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In response to the problem that the previous pose detection systems are not effective under 

conditions such as severe occlusion or uneven illumination, this paper focuses on the 

multimodal information fusion pose estimation problem. The main work is to design a 

multimodal data fusion pose estimation algorithm for the problem of pose estimation in 

complex scenes such as low-texture targets and poor lighting conditions. The network takes 

images and point clouds as input and extracts local color and spatial features of the target 

object using the improved DenseNet and PointNet++ networks, which are combined with a 

microscopic bit-pose iterative network to achieve end-to-end bit-pose estimation. Excellent 

detection accuracy was obtained on two benchmark datasets of LineMOD (97.8%) and 

YCB-Video (95.3%) for pose estimation. The algorithm is able to obtain accurate poses of 

target objects from complex scenes, providing accurate, real-time and robust relative poses 

for object tracking in motion and wave compensation. 
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1. INTRODUCTION

In the process of parallel supply at sea, due to the action of 

wind, waves, currents and other environmental factors, the 

ship will produce movement in six degrees of freedom: heave, 

sway, surge, pitch, roll and yaw [1, 2], In high sea state, the 

hydrodynamic interference between the two ships will also 

produce more violent coupling motion than that of a single 

ship, which is very likely to cause collision between the lifting 

cargo and the hull, seriously affecting the safety and efficiency 

of marine supply operations [3]. Therefore, the development 

of wave compensation function of the sea supply operations 

equipment, is to enhance the urgent realistic needs of distant 

sea escort and ocean combat capabilities. 

During the operation of the actual wave compensation 

system, the position detection system detects the six degrees 

of freedom movement of the ship under the action of waves in 

real time, and the control system calculates the change of 

relative positions of the two ships based on the feedback 

position data, and servo-controls the movement of the lifting 

robot arm in space to ensure that the instantaneous relative 

distance between the lifting cargo and the target position is 

always the same, so as to achieve the purpose of wave 

compensation [4, 5]. It can be seen that the real-time detection 

of the six degrees of freedom attitude change of the ship is a 

prerequisite for the accurate motion control of the wave 

compensation device, and plays a decisive role in enhancing 

the active wave compensation technology. 

Six-degree-of-freedom stages are widely used in 

manufacturing assembly [6], wave compensation [7], 

aerospace [8] and other fields because of their high stiffness, 

high accuracy, fast response, high load-bearing capacity and 

relatively easy control. The schematic diagram of the six-

degree-of-freedom platform posture detection problem is 

shown in Figure 1. The six-degree-of-freedom platform 

consists of six electric actuators, six Hooke hinges on the top 

and bottom, and two platforms on the top and bottom. The 

lower platform is a fixed platform, which is fixed on the 

ground to support the whole system, and the upper platform is 

a dynamic platform, which can complete the movement of the 

upper platform in six degrees of freedom in space by 

controlling the telescopic movement of six electric actuators. 

The posture of the dynamic platform is an important parameter 

reflecting the six degrees of freedom platform, which is an 

important reference value for realizing the closed-loop real-

time control of the six degrees of freedom platform, analyzing 

the dynamic performance of the end-effector, optimizing the 

design scheme, and analyzing the causes of failure, etc. [9]. 

Figure 1. Schematic diagram of the six-degree-of-freedom 

platform posture detection problem 

Renaud et al. [10] used a monocular camera to detect the 

marker points on the branch chain and the moving platform of 

the H4 parallel mechanism to infer the positional position of 

the end of the mechanism. Using this method requires the 
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acquisition of more than two images of the branch chain and 

the acquisition of image depth information, and the movement 

of the mechanism causes errors in the positioning points 

during image acquisition, resulting in reduced detection 

accuracy. Andreff et al. [11] achieved visual servo control of 

a parallel robot by binocularly photographing the image 

changes of each branch chain, and it is difficult to achieve 

tracking and obstacle avoidance of the end-effector because 

the measurement object is the mechanism branch chain rather 

than the end-effector. Bellakehal et al. [12] used a visual 

inspection device to measure the posture of a moving platform 

and implemented visual servoing based on it, but there are still 

major limitations in using this method for posture 

measurement because the measurement object is set to the 

mechanism support chain. 

