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Alzheimer’s disease (AD) is a neurodegenerative disorder with an unknown etiology and a 

significant prevalence. Rapid and accurate detection of AD is crucial to assist in a more 

effective and tailored treatment plan to delay the progression of the disease. This paper 

introduces a novel approach based on a time-frequency complexity map (complextrogram) 

for the automated AD diagnosis. The complextrogram is the topographic complexity level 

of an EEG signal, plotted as a function of time and frequency. The complextrogram 

representations were fed into a well-known lightweight deep neural network called 

MobileNet for robust performance on resource and accuracy tradeoffs. The experiments 

were performed using a five-fold cross-validation technique on a publicly available database 

containing clinical EEG recordings from 24 patients with AD and 24 healthy, age-matched 

controls. The proposed pipeline provided competitive performance with just 2.2 M 

parameters and achieved the best overall accuracy for some locations in the frontal lobes 

(Fp2 and F8 channels). For both channels, the classification accuracy was 100%. Also, the 

violin plot was used to get further details of the distribution of complexity values for specific 

frequency rhythms. After statistical evaluation, it was observed that neurodegenerative 

conditions caused changes in chaotic behaviors, including increased delta complexity and 

decreased alpha complexity. Results demonstrated that the complextrogram representation 

proved its potency for the input quality required by the deep learning architectures. 

Furthermore, the complextrogram method is a promising pathway to discriminate and reflect 

the fundamental characteristics of AD abnormalities. 
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1. INTRODUCTION

Alzheimer’s disease (AD) is one of the most common forms 

of dementia [1, 2]. AD is a progressive neurodegenerative 

disorder with an unknown etiology and a significant 

prevalence [3]. This disorder leads to severe symptoms such 

as memory loss and cognitive decline. It thus negatively 

affects the basic activities of daily living [4]. Rapid and 

accurate detection of AD can contribute significantly to 

reducing its destructive effect. 

AD is diagnosed through neuropsychological assessments 

that require long experimental sessions and experienced 

professionals. The fact that the pathophysiological mechanism 

at the basis of AD is still not fully understood makes the early 

and accurate diagnosis of the disease very difficult [5]. 

Neuroimaging techniques such as functional magnetic 

resonance imaging (fMRI), positron emission tomography 

(PET), computed tomography (CT), and 

electroencephalography (EEG) have a great potential to assist 

clinicians [6, 7]. Compared to other imaging tools, EEG is one 

of the most popular techniques in AD research due to its high 

temporal resolution, non-invasiveness, and relatively low 

financial cost [8]. EEG can effectively reflect the brain 

dynamics of neurodegenerative diseases. It has the capability 

of an alternative validation test for AD diagnosis. Slowed 

oscillations, decreased coherence, and drastic changes in 

subband power in EEG signals are the most typical traits 

observed with AD [9]. However, visually analyzing disease-

specific brain dynamics from EEG signals is a challenging task 

and is error-prone [10]. The development of an automated 

EEG-based diagnostic system is critical to initiating treatment 

that can significantly delay disease progression, potentially 

leading to improved patient quality of life and reduced 

healthcare costs. 

Machine learning-based AD diagnosis from EEG has 

become a critical approach to assist traditional visual 

inspection-based techniques. Conventional classifier 

architectures such as support vector machine (SVM), naïve 

Bayes (NB), random forest (RF), k-nearest neighbors (KNN), 

and linear/quadratic discriminant analysis (LDA/QDA) can 

successfully classify disease-specific EEG features [3, 11, 12]. 

Since hand-crafted features directly affect the classifier 

performance, it is crucial to determine proper feature 

extraction methods. The effectiveness of hand-crafted features 

often requires assumptions such as stationarity, high time or 

frequency resolution, and a high signal-to-noise ratio [9]. In 

this context, various linear and nonlinear features have been 

frequently used for AD diagnosis, such as amplitude envelop 

and spectral analysis [13, 14], Hurst exponent measures [15], 

relative band power [16], permutation entropy [17, 18], 

spectral entropy [19], fuzzy entropy [20], wavelet parameters 

[21], cross-correlation coefficients [22]. A robust feature 

extraction process is usually accomplished by experience or 

trial and error. This strategy may not settle well for such a 

complicated task [7]. Also, designing a robust conventional 

pipeline requires a lot of effort and is time-consuming. 
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Deep learning (DL), one of the machine learning techniques, 

has shown impressive performance in several classification 

tasks without feature engineering [23, 24]. DL does not require 

hand-crafted features and can extract features directly from 

raw data automatically [23]. This ability has attracted 

enormous interest from researchers due to its impressive 

performance in pattern recognition. However, one of the most 

crucial factors affecting DL performance is how inputs have 

been fed. Because DL models have a great potential in image 

processing, EEG time series usually are represented in image 

format (2D or 3D). In order to potentially improve DL 

performance, EEG data are represented as time × channel 

matrices [25], time-frequency representation such as 

spectrogram [26] or scalogram [27]. 

The prevalence of DL-based systems in the biomedical field 

has increased, with the recent development of graphics 

processing units (GPUs) providing an inexpensive and robust 

solution to hardware bottlenecks [8]. Previous works proposed 

efficient AD diagnosis pipelines based on various input 

formulations and deep network designs. Morabito et al. [28] 

employed the convolutional neural network (CNN) model to 

explore the representation power of DL in automated feature 

extraction. The proposed model enforced a series of 

convolutional subsampling layers to derive a novel pattern in 

the classification task of the prodromal version of dementia. 

Bi and Wang [7] proposed a multi-task learning strategy based 

on a convolutional high-order Boltzmann Machine for early 

AD diagnosis. The proposed DL pipeline could extract more 

abstract features from EEG spectral images. As a result, the 

high-level representations provided superior performance over 

several state-of-the-art methods. Rodrigues et al. [10] 

introduced an automated AD diagnosis model using an EEG-

based deep learning framework. In order to improve the 

performance of the DL network, EEG signals were represented 

as matrices of connections utilizing the various causality and 

correlations measures. Ismail et al. [29] converted EEG 

subbands into RGB image form for CNN-based early AD 

diagnosis by considering channel locations. Their strategy of 

handling EEG data as a video allowed training CNN for video 

classification. Huggins et al. [27] used resting-state scalp EEG 

signals to perform a multi-classification task. In order to boost 

DL performance, EEG data were represented as time-

frequency graphs (scalogram) using continuous wavelet 

transform. They employed an AlexNet on scalogram images 

to contribute diagnosis of AD. 

This paper introduces a novel approach based on a time-

frequency complexity map (complextrogram) of EEG signals 

to boost AD diagnosis performance. The term 

complextrogram was defined, inspired by the scalogram and 

spectrogram methods. The complextrogram is the entropic 

complexity level of an EEG signal, plotted as a function of 

time and frequency. Entropy analysis is performed as the 

essential function of the complextrogram method, as it is a 

robust technique to evaluate the unpredictability or complexity 

level of the time series. The complextrogram explores the 

phenomena of varying complexity for each frequency 

component during the period in which the signal is observed. 

More specifically, it creates new patterns as a function of time 

and frequency, considered robust multidimensional 

representations. Thus, alternations of the chaotic structure of 

brain activities in the time and frequency axis are represented 

topographically. AD diagnosis is performed from 

complextrogran images reflecting nonlinear features of EEG 

signals by employing a well-known lightweight deep neural 

network, called MobileNet [30, 31]. The primary contributions 

of this study are as follows: 

1. This paper presents the complextrogram method, which 

is a novel representation of EEG signal. Since the performance 

of the DL highly depends on input quality, input formulization 

is crucial for the robust representation. In this context, the 

complextrogram approach has a great potential to design a 

robust DL pipeline in the diagnosis of neurodegenerative 

disorders from EEG signals. 

2. The proposed DL pipeline was performed separately for 

the 19 available EEG channels. Channel-specific analyses may 

point out cerebral cortex areas where AD anomalies appear 

most prominently. Moreover, it will provide a crucial pathway 

for researchers to determine distinctive channels associated 

with complexity-type EEG patterns. 

3. The majority of current deep neural network-based 

diagnosis approaches are not suited for clinical usage due to 

hardware implementation requirements. This study proposes a 

lightweight DL architecture for AD diagnosis. The idea of a 

lightweight model can offer the opportunity to design more 

suitable for on-device various diagnosis applications. 

 

 

2. MATERIALS AND METHODS  

 

The proposed AD diagnosis system consists of a 

complextrogram representation-based DL framework. Figure 

1 graphically depicts the overall pipeline, including data 

acquisition, preprocessing steps, obtaining complextogram 

representations, the proposed lightweight DL model, and 

statistical analysis. This section presents details of each part 

included in the proposed pipeline. 

 
 

Figure 1. An illustration of the proposed methodology for automated AD diagnosis based on complextrogram representation 
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2.1 EEG data acquisition 

 

The AD database considered here was created jointly by 

researchers at Florida State University [9]. The EEG data were 

collected at a sampling frequency of 128 Hz and a duration of 

eight seconds for each individual and from 19 scalp electrodes 

(Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, 

P4, T6, O1, and O2) based on the international 10-20 system. 

The letter labels F, C, P, O, and T refer to, parietal frontal, 

central, occipital, and temporal cerebral lobes, respectively. 

EEG recordings which include two subject groups, AD 

patients and healthy controls (HC), were collected under two 

resting-states, eyes open by visual fixation and eyes closed. 

Subsequently, both groups were divided into sub-groups 

according to eyes open (A and C) and closed (B and D). 

Groups A and B represent HC that consist of 24 healthy elderly 

participants (average age 72 ± 11 years) with no personal 

history of neurological disorders. The two other groups (C and 

D) comprise 24 probable AD patients (average age of 69 ± 16 

years) diagnosed according to the National Institute of 

Neurological and Communicative Disorders and Stroke, the 

Alzheimer's Disease and Related Disorders Association 

(NINCDS-ADRDA), following the Diagnostic and Statistical 

Manual of Mental Disorders (DSM)-III-R criteria. Figure 2 

illustrates exemplary EEG signals for each group. 

 

2.2 EEG preprocessing 

 

The raw EEG recordings are naturally susceptible to 

contamination with various structural forms. The artifacts 

typically occur in several types that come from different 

sources such as ocular, cardiac, muscle, electrical interference, 

and electrode displacement [32]. Preprocessing techniques are 

not only for AD diagnosis but are common to almost all 

neuroscience tasks [33]. The preprocessing strategy generally 

consists of three steps; artifacts suppression, filtering of EEG 

signals to obtain specific bandwidths, and segmentation 

process for short-time EEG epochs [23, 32, 33].  

The EEG data used in this study was recorded free from 

ocular and myogenic artifacts. In order to remove power grid 

interference, a notch filter was applied. Since EEG recordings 

are band-limited to the range of 1-30 Hz, no specific band-pass 

filter was applied. EEG signals were segmented into 2 s epochs 

with no overlap. The epoch length is the most commonly used 

period length in AD research [33]. Thus, analysis of cleaner 

EEG recordings was achievable to avoid potential errors in the 

complextrogram representation. 

 

2.3 Complextrogram theory for input formulation 

 

Complextrogram is a topographic representation that 

demonstrates changes in complexity characteristic of an EEG 

signal as a function of time and frequency. It can provide 

valuable details for alternations of the chaotic structure of 

brain activities. In this context, entropy analysis is employed 

as the essential function. Entropy is one of the most commonly 

used nonlinear techniques in evaluating the chaotic 

characteristics of time series. It is a robust biomarker to reflect 

EEG complexity for monitoring brain abnormalities [1, 34, 35]. 

The hypothesis of decreasing the chaotic behavior of brain 

activity during AD can be quantified by using the entropy 

approach [36]. 

There are many rigorous and widespread entropy metrics 

for complexity analysis, such as approximate entropy (ApEn), 

sample entropy (SampEn), Renyi entropy (ReEn), permutation 

entropy (PeEn), Tsallis entropy (TsEn), and spectral entropy 

(SpecEn). In this study, the PeEn method was used for 

complextrogram due to its relative simplicity, low complexity 

in computation, and robustness in short and noisy observations 

[1, 36]. The proposed complextrogram technique utilizes PeEn 

but is not limited. 

 

 
 

Figure 2. Exemplary EEG segments for channel F8 (The 

columns are healthy controls and patients with AD, 

respectively. The rows represent resting-state paradigms, 

eyes open and eyes closed, respectively.) 

 

2.3.1 Permutation entropy  

The mathematical definition of the PeEn theory was 

presented in detail in Refs. [35-38]. The complexity level for 

an EEG epoch in terms of PeEn metric can be estimated as 

follows: 

1. If an EEG time series consisting of N data points is 

expressed as x(i)=[x1, x2, x3, …. xN], xi indicates to ith 

sample of the EEG signal. 

2. The signal can be reconstructed from subsets type using 

embedded size (m) and time delay (τ) as 𝑋1 =

ൣ𝑥1, 𝑥1+τ, … , 𝑥1+ሺ𝑚−1ሻτ൧, … , 𝑋𝑖  ൣ𝑥𝑖 , 𝑥𝑖+τ, … . 𝑥𝑖+ሺ𝑚−1ሻτ൧, 

 … , 𝑋𝑁−ሺ𝑚−1ሻ𝜏  = [𝑥𝑁−ሺ𝑚−1ሻ𝜏 , 𝑥𝑁−ሺ𝑚−2ሻ𝜏, … . 𝑥𝑁] . Here, 

the m number of real values contained in each Xi can be 

arranged in increasing order as { 𝑥ሺ𝑖+ሺ𝑗1−1ሻτሻ ≤

 𝑥ሺ𝑖+ሺ𝑗2−1ሻτሻ ≤ ⋯ ≤ 𝑥ሺ𝑖+ሺ𝑗𝑚−1ሻτሻ. If there are two or more 

elements of the same value in Xi, their original positions 

can be sorted such that for 𝑗1 ≤ 𝑗2 𝑥ሺ𝑖+ሺ𝑗1−1ሻτሻ ≤

𝑥ሺ𝑖+ሺ𝑗2−1ሻτሻ. Thus, we can map any vector x(i) onto a set 

of symbols. If a set of symbols is expressed as: 

 

𝑠ሺ𝑙ሻ = ሺ𝑗1, 𝑗2, 𝑗3, … 𝑗𝑚ሻ (1) 

 

where, l=1, 2, 3, …, k and k≤m! (m! is the largest number of 

distinct symbols). s(l) is one of the m! symbol permutations, 

which is mapped onto the number symbols (j1, j2, j3, … jm) in 

𝑚-dimensional embedding space.  

 

3. If P1, P2, P3, … Pk denote the probability distribution of 

each symbol sequence, respectively. The PeEn of order 

m for the can be formulated as: 

 

𝐻𝑃𝐸ሺ𝑚ሻ = −∑ 𝑃1 ln 𝑃1

𝑘

𝑙

 (2) 

 

The permutation entropy of order m can be normalized as: 

 

0 ≤ 𝐻𝑃𝐸ሺ𝑚ሻ = 𝐻𝑃𝐸ሺ𝑚ሻ lnሺ𝑚!ሻ ≤ 1⁄  (3) 

 

When the maximum value of PeEn is equal to ln(m!), this 

means that all the symbol sequences have equal probability. In 

contrast, the smallest value of PeEn denotes that the time series 
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is very regular. For a robust complexity analysis, various 

applications have frequently selected embedded dimension 

m=3, 4, …, 7. The time delay factor is performed as 1 to take 

successive points into the calculation. 

 

2.3.2 The complextrogram matrix 

The steps for obtaining the complextrogram representations 

are as follows: 

1. EEG epochs are bandpass filtered between fn to fn+1 Hz 

using the 4th order Butterworth filter. The frequency 

range fn and fn+1 is the initial frequency for 

complextrogram representation. To remove significant 

power at low frequencies (~0 Hz) caused by the DC 

offset, fn=0.5 Hz or a higher frequency will be suitable. 

2. A rectangular window with a particular window size W=n 

and n∈[1, N] is continuously shifted on the signal along 

the time axis. Here, n is the window length, and N is the 

length of the discrete-time source signal  𝑥ሺ𝑖ሻ =
[𝑥1, 𝑥2, 𝑥3, … . 𝑥𝑁].  

3. For each signal sequence where the window 

overlaps ሺ𝑥ሺ𝑖ሻ ∩ 𝑊𝑛ሻ , the PeEn metric 𝑃𝑒ሺ𝑥ሺ𝑖ሻ∩𝑊𝑛ሻ  is 

calculated. 

4. The low and high cutoff limits of the band pass filter are 

incrementally increased. Steps 1, 2 and 3 are repeated for 

all the time intervals until the process reaches the 

specified maximum frequency ( 𝑓𝑚 ). In order to 

determine the maximum frequency, the Nyquist criterion 

(fs≥2fm) will be suitable if no low pass or band pass filter 

is applied in the preprocessing stage. Here, fs denotes the 

sampling frequency. Figure 3 illustrates the flow chart of 

the methodologies applied for the proposed 

complextogram representation. 

 

After the processing steps aforementioned, the 

complextrogram matrix can be constructed as: 

 

𝐶𝑜𝑚𝑝ሺ𝑋ሻ =

[
 
 
 
𝐶1,1 𝐶1,2 … 𝐶1,𝑗

𝐶2,1 𝐶2,2 … 𝐶2,𝑗

⋮ ⋮ ⋱ ⋮
𝐶𝑖,1 𝐶𝑖,2 … 𝐶𝑖,𝑗 ]

 
 
 

 (4) 

 

For an Ci,j element of the matrix, i and j denote spatial 

position that includes time and frequency information, 

respectively. C denotes the level of complexity of the EEG 

signal at that location. For the complextrogram representation, 

embedding dimension m of 3 and time delay τ of 1 were found 

suitable for the PeEn metric. The window size was set to 32, 

the initial frequency to 1Hz, and the maximum frequency to 

30Hz. Figure 4 shows topographic visualizations of 

complextrogram matrices of sample EEG signals from AD 

patients and healthy participants. 

 

 
 

Figure 3. The flow chart of the procedures applied for the proposed complextogram representation 
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Figure 4. Complextrogram representations of sample EEG signals from each of the four groups. (a) and (b) are HC in the resting 

state with eyes open and closed, respectively. (c) and (d) are patients with AD, eyes open and closed, respectively. The colorbar 

represents the EEG complexity levels 

 

2.4 Mobilenet for a lightweight deep learning model 

 

Howard et al. proposed an efficient network architecture 

called MobileNets for robust performance on resource and 

accuracy tradeoffs [30]. The MobileNet framework employs 

depthwise separable convolutions for less computation than 

standard convolutions. The hypothesis of depthwise separable 

convolution is to factorize a standard convolution into 

depthwise and pointwise convolution. This factorization 

causes drastically accelerating the computation and reducing 

the model size. Figure 5 illustrates a depthwise separable 

convolution operation.  

For a square input, the standard convolutional layer uses the 

input as a DF×DF×M feature map (F). DF denotes the spatial 

width and height of the input, and M is the input depth. It then 

produces an output feature map (G) with the size of DF×DF×N, 

where DF denotes the spatial width and height of the output, 

and N is the output depth. The number of learnable parameters 

in the standard convolution layer is determined by the 

convolution kernel (K) of size DK×DK×M×N that assumed a 

square. Consequently, the learnable parameter size of standard 

convolutions is computed as: 

 

𝐷𝐾 ∙ 𝐷𝐾 ∙ 𝑀 ∙ 𝑁 ∙ 𝐷𝐹 ∙ 𝐷𝐹  (5) 

 

The number of input channels M, the number of output 

channels 𝑁, the kernel size DK×DK and the feature map size 

DF×DF directly affect the computational cost. The direct 

interaction of the parameters causes the computational cost to 

increase exponentially. Therefore, breaking the interaction can 

prevent the exponential increase. MobileNet can break direct 

interaction by splitting standard convolutional filter into two 

layer. It uses depthwise convolutions to apply a single filter 

per each input channel. First, it uses depthwise convolutions 

to apply a single filter per each input channel. For depthwise 

convolution, the computational cost is defined as: 

 

𝐷𝐾 ∙ 𝐷𝐾 ∙ 𝑀 ∙ 𝐷𝐹 ∙ 𝐷𝐹  (6) 

 

In order to create a linear combination of the output of the 

depthwise layer, pointwise convolution, a simple 1×1 

convolution, is then used. The final computation cost at the 

end of the two layers is as: 

 

𝐷𝐾 ∙ 𝐷𝐾 ∙ 𝑀 ∙  𝐷𝐹 ∙ 𝐷𝐹 + 𝑀 ∙ 𝑁 ∙  𝐷𝐹 ∙ 𝐷𝐹  (7) 

 

As a result, the deeply separable convolution operation 

reduces the computational cost by almost 9 times compared to 

standard convolution. MobileNets employ both batchnorm 

and ReLU nonlinearities for each convolutional step. 

In this study, the MobileNetV2 model, which is a variant of 

the MobileNet architecture, was used. The main novelty of this 

variant is the inverted residual with linear bottleneck [31]. This 

update has reduced the computational cost of the original 

framework by about 2.5 times. 

 

 
 

Figure 5. The factorization of a standard convolutional filter 

(a) into two layers. (b): depthwise convolutional filter, (c): 

pointwise convolutional filter 

 

2.5 Hyperparamater tunning 

 

The proposed DL-based diagnosis framework uses a 

lightweight convolutional network called MobileNet that 

typically has millions of parameters. The MobileNet structure 

is designed on depth separable convolutions, except for the 

first layer, which is a full convolution [30]. Its network 

topology is crucial for making robust solutions. MobileNets 

use both batch normalization and ReLU activation for both 

separate layers. Batch normalization can reduce the 

computation time of the DL pipeline by shifting input samples. 

Since it revises the inputs to have unit variance and zero mean 

at each mini-batch, it causes a tremendous difference in 

improving the training time and accuracy [39, 40]. The ReLU 

solves the vanishing gradient problem for training deep 

learning approaches.  

For the optimization, the ADAM optimizer is used in the 

training network since it has a fast convergence rate [41]. The 

initial learning rate was set as 0.001 and then decreased by a 

rate of 0.4 after every 4 epochs so that the network does not 

get stuck at the local minimum. Classification task was 

performed with batch size of 32 for 10 epochs. In order to 

minimize the risk of overfitting, the early stopping method was 

kept active. 
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2.6 Implementation and evaluation 

 

The proposed lightweight pipeline was performed 

separately for the 19 available EEG channels. As a result of 

segmentation for 2 s with no overlap, 192 EEG segments from 

healthy elderly control subjects and AD patients were obtained 

for each channel. A total of 3648 complextrogram images 

were used for all channels. The dataset consisting of 192 

images for each channel is divided into three sets for training, 

validation, and testing, with proportions of 0.60, 0.20, and 0.20, 

respectively. In addition, a five-fold cross-validation 

technique was applied to partition the dataset to ensure reliable 

generalization. 

The selection of appropriate model evaluation metrics is a 

crucial issue to provide further insights on the influence of the 

complexrogram representation in AD diagnosis. The ideal 

metric should heavily focus on the classifier's ability to 

identify patterns belonging to different groups. In this context, 

accuracy, sensitivity, specificity, precision, and F1-score 

metric are favorable because they are reliable indicators for 

classification performance. All of these metrics can be 

calculated as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (8) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦ሺ𝑅𝑒𝑐𝑎𝑙𝑙ሻ =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (9) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (10) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
 (11) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (12) 

 

For the binary classification, TP, FP, TN, and FN denote the 

true positive, false positive, true negative, and false negative 

rate, respectively.  

The receiver operating characteristic (ROC) curve was also 

employed as another performance metric. It can demonstrate 

the relation between the rate of true positives and false 

positives. The area below this curve, called the area under the 

ROC curve (AUC), has been widely used in various 

classification problems [10].  

 

 

3. RESULTS  

 

The sequential steps, such as EEG preprocessing, creation 

of the complextrogram representations, and the application of 

MobileNet, a lightweight deep learning model, were 

implemented in the Matlab (The MathWorks, Natick, MA, 

USA) environment. The experiments were conducted on a 2.7-

GHz Intel dual-core i7 processor with 16 GB RAM, NVIDIA 

GeForce ROG-STRIX 256 bit, and 8GB GPU hardware. 

 

3.1 Channel-specific discrimination of patients with ad 

from healthy controls 

 

The proposed DL pipeline was performed separately for the 

19 available EEG channels. This strategy can also demonstrate 

the influences of electrode position on the distinction between 

HC and patients with AD. The complextrogram 

representation-based classification performance was evaluated 

in terms of accuracy, specificity, sensitivity, precision, F1-

score, and AUC metrics. Table 1 demonstrates the overall 

classification performance for each EEG channel recorded 

from resting states, eyes open and closed. 

The accuracy metric is the most straightforward and reliable 

technique to show the ability of the proposed framework in 

balanced data. The results demonstrated that the classification 

accuracy for all EEG channels varied, ranging from 48.39% 

and 100%. The complextrogram-based DL pipeline revealed 

the best overall performance in some locations in the frontal 

lobes (Fp2 and F8). The proposed model presented a 

classification accuracy of 100% for both channels. The 

temporal lobe channels, excluding the T3, produced high-

quality input representations to feed into the lightweight DL 

model. The proposed model for the T6, T5, and T4 electrode 

positions achieved an accuracy of 99.47%, 97.89%, and 

97.92%, respectively. For other EEG channels, the classifier 

framework revealed a significantly better accuracy 

performance for O2, C4, and Pz channels, respectively. These 

channels presented classification accuracy ranging from 

98.42% to 99.47%. After the five-fold cross-validation, the 

complextrogram verified the remarkable input quality for the 

DL pipeline.  

 

Table 1. Overall classification performance of each EEG 

channel with resting states, eyes open and closed 

 

Notes: Acc.: Accuracy, Sen.: Sensitivity, Spe.: Specificity, Pre.: Precision, F1: 

F1-score, AUC: Area under the curve. 

 

Sensitivity and specificity are crucial metrics to evaluate the 

performance of identifying positive and negative classes, 

respectively. Table 1 shows that the specificity performance is 

100% for the F8, Fp2, and O2 channels, while the sensitivity 

performance is perfect for the F8, Fp2, and T6 channels. 

Furthermore, the model obtained a specificity of 98.94% and 

97.89% from the T6 and Pz channels, as well as a sensitivity 

of 98.94% and 97.89% from the O2 and C4 channels for AD 

diagnosis, respectively. The precision metrics demonstrate 

whether the correctly classified instances of AD patients are 

actual AD patients and whether the rest are HC incorrectly 

labeled as AD. It is s a robust indicator when there is a high 

cost of having false positives. However, the precision results 

revealed that the proposed model did not generate false-

% Acc. Spe. Sen. Pre. F1 AUC 

Fp1 89.07 88.68 89.47 89.24 88.94 93.21 

Fp2 100 100 100 100 100 100 

F7 51.57 57.42 45.73 53.26 46.76 48.45 

F3 83.23 82.21 84.26 84.46 83.84 92.17 

Fz 48.39 48.89 47.89 49.87 48.13 44.19 

F4 80.10 77.94 82.26 81.22 80.87 90.55 

F8 100 100 100 100 100 100 

T3 50.97 48.89 53.05 50.99 51.58 52.01 

C3 81.21 84.52 77.89 84.10 80.08 90.74 

Cz 86.92 88.52 85.31 89.36 86.39 94.09 

C4 98.42 98.94 97.89 99 98.37 99.55 

T4 97.92 96.89 98.94 97.04 97.94 100 

T5 97.89 96.84 98.94 97 97.92 99.94 

P3 80.21 74 86.42 77.74 81.67 90.03 

Pz 98.42 97.89 98.94 98 98.43 100 

P4 80.73 81.42 80.05 83.09 79.93 89.55 

T6 99.47 98.94 100 99 99.48 99.94 

O1 84 88.57 79.42 87.13 82.71 92.63 

O2 99.47 100 98.94 100 99.45 100 
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positive costs. The F1-score represents the average of the 

precision and recall (sensitivity). Table 1 indicated that f1-

score values for all channels are generally close to the 

accuracy performances. The proposed model presented an f1-

score rate of 100% for both Fp2 and F8 channels.  

In this study, the violin graph is used to visualize the 

statistical distributions of performance yielded by each 

classification fold. Figure 6 illustrates the violin plot of the 

performance distribution of five-fold cross-validation for each 

EEG channel. 

Figure 6 shows that accuracy performance has low variance 

in the five-fold cross-validation result, especially for temporal 

lobe locations, except for the channels where HC and AD 

classes are perfectly discriminated. For the temporal lobe 

region, including T4, T5, and T6, the accuracy performance 

distribution showed a standard deviation ranging from 1.16% 

to 1.18%. Although some electrodes in frontal lobes revealed 

the best classification performance, the majority of its 

channels performed with high variance in different training 

and testing strategies. The accuracy performance distribution 

for Fp1, Fz, and F4 showed a standard deviation of 9.35%, 

8.79%, and 7.56%, respectively, during the five-fold cross-

validation.  

 

 
 

Figure 6. Violin plot of the performance distribution of five-fold cross-validation for each EEG channel. (The x-axis represents 

channel information. Furthermore, each color denotes a different brain lobe, the y-axis represents diagnosis performance by Acc., 

Sen., Spe., Pre., F1-score, and AUC, respectively.) 

 

 
 

Figure 7. Distribution of PeEn values for specific frequency bands (the x-axis denotes each participant in which participants 

number 1-24 patients with AD, 25-48 are HC, the y-axis indicates epoch number) 
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Figure 8. Violin plots of complexity levels for participants belonging to HC and AD groups according to specific subbands (The 

first and second rows show the plots for the F8 and Fp2 channels, respectively. The first, second, third, and fourth columns show 

delta, theta, alpha, and beta subbands, respectively.) 

 

Channel-based violin plots indicated a significant increase 

in variance in the sensitivity and specificity distribution 

compared to the accuracy performance. For all cerebral lobes, 

the frontal and parietal regions had the highest variance in 

specificity performance distribution, respectively. For the 

frontal lobe region, including Fp1, F7, F3, Fz, and F4 channels, 

the specificity performance distribution showed a standard 

deviation ranging from 10.99% to 20.33%. The standard 

deviation of specificity performances for P3, Pz, and P4 

ranged from 2.88% to 14.76%. Compared with the specificity, 

the sensitivity performance revealed an overall lower variance 

for all EEG channels. More specifically, sensitivity 

performances with standard deviations ranged from 2.35% to 

11.44% were obtained for the T3, T4, and T5 channels. For the 

T6 channel, the AD patterns were perfectly discriminated from 

the healthy controls, and the standard deviation of sensitivity 

performance was determined as 0.0%. Sensitivity distribution 

also revealed satisfactory performance for the frontal lobe 

region, including Fp2 and F8. 

 

3.2 Evaluation of the complexity levels for some specific 

frequency rhythms 

 

Complextrogram technique revealed that AD dysfunctions 

could be represented most efficiently in some loci in the 

frontal and most of the right temporal lobes. Since these local 

regions offer robust classification performances based on the 

complextrogram, it is crucial to evaluate their complex 

behavior. In this context, analyzing complexity level were 

performed within specific frequency bands, including delta (δ: 

0.5–4 Hz), theta (θ: 4–8 Hz), alpha (α: 8 13 Hz), and beta (β: 

13–30 Hz). The subband rhythms have proven very efficient 

in AD diagnosis tasks. Figure 7 illustrates the distribution of 

PeEn values for specific frequency bands for the frontal 

regions. 

In this study, the violin plot method was also used to get 

further details of the distribution of PeEn values for specific 

frequency bands. The violin plots illustrate summary statistics 

of the overall complexity level for the HC and AD patient 

groups. 

Figure 8 shows that the chaotic dynamics of the EEG vary 

significantly concerning the subbands. It has been reported 

that neurodegenerative conditions reduce the unpredictability 

of alpha oscillations. For AD patients, the mean PeEn values 

of alpha oscillations from the F8 and Fp2 channels were 

reported as 0.681 and 0.683, respectively. On the other hand, 

the mean PeEn values of alpha oscillations from the F8 and 

Fp2 channels for the HC group were reported as 0.694 and 

0.697, respectively. Violin plots related to alpha oscillations 

show that the complexity levels in both groups were 

concentrated around the median. The results demonstrate the 

functional role of alpha oscillations in the complexity analysis 

of Alzheimer's disease. For beta oscillations, it was determined 

that the median points were close for both groups, but the PeEn 

value distributions for AD patients had a higher variance. For 

AD patients, the standard deviation of the PeEn values is 0.013 

and 0.011 for F8 and Fp2, respectively, while the standard 

deviation of the PeEn values for the HC is 0.009 and 0.018. 

 

 

4. DISCUSSION  

 

The state-of-the-art DL models do not require precisely 

designed hand-crafted features for a robust diagnosis. Instead, 

the models automatically learn optimal features from data. 

Deep learning architectures have successfully applied these 

capabilities in many EEG-based diagnostic and classification 

tasks, including AD diagnosis, motor imagery, seizure 

detection, sleep stage scoring, and emotion recognition tasks. 

However, the input formulation of the EEG signals directly 

affects the performance of the proposed models. The input 

formulation should represent the natural variations of the EEG 
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without ignoring the fundamental characteristics (non-linear 

and non-stationary) [8, 23, 39]. The successful results obtained 

in this study showed that the complextrogram method is 

promising as it is a natural variant of EEG signals and reflects 

well the fundamental characteristics.  

Brain activity contains several EEG rhythms that indirectly 

reflect the fundamental characteristic of neurodegenerative 

conditions. Previous studies have emphasized that decreasing 

complexity, especially at higher frequency rhythms, can be 

assumed as a potential diagnostic biomarker in AD patients [1, 

6, 18]. With this motivation, the variation of the subband 

complexity dynamics for EEG channels that offered the best 

classification performance was also explored. After statistical 

evaluation, it was observed that neurodegenerative conditions 

caused changes in chaotic behaviors, including increased delta 

complexity and decreased alpha complexity. The fact that the 

results are consistent with the literature indicates that the loci 

in the cerebral lobes determined by the proposed model for AD 

diagnosis are well-directed.  

For evaluation of the efficiency of complextrogram 

representation, the proposed model was compared to other 

available conventional and deep learning pipelines based on 

EEG signals. Further details of the related works considered 

for the comparison were categorical structured and 

summarized in Table 2. 

The DL models have provided robust solutions in various 

applications such as natural language processing, image 

processing, computer vision, machine translation, and medical 

imaging [7, 24, 39, 43]. Among deep learning techniques, 

CNN models have shown tremendous performance because 

they handle the problem like a human visual processing system 

and are optimized in structure to process 2D and 3D images 

[39]. However, the model sizes of convolutional architectures 

have also increased with getting deeper for higher accuracy. 

This situation hinders an efficient trade-off between learnable 

parameter size and accuracy. In this study, a lightweight 

diagnostic model was created using the MobileNet, which is 

quite small compared to other architectures. The MobileNet 

architecture offered competitive performance with just 2.2 M 

parameters using complextrogram representation. Thus, the 

results show that the proposed model is computationally 

efficient for hardware implementation. 

5. CONCLUSIONS

Even though deep neural networks are capable of rapid and 

accurate decision support, their efficiency is highly dependent 

on input quality. Complextrogram proved its potency for the 

input quality required by the DL architectures. This novel 

representation technique led to a topographic representation 

that demonstrates changes in complexity characteristic of an 

EEG signal as a function of time and frequency. It provided 

valuable details for alternations of the chaotic structure of 

neurodegenerative disorder. Complextrogram enabled deep 

architecture to extract distinctive patterns by providing 

disease-specific brain complex dynamics as common patterns 

spanning each subband. Thus, it directly improved the 

performance of the proposed diagnosis pipeline. 

This study not only performed a classification task but also 

analyzed the variation of the complexity characteristic 

according to the specific frequency rhythms for the optimal 

channels determined in the AD diagnosis. The results obtained 

after extensive analyzes are promising for understanding the 

complex mechanisms underlying AD and designing an 

advanced computer-aided diagnosis model. 

A limitation of the proposed methodology is that the publicly 

available EEG dataset is not large enough for a typical DNN. 

The performance of DL methods directly increases with the 

availability of large datasets. In this study, the limited data set 

based on time series was transformed into a larger image 

dataset by the processing steps applied in the study. Despite 

this limitation, the proposed pipeline has demonstrated the 

ability to discriminate AD patients from healthy controls. 

Future work will include performing the proposed model on 

big and different problem-specific datasets. 

Table 2. An overview of the related works to compare the accuracy performance achieved by the proposed pipeline 

Author(s) EEG marker(s) Classifier Channel 
Epoch 

length 
Subjects 

Classification 

problem 
Acc. 

Chen et al. [22] 
Detrended cross correlation 

analysis coefficients 
LDA 16 8 s 15 AD, 15 HC AD/HC 

90% (C3 and 

P3) 

Oltu et al. [16] 
DWT, relative band power, 

coherence 
Bagged Trees 

19 
30 s 

8 AD, 16 MCI, 

11 HC 
AD/MCI/HC 96.5% 

Deng et al. [17] 
Multivariate multi-scale 

weighted PeEn 
ROC analysis 16 8 s 14AD, 14 HC AD/HC 

96.7% (right 
frontal region) 

Falk et al. [13] 
HHT, Amplitude 

modulation analysis 
SVM 

19 
5 s 

10AD, 11 

MCI, 11 HC 
AD/HC 90.6% 

Sharma et al. [19] 
PSD, spectral entropy, 

fractal dimension 
SVM 

21 
- 

15AD, 15MCI, 

13 HC 
AD/HC 82% 

Babiloni et al. [42] 
Cortical sources of power 

and functional connectivity 
ROC analysis 

19 
2 s 

120 AD, 100 
HC 

AD/HC 75.5% 

Bi and Wang [7] EEG spectral image CssCDBM 
64 

60 s 
4AD, 4MCI, 

4HC 
AD/MCI/HC 95.04% 

Morabito et al. [28] 
Time-frequency 
representation 

CNN 
19 

5 s 

63AD, 

56 MCI, 

23 HC 

AD/HC 
AD/MCI/HC 

85% 
82% 

Ismail et al. [29] 
2D image of the brain 

electrodes 
CNN 

10 
2 s 

20AD, 

20 MCI, 

20 HC 

AD/HC 
MCI/HC 

92.56% 
90.36% 

This study 
Complextrogram 

representation 

A lightweight 

DNN 
19 2 s 

24 AD 

24 HC 
AD/HC 

100% 

(Fp2 and F8) 

Notes: AD: Alzheimer’s disease, HC: Healthy controls, MCI: Mild cognitive impairment, HHT: Hilbert Huang Transform, SVM: Support Vector Machines, LDA: 
Linear Discriminant Analysis, CNN: Convolutional neural networks, PSD: Power spectral density, PeEn: Permutation entropy, Acc.:Accuracy, CssCDBM: 

Contractive Slab and Spike Convolutional Deep Boltzmann Machine, DWT: Discrete wavelet transform, DNN: Deep neural network 
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