

same framework (metrics, hypotheses, and datasets), in order 

to have a fair and unbiased analysis; in addition to using 

diverse data. 

3.1 Choice of models 

Through this study we made an inventory of more than 200 

neural networks for SR, the study led to the choice of 90 most 

recent networks with a date later than 2016 with 61% of the 

networks having a date later than 2019. We found that these 

models can be divided into 6 categories representative of all 

the deep learning models used today for SR that we classify in 

Table 1, based on network architecture for SR. These same 

methods are also distinguished by the network 

parameterization, depth, and learning optimization conditions. 

We group the selected networks by the scale factor allowed by 

this model (Table 2) and then apply our analysis approach to 

generate the considered performance measures. 

3.2 Datasets 

In addition to the intrinsic features of the design of the 

neural network architecture for SRs, the dataset used for its 

training is determined since the network learns based on the 

models of the latter; thus, the choice of datasets for this study 

was made following a thorough analysis. Indeed, these models 

are trained and tested differently on 43 opensource and famous 

data science datasets using images (Set5, Set14, BSD100, 

Urban100, SunHay80, Urban300, Urban500, VID4, 91-Image, 

IV2K, Waterloo, MCL-V, GOPRO, CelebA, FFHQ 256*256, 

Sintel, FlyingChairs, DND, RENOIR, NC, FFHQ 1024*1024, 

SIDD(M), RSR, Vimeo-90k, BSD200, Manga109, VggFace2, 

PIRM, Celeb-HQ, CUFED5, MiddleBurry, KITTI 2012, 

KITTI 2015, DIV8K, USR-248,MiddleButy, Sun80, CUFED5, 

FFHQ 512*512, DIV8K, DIV2K, FFHG, WebFace). These 

datasets differ primarily in two factors, namely genericity and 

complexity. Genericity characterizes the use of the dataset, i.e., 

its content, which can be specific to a domain of use (such as 

datasets for faces [13], scenes [14], graphic illustrations [11]) 

or generic and can be used without specifying the domain of 

use. The complexity determines whether an image is primitive 

or complex, a primitive image is an image with textures (group 

of pixels) representing a simple basic pattern (e.g. simple 

edges and corners) [111], and a complex one containing more 

details and complicated textures with high-frequency details 

depending on the objects in the image which is also reflected 

in the image definition (the total number of pixels). The 

compression format is also important, so it is in our interest to 

use a lossless compression format in order to have enough 

information for the learning process, as well as to use only 06 

image datasets designed to evaluate the performance of SR 

algorithms after a complete study of the constitution and 

characteristics of each dataset; to evaluate the performance of 

the recently proposed SISR-based deep learning models. 

Table 3. Characteristics of the images used 

Dataset Size Avg. Resol. Avg. Pixels Format Encoding 

Set5 [112] 5 313×336 113,491 PNG RVB 24 

Set14 [113] 14 512×512 230,203 PNG RVB 24 

BSD100 [114] 100 432×370 154,401 PNG RVB 24 

Urban100 [115] 100 984×797 774,314 PNG RVB 24 

Manga109 [116] 109 826×1169 966,011 PNG RVB 24 

DIV2K [117] 1000 1972×1437 2,793,250 PNG RVB 24 

This table (Table 3) represents the characteristics of the 

datasets used in terms of the number of images of the dataset 

at the origin (the number of images determines the number of 

examples seen by the network at the time of training so it 

determines the capacity of the network for the SR) without 

considering the images that are generated from these datasets 

to have LR images or to the data-augmentation which allows 

improving the performance of the models without additional 

calculation [118]; the choice of these datasets considered a 

gradual factor in order to prove this effect on the SR. The 

number of pixels represents the overall size of the pixels in the 

dataset; thus, we tried to choose graduated definitions to see 

the effect of the definition on the reconstruction. We chose the 

same PNG format [119] which guarantees better lossless 

compression. We also note that one dataset contains natural 

scenes (Set5, Set14, and BSDS100) while another contains 

urban scenes with frequency details at all levels (Urban100). 

Thus, the choice of these datasets for our empirical study was 

made on the basis of the key characteristics of the images that 

compose them. 

3.3 Performance measurement metrics 

To measure the performance of deep learning models for SR 

we use 2 types of metrics which are quantitative and 

qualitative metrics. Qualitative metrics can use the perception 
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of human subjects, so we only use quantitative metrics in this 

paper due to their demonstrability and reliability. 

In this study, we use PSNR and SSIM metrics as evaluation 

criteria for the selected algorithms, these metrics are 

considered as a reference in the field of visualization model 

evaluation. 

The PSNR (Peak Signal to Noise Ratio) [120] measures the 

reconstruction quality of a digital image. It is used to evaluate 

the reconstruction quality of the super-resolved image. 

The PSNR is inversely proportional to the logarithm of the 

mean square error (MSE) (3) [121] between the low-resolution 

image and the super-resolved image. 

( )
2

1 1

1
MSE( , )

N M

ij ij

i j

x y x y
NM = =

= − (3) 

2

10PSNR( , ) 10 log
( , )

L
x y

MSE x y

 
=   

 
(4) 

MN (3) is the image definition (size in pixels) and L (4) is 

the maximum possible value for a pixel (for 8-bit RGB images, 

it is 255). 

The PSNR is used only to evaluate the correspondence 

between the super-resolved image and the original image, the 

latter does not take into account the visual quality of the 

reconstruction of the image, so we can have a model that 

generates images with missing high-frequency details, which 

forces us to combine this metric with the SSIM. 

SSIM (structural SIMilarity) [120] measures the similarity 

between two digital images. This metric originally used to 

measure the visual quality of compressed images has been 

extended to measure the visual quality of super-resolved 

images compared to the low-resolution image. SSIM measures 

the structural similarity between the two images since the 

human eye is sensitive to structural changes within the image. 

SSIM is computed on a set of windows of an image. The 

metric between two windows x and y of size NxN is as follows: 

SSIM( , ) ( , ) ( , ) ( , )x y A x y B x y C x y=   (5) 

1

2 2

1

2
( , )

x y

x y

E
A x y

E

 

 

+
=

+ +
(6) 

2

2 2

2

2
( , )

x y

x y

E
B x y

E

 

 

+
=

+ +
(7) 

3

3

( , )
xy

x y

E
C x y

E



 

+
=

+
(8) 

With x the ground truth image; y the super-resolved image; 

µ𝑥 the mean of x; µ𝑦 the mean of y; 𝜎𝑥
2 the variance of x; 𝜎𝑦

2

the variance of y; 𝜎𝑥𝑦 the covariance of x and y; 𝐸1 = (𝐾1𝐿)2 ;

𝐸2 = (𝐾2𝐿)2  ; 𝐸3 =
𝐸2

2
 ; L the dynamic of the pixel values,

which is 255 for the 8-bit coding; 𝐾1 = 0,01 ; 𝐾2 = 0,03.

𝐸1 , 𝐸2  and 𝐸3  are intended to stabilize the ratio when the

denominator is very low. 

We apply the formula of Eq. (5) to the luminance on 

windows of size 8x8 in order to evaluate the visual quality of 

the whole image, moving pixel by pixel. However, in order to 

reduce the computational complexity, we use only a subset of 

these windows (reduction by a factor of two in both 

dimensions). This reduces the complexity of the calculation. 

The use of the PSNR and SSIM metrics allows us to 

measure the performance of the RH algorithms, but they do 

not reflect the overall quality of image reconstruction, which 

led the authors [122] to carry out a comparative study. But the 

considered framework and the choice that was made for the 

selection of the models force us to consider these two metrics 

for the fair and balanced evaluation, however, we can consider 

other metrics that are less used for the SR as the perceptual 

score that has a relationship with the metric indices [24]. 

4. RESULTS OF THE STUDY

We present the experimental results of this study by scale 

factor used for SR, presenting each time the results obtained 

in terms of PSNR and SSIM, but presenting only the 3 best 

networks by metric in terms of visual quality (PSNR) for each 

dataset. (PS in the tables refers to PSNR while SS refers to 

SSIM). 

4.1 Scale factor of 2 

The CAR [123] model showed better performance on small 

and medium datasets of its architecture that uses adaptive and 

guided content reordering to preserve essential information 

using an end-to-end learning pipeline (including the 

degradation function which gives strength to this model), for 

the DIV2K dataset this last one is not the best because it used 

it for testing and not for training at the time of learning. We 

also notice that the latter builds the edges well and produces 

sharp images. For the DRLN+ [72] model It improves visual 

quality by using Laplacian attention to learn complex inter and 

intra-level features through structure, it is a way to focus on 

important information, and that is why it was noticed for 

Manga9 which is a complex dataset with high-frequency 

details. It is better for low-resolution images. But it is not good 

for images with very fine details. This same principle is taken 

up by HAN+ [103] but this time for the correlations between 

the convolution layers which gives very fine high-frequency 

structures, it is also better for natural images. HBPN [86] has 

shown performances for large datasets by exploring spatial 

correlations between layers which allows the reconstruction of 

fine textures. Not to forget CSNLN [37] which is good for the 

faithful reconstruction of natural, complex, and high-

frequency repeating features (Table 4). 

4.2 Scale factor of 3 

DRLN+ and HAN+ which keeps these performances also 

for the scaling factor of 3 for the reasons we have mentioned 

before. We also have SRFBN [91] which stands out on DIV2K 

and is a feedback network between information representation 

levels for faithful SR with several degradation mechanisms. 

This network is suitable for images with several degradation 

mechanisms (Table 5). 
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Table 4. Top 3 networks of scale factor 2 

Set5 Set14 BSD100 Urban100 D1V2K Mangal09 

Method 
𝐏𝐒

𝐒𝐒
Method 

𝐏𝐒

𝐒𝐒
Method 

𝐏𝐒

𝐒𝐒
Method 

𝐏𝐒

𝐒𝐒
Method 

𝐏𝐒

𝐒𝐒
Method 

𝐏𝐒

𝐒𝐒

CAR 
38,94

0,97
CAR 

35,61

0,93
CAR 

34,78 

0,90
CAR 

35,24

0,91
HAN+ 

39,02

0,97
DRLN+ 

39,75 

0,99

DRLN+ 
38,34

0,96
DRLN+ 

34,43

0,92
DRLN+ 

33,83 

0,90
DRLN+ 

33,54

0,94
DRLN+ 

38,65

0,97
HAN+ 

39,62 

0,98

HAN+ 
38,33 

0,93
CSRCNN 

34,34

0,92
HAN+ 

32,47

0,90
HAN+ 

33,53

0,94
HBPN 

38,55 

0,97
CSNLN 

39,37

0,99

Table 5. Top 3 networks of scale factor 3 

Set5 Set14 BSD100 Urban100 D1V2K Manga109 

Method 
𝐏𝐒

𝐒𝐒
Method 

𝐏𝐒

𝐒𝐒
Method 

𝐏𝐒

𝐒𝐒
Method 

𝐏𝐒

𝐒𝐒
Method 

𝐏𝐒

𝐒𝐒
Method 

𝐏𝐒

𝐒𝐒

DRLN+ 
34,86 

0,93
DRLN+ 

30,80 

0,85
HAN+ 

29,41

0,81
DRLN+ 

29,36 

0,87
HAN+ 

35,04 

0,93
DRLN+ 

34,94 

0,95

HAN+ 
34,85 

0,99
HAN+ 

30,79 

0,85
DRLN+ 

29,40 

0,85
HAN+ 

29,21

0,87
SRFBN 

34,89 

0,90
HAN+ 

34,87 

0,95

SRFBN 
34,75

0,98
DRLN 

30,73

0,92
DRLN 

29,36

0,88
DRLN 

29,21 

0,90
DRLN+ 

34,43

0,96
DRLN 

34,71

0,98

Table 6. Top 3 networks of scale factor 4 

Set5 Set14 BSD100 Urban100 D1V2K Manga109 

Method 
𝐏𝐒

𝐒𝐒
Method 

𝐏𝐒

𝐒𝐒
Method 

𝐏𝐒

𝐒𝐒
Method 

𝐏𝐒

𝐒𝐒
Method 

𝐏𝐒

𝐒𝐒
Method 

𝐏𝐒

𝐒𝐒
SwinIR 32,93  

0,90
SwinIR 

29,15

0,79
CAR 

29,15 

0,87
CAR 

29,28

0,87
ABPN 

32,87

0,90
ABPN 

31,79

0,92
CAR 32,82  

0,91
CAR 

29,09 

0,79
DRLN+ 

27,87 

0,86
HBPN 

27,30 

0,85
CSNLN 

32,21

0,88
DRLN+ 

31,78

0,92
HAN+ 32,75 

0,90
SAN 

29,05 

0,93
SAN 

27,86

0,86
SAN 

27,23

0,84
SRGAN 

32,17 

0,88
DBPN-RES-MR64-3 

31,7

0,90

4.3 Scale factor of 4 

For this scale factor we notice better performance for the 

SwinIR [27] model for small datasets, the latter uses 

transformers and is used both for SR, de-noising, and JPEG 

compression artifacts reduction, it is a fast network but uses a 

lot of training data, it can be used for real data but suffers from 

several limitations. 

In addition, we note the superiority of the CAR and DRLN+ 

models, but also the SAN [107] model which also adopts the 

correlation between layers, by the second order channel 

attention principle (SOCA). This staged network tries to 

produce realistic images (Table 6). 

4.4 Scale factor of 8 

Table 7. Top 3 networks of scale factor 8 

Set5 Set14 BSD100 Urban100 D1V2K Manga109 

Method PSSS Method PSSS Method PSSS Method PSSS Method PSSS Method PSSS 

MFSRCNN 
29,03 

0,82 

DBPN-

RES-

MR64-3 

25,41 

0,65 
DRLN+ 

25,06 

0,60 
DRLN+ 

23,24 

0,65 
DRLN+ 

28,23 

0,72 

DBPN-

RES-

MR64-3 

25,71 

0,81 

DBPN-RES-

MR64-3 

27,51 

0,79 
DRLN+ 

25,4 

0,65 

DBPN-

RES-

MR64-3 

25,05 

0,60 

DBPN-

RES-

MR64-3 

23,2 

0,65 
HAN+ 

28,18 

0,72 
DRLN+ 

25,55 

0,80 

HAN+ 
27,47 

0,79 
HAN+ 

25,39 

0,65 
HAN+ 

25,04 

0,60 
HAN+ 

23,2 

0,65 

DBPN-

RES-

MR64-3 

28,18 

0,71 
HAN+ 

25,54 

0,80 

In addition to HAN+ and DRLN+, we note the best 

performances of the DBPN-Res-MR64-3 [84] model for an SR 

X8, this network is a combination of dense connection, 

residual learning, and recurrent network, it is based on the 

exploitation of iterative up and down sampling layers using the 

dependency between the LR and HR image within a deep 

back-projection network allowing remarkable results for this 

scale factor. It is a particular network for large-scale factors 

(X8) but requires a significant amount of time for learning 

(Table 7). 

4.5 Scale factor of 16 

The study framework fixed at the beginning forces us to 

select only one network for this scaling factor which is ABPN 

[60]. This network requires a larger learning field, so we added 

the DIV8K dataset [124] which allowed an acceptable visual 

result. This back-projection learning model exploits the cross-
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correlation by an attention mechanism, but the consideration 

of the scale factor of 16 allowed to loss the realism within the 

reconstructed images (Table 8). 

Table 8. Results of the scaling factor 16 

SET5 SET14 
BSD 

100 

URBAN 

100 
MANGA109 DIV2K DIV8K 

PS SS PS SS PS SS PS SS PS SS PS SS PS SS 

23,42 0,61 22,17 0,53 22,72 0,51 20,39 0,52 21,25 0,67 24,38 0,64 26,71 0,65 

5. DISCUSSION AND ORIENTATIONS

5.1 Discussion 

Historically and since the evolution of neural networks, 

CNNs are the most used for SR, we note that several 

techniques have been proposed for SISR such as the use of 

very deep networks and recursive networks in addition to 

connection hopping, residual networks, multi-scale processing, 

texture synthesis, overhead networks, hierarchical features, 

dense connections, attention networks, and attention 

mechanisms. Moreover, GANs allow for gaining perceptual 

and sometimes visual quality through loss and opposition 

functions. 

The analysis carried out in this article has allowed us to 

observe a considerable evolution in the performance and 

accuracy of SR models given the technological possibilities 

offered by deep learning. This development generates a 

considerable processing capacity given the complexity of the 

proposed algorithms but this constraint is still supported today 

because of the availability of storage and datasets diversified 

in complexity and size. However, a balance has to be made 

between the SR task to be performed and the size and structure 

of the training data, since the performance depends on this 

balance. Thus, choosing the best algorithm for the task and the 

training data is often a difficult task and remains unclear. This 

constraint leads to a historical problem for the SR task which 

is the non-generalization of the learning networks on real-

world datasets since the learning was done on simulated 

images. 

Indeed, the analysis performed allowed us to deduce that the 

content adaptive image downscaling technique allowed to 

have an optimal performance by producing better quality HR 

images from LR images with potentially detailed information 

[123], as well as for the correlations between layers [103], 

without forgetting the learning of inter and intra level features 

which helps to improve the accuracy [72]. 

Thus, preserving the essential features of the image is the 

key to any SISR algorithm, and this process requires mastering 

the pipeline between the LR and HR image in both directions. 

We also notice that a large part of the selected models uses 

a simple and uniform degradation in the form of sub-sampling 

to generate LR images from the corresponding HR images 

which result in a simulated dataset. This way of doing things 

is only suitable for real datasets as their degradations are more 

complex, which produces less efficient SISR algorithms for 

practical applications [125]. 

He also notes that if we have images with less high-

frequency detail, we can have a higher PSNR. 

To this end, we note that the exploitation of correlations 

between intermediate layers is less used in most of the models 

studied. This technique has given remarkable performances in 

terms of reconstruction quality by recovering fine textures 

which improves the perceptual quality contrary to networks 

that focus on the implementation of larger or deeper 

architectures. 

The study carried out shows that we must go through a 

thorough analysis according to the methodology proposed in 

this article according to the objective to be achieved in order 

to make a better choice of the adapted network, which can be 

completed by other metrics and other aspects. We note that 

there are models that are best suited for the case of primitive 

images with less detail and are not suited to the case of 

complex images, so the choice must be conditioned by the type 

of image. Therefore, we can deduce that the SR is determined 

according to the richness in high-frequency details, which is 

confirmed by other studies [23]. Thus, images with less 

contrasted pixels lead to higher PSNR values and vice versa. 

In our experience, the network input is a determining factor 

for having higher PSNR and SSIM metrics. For models that 

use a traditional input, they cannot have a better reconstruction 

because of the statistical properties that prevent less frequent 

patterns from being reconstructed on the super-resolved image. 

In addition, the model evaluation metric must be well 

chosen according to the training domain for SR, as we can 

validate the model through the Spearman rank correlation 

coefficient [126] which proved this performance for image-

adapted metrics. According to [23] we can use 4 other metrics 

for SISR, namely the weighted peak signal-to-noise ratio 

(WPSNR), the multi-scale structure similarity index 

(MSSSIM) [127], the noise quality measure (NQM) [128] and 

the information fidelity criterion (IFC) [48]. But the metric 

should be adapted according to the dataset and the SR task to 

be performed as there are metrics that focus on the edges than 

on the center and vice versa adapted, other metrics that are 

adapted to human perception or for natural scenes, as well as 

other metrics, work well on high-frequency images while 

others work on low-frequency images. Indeed, traditional 

reduction methods are designed for better human visual 

perception, which makes them unsuitable for performance 

measurement metrics that use signal distortion. In this 

particular case, we cannot correctly recover images via SR 

because we can have beautiful images but at the expense of 

realism. 

The WPSNR metric significantly improves performance 

since it uses perceptual contrast sensitivity in terms of spatial 

frequency [129] to compute weights, unlike PSNR which 

considers weights to be identical throughout the learning 

process.  

This study determines the scaling factor of 4 as acceptable 

performance for the SISR methods evaluated in this paper, 

since exceeding this limit results in significant complexity and 

performance degradation. 

 The degradation method is quite important because it 

determines how the reconstruction will be done especially the 

noise and blur that sometimes block the SR process. 

Thus, most of the methods aim to have a high PSNR but 

produce blurred images, GANs try to solve this problem by 
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generating images with synthetic textures but can generate 

false textures. Today the attention mechanism in neural 

networks offers a better track for SR especially if combined 

with correlation learning between feature maps. Moreover, 

transformers are also a promising alternative. 

In order to guide the user's choice we propose to use CAR 

[123] for small and medium size datasets and if we don't know

the degradation process within the image, on the other hand,

DRLN [72] is better for small images and with high-frequency

details, moreover, HAN [103] fits well for natural images with

high-frequency content, however, ABPN [60] converges well

for a large dataset, thus, CSNLN [37] fits for natural, complex

and with repeating features, finally, SRFBN [91] is better for

images with multi-degradation. So, the scaling factor is

important, that's why we have presented the results by scaling

factor if the user knows before the desired scaling factor he

goes directly to the selected networks in this category,

otherwise, he can try a factor of 4 if the result is satisfactory

otherwise, he tries a factor of 2.

5.2 Orientations 

Despite the development made in the field of SISR, there 

are still some limitations in the existing models, in this section, 

we present practical directions to consider for the 

implementation of deep learning algorithms for image SR, in 

order to improve the existing algorithms or to guide future 

researchers in this field to solve open SR problems. Indeed, 

when applying deep learning algorithms to solve a very 

specific problem such as SISR, both common deep learning 

techniques and model learning techniques are also very 

important to consider, as well as specific knowledge of image 

and SR characteristics in order to have optimal and efficient 

architectures for SR.  

Indeed, to solve the problem of designing larger or deeper 

architectures (see Discussion) and to remain faithful to 

complex image features, the proposed model must be powerful 

in terms of learning correlations between image patterns to 

reduce the computational burden (by exploiting digital image 

properties), incorporating residual group structures. 

Furthermore, to solve the problem of image realism, it is 

necessary to work with a real-world dataset with authentic 

degradations (e.g., working with multi-resolution cameras 

without generating LR images from HR or changing the image 

acquisition sensor lens). Experiments have shown a 

remarkable increase in performance on this type of dataset as 

well as a great ability to extend to other datasets. Therefore, it 

is necessary to expand the dataset and investigate new 

strategies for learning the SISR model [19]. 

Learning methods for SR must take into account not only 

the degradation of image resolution, but also the blurring and 

noise in the images. In addition, post-processing methods can 

be used to enhance the SR process to improve the contrast in 

SISR methods, these methods should generate a low 

computational load so as not to burden the learning process 

[34, 130]. 

Thus, in this study, a comparison was made based on 

objective and subjective criteria (SSIM, PSNR, and 

architecture). However, other criteria can be considered such 

as the number of parameters, the memory footprint, and the 

learning time of the model which are directly related to the 

number of adjustable parameters. We can also consider the 

execution time of the algorithm. It is necessary to work with 

images without compression or with lossless compression, in 

order to preserve the intrinsic characteristics of the images. 

Ideally, one should work with a completely unsupervised 

pipeline, so as not to assume how the images are scaled. 

6. CONCLUSION AND PERSPECTIVES

In this paper, we conducted a comprehensive and in-depth 

study and analysis of the performance of deep learning models 

important for SISR. The study carried out considers the same 

framework of analysis to standardize the study and have a 

balanced and fair comparison, this survey has focused on 90 

algorithms that are grouped by scale factors and tested on 7 

datasets. The results obtained allowed us to classify the scale 

factor models, analyzing in detail the first 3 networks selected 

to take advantage of the techniques used. A detailed and 

systematic evaluation has been carried out through 

quantitative experiments to identify the strengths and 

limitations of these models considering reference metrics. This 

study tried to be balanced and fair by respecting the principles 

of a systematic review. As such it is noted that a considerable 

increase in accuracy and performance has been seen recently 

for SISR models but there are still other opportunities to be 

exploited and other limitations to be overcome. Thus, 

improvements to existing algorithms and other key factors for 

the design of new SISR architectures have been proposed. 

At the end of this study, we can propose some perspectives 

for neural networks for SISR, among others: 

• The combination between the understanding of

fundamental deep learning techniques (design, training, 

optimization, ...) as well as the specific problems of SISR 

(image descriptor, degradation method, ...). 

•Considering the correlations between the layers of the

neural network allows for better learning and efficient 

optimization, and the correlation between the data (image 

channels) allows for a faithful mapping between the LR and 

HR images. 

•The degradation process (subsampling) must preserve the

essential characteristics of the original image (high and low-

frequency details) for a better reconstruction. 

•The SISR algorithm must be able to control the image SR

process in both directions, i.e., both the learning of the 

degradation method and the reconstruction method. 

•The design and implementation of optimal architectures in

terms of complexity and computation time as well as in several 

parameters in order to facilitate the use of these architectures 

in the real world and on a larger scale. Thus, a more complex 

model facilitates overlearning within the network. 

•Consideration of domain-adaptive evaluation criteria as

well as designing objective and loss functions (pixel loss, 

content/perceptual loss, conflicting loss, texture loss, total 

variation loss) consistent with the domain specification, or 

combining several functions, such that the loss function 

determines the nature of the SR algorithm. 

•The adoption of the best network design strategies by

having simple networks. 
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