Vision inspection technology was developed rapidly in the 

1990s, and vision-based six-degree-of-freedom platform 

attitude measurement has gradually become a scientific 

hotspot. Zhang [13] uses a joint spatio-temporal segmentation 

algorithm to extract the motion target and describe the six-

degree-of-freedom platform poses using three points that are 

not co-linear on the moving platform. Chen et al. [14] used 

Harris feature extraction algorithm to track the end-effector of 

the parallel mechanism and effectively detected the complex 

motion of the parallel robot in multiple directions and spaces. 

Zhou and others [15] positioned the center point of the moving 

platform by image processing technology to achieve the 

positional measurement of the 3-PRR parallel platform. Gao 

and Zhang [16] used the Harris-SIFT algorithm to match the 

features of the acquired moving platform images, and used the 

RANSAC algorithm to improve the matching accuracy and 

speed. Cui [17] detected the feature points on the marker plate 

by binocular camera and solved the position of the moving 

platform in polar coordinate system. Ren [18] uses a 

monocular camera to detect rectangular markers pasted on a 

moving platform and matches the positions of four feature 

points in the image by the PnP algorithm to achieve the 

estimation of the position of the parallel robot. Zhao et al. [19] 

performed 3D reconstruction of the spatial points to obtain the 

end poses of the parallel mechanism by detecting the four 

marker points pasted on the moving platform and performing 

stereo matching. Yang [20] used a coordinate feedback-based 

corner point detection algorithm and a double-sorted stereo 

matching algorithm to detect the parallel mechanism poses. 

Gao and Han [21] matches the actuator end with an improved 

PROSAC algorithm to solve the problem of degraded 

positional measurement accuracy due to interference factors 

such as light and noise. 

Traditional bit-pose estimation algorithms generate global 

features directly from color and depth images, which are prone 

to undetectable or reduced detection accuracy in the face of 

complex scenes such as object occlusion and uneven 

illumination. In this paper, we propose a multimodal data 

fusion algorithm for pose estimation. The network uses images 

and point clouds as input, abstracts color and geometric 

features using a heterogeneous feature extraction network and 

fuses them, and achieves end-to-end pose estimation by 

combining a microscopic pose iterative network to achieve an 

efficient balance between detection accuracy and 

computational efficiency. 

 

 

2. RELATED WORK 

 

In this section, we present related work and report on the 

differences of our proposed approach. 

 

2.1 Network framework 

 

The overall framework of the multimodal information 

fusion for bit pose estimation algorithm is shown in Figure 2, 

which includes two stages: multimodal feature fusion and 

target bit pose prediction. In the first stage, color and 

geometric features are extracted from both image and point 

cloud modal data using two heterogeneous networks, 

respectively, and then fused pixel-by-pixel in the neural 

network. In the second stage, the initial poses are estimated 

from the fused features, and then the initial poses are 

iteratively refined to obtain more accurate poses by means of 

cyclic learning. 

 

 
 

Figure 2. Overall framework of the pose estimation algorithm 
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Figure 3. The overall framework of DenseNet 

 

2.2 Network structure improvement 

 

In the actual bit pose estimation process, due to the 

existence of object occlusion or inaccurate semantic 

segmentation, the acquired global features may contain a large 

amount of noise interference from the background or non-

target objects, which will lead to a decrease in detection 

accuracy if fused blindly. In addition, using RGB-D data as 

input can well solve the problem of uneven lighting, but the 

disorder of point cloud data makes it difficult to extract 

geometric features. Therefore, in this paper, based on 

DenseFusion [22], two heterogeneous networks, improved 

DenseNet and PointNet++ [23], are used to extract color 

features and geometric features, respectively, and finally 

pixel-level feature fusion is performed based on convolutional 

neural networks. 

 

2.2.1 Color feature extraction 

The color feature extraction uses the improved DenseNet 

network as the color feature extraction backbone network to 

map the color image of H×W×3 to the geometric space of 

H×W×d, which makes a close correspondence between the 3D 

point features and the image features. The overall framework 

of the DnesnNet network is shown in Figure 3, which focuses 

on the improvement of the bottleneck and transition layers of 

the network. 

  

 

(a) DenseNet Network 

Bottleneck Layer 

(b) Improving the 

DenseNet network 

bottleneck layer 

 

Figure 4. Comparison of bottleneck layer improvements 

 

(1) Bottleneck improvement 

As shown in Figure 4(a), the DenseNet network first uses 

1×1 convolution to compress the channels to 4k, and then 

extracts the features by 3×3 convolution. Its densely connected 

approach leads to the fact that the number of output channels 

is much larger than the number of input channels after several 

bottleneck layers of superposition processing, which increases 

the computational overhead of the intermediate layers. As 

shown in Figure 4(b), the number of model parameters is 

reduced by adjusting the number of intermediate channels to 

be no higher than the number of input channels according to 

the number of input channels Cin and k. As shown in Figure 

4(b), the number of intermediate layer channels is adjusted 

according to the number of input channels Cin and k not higher 

than the number of input channels as a way to reduce the 

number of model parameters. In addition, a new branch 

consisting of two 3×3 convolutions is added in the bottleneck 

layer to obtain feature maps with different perceptual fields, 

taking into account targets of different scales. Finally, the 

feature maps are densely connected by stitching them together 

on the channels to ensure the same size and number of 

channels inside the Block. 

(2) Transition layer improvement 

Deep neural networks perceive only through convolutional 

kernels, which are difficult to capture local contextual 

information, and this global perception capability is necessary 

for the network to understand the high-level semantic 

information of images. For this reason, a self-attention 

mechanism is introduced at the end of each transition layer, 

which adaptively learns the weights assigned to each feature 

channel based on the captured pixel features, enhancing the 

important channels and suppressing the unimportant ones, 

giving a huge boost to the deep neural network.  

 

 
 

Figure 5. Transition layer improvement measures 

 

As shown in Figure 5, for a given input feature, the feature 

map 𝐵 ∈ ℝ𝐶×𝑁  and 𝐵𝑇 ∈ ℝ𝑁×𝐶 is obtained after 

reconstruction, B and BT are multiplied and input to the 

softmax layer to obtain the feature map 𝑋 ∈ ℝ𝐶×𝐶 . The 

influence weight of the i-th channel on the j-th channel is: 
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In addition, the XT and B matrices are multiplied and the 

result is reconstructed into 𝐷 ∈ ℝ𝐶×𝐻×𝑊. The feature map D 

is then summed element by element with A: 
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The final feature map 𝐹 ∈ ℝ𝐶×𝐻×𝑊 with feature weighting 

for all channels is obtained. 

 

2.2.2 Point cloud feature extraction 

A point cloud is a collection of discrete points in space, 

which is characterized by disorder, correlation and spatial 

transformation invariance. By doing feature mapping from 

low-dimensional to high-dimensional for each point through 

PointNet network, and then max-pooling all the high-

dimensional features can get the global features, but 

completely ignore the local features between the point pairs 

[24]. To solve this problem, this paper uses the PointNet++ 

network [23] shown in Figure 6 as a point cloud feature 

extraction backbone to obtain richer local geometric features.  

 
 

Figure 6. PointNet++ network structure 

 

 
 

Figure 7. Dense fusion module 

 

PointNet++ borrows the design concept of CNN multilayer 

perceptron and adopts the coding-decoding structure as the 

main framework of the network. In the feature encoding 

network, the point cloud-level feature extraction is mainly 

realized through a multi-level downsampling structure, in 

which key points are extracted to construct locally significant 

feature regions and fully express the point cloud features of 

local regions. In the feature decoding network, the current 

feature map is fused with the underlying feature map using the 

operation of reverse interpolation and jump connection, and 

the local and global features are recovered by up-sampling step 

by step, thus completing the point-to-point feature recovery.  

2.2.3 Dense feature fusion 

After the above work on improving DenseNet [25] and 

PointNet++ [23], color features are extracted from images and 

point clouds along with geometric features. The mainstream 

approach is to generate global features from segmented 

regions and deep features, however, when there is mis-

segmentation or occlusion, the wrong features may lead to 

degradation of the bit-pose estimation performance. Therefore, 

this paper adopts a local pixel-level feature fusion method to 

reduce the effects of occlusion and illumination on the network, 

and the specific flow of dense fusion is shown in Figure 7. 
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Firstly, the geometric and color features of each pixel point 

are stitched together in the channel dimension to obtain locally 

fused features. Secondly, the locally fused features are fed into 

a multilayer perceptron to achieve information integration and 

global averaging pooling is used to reduce the effect of point 

cloud disorder, resulting in a global feature vector with richer 

information content. Finally, the global feature vector is 

stitched to the back of the local feature vector to obtain a 

multimodal fusion feature vector with aggregated contextual 

information. 

 

2.2.4 Pose regression refinement 

The pose regression refinement includes a pose regression 

module, which is used to estimate the initial pose from the 

fused feature vector, and an iterative refinement of the initial 

pose.  

(1) Pose regression module 

After the above operation each fused feature contains three 

parts: color features, geometric features and global features, 

and then the fused features are fed into the pose prediction 

network. As shown in Figure 8, the bit-pose regression module 

consists of three parts: the rotational vector regression network 

and the translational vector regression network, as well as the 

confidence regression network, which are all composed of 3×3 

convolution and ReLU activation functions. Each pixel feature 

input to the network predicts a pose, and eventually a set of 

predicted poses is obtained, and then the best pose in this set 

is selected as the initial pose by the confidence regression 

network. 

 

 
 

Figure 8. Return of the poses to the network 

 

Global 
feature

R

T

Rotation 
residual

Translation 
residual

Current input 
point cloud

Transformed 
point cloud

P
o

in
tN

et+
+ Next iteration

Pose 
residual 
estimator

Dense Fusion

Color 
Embeddings

Geometry 
embeddings

 
 

Figure 9. Pose iterative refinement network 

 

(2) Iterative refinement module 

Most of the positional estimation networks use iterative 

closest point algorithm (ICP) for positional refinement, which 

can obtain high positional detection accuracy, but ignores the 

impact on the real-time performance of the detection algorithm. 

In this paper, an iterative refinement module based on neural 

networks is used instead of the traditional way of offline post-

processing methods to correct the error of the initial estimated 

poses in an iterative manner, which can be implemented 

jointly with the overall network to provide an end-to-end 

workflow for fast and robust correction of the final pose-

estimation results.  

As shown in Figure 9, the positional refinement network is 

an iterative refinement of the initial estimated poses, i.e., 

predicting the amount of correction from the last positional 

estimate. Specifically, in each iteration, the bit pose residual 

estimator takes the initial bit pose predicted in the previous 

frame as input, rotates and transforms the point cloud input in 

the current frame, and inputs it into the current frame. The 

remaining residual poses are predicted based on the previously 

estimated poses, and the potential more accurate poses are 

obtained by iteration. After K iterations, the final positional 

estimate is obtained as the connection of each iteration 

estimate: 

 

     1 1 0 0
ˆ | | |K K K Kp R t R t R t− −=     (3) 
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The positional refinement network can be trained jointly 

with the main network, but the noise of the positional 

estimation out of the training is too large to learn something 

meaningful, so the training of the iterative refinement network 

starts when the loss value is below a set threshold. The 

positional refinement network can be trained jointly with the 

main network, but the noise of the positional estimation out of 

the training is too large to learn something meaningful, so the 

training of the iterative refinement network starts when the 

loss value is below a set threshold. 

 

 

3. MODEL TRAINING DETAILS 

 

In this section, the details of model training are introduced 

from three aspects: the measured dataset, the model loss 

function and the setting of the training strategy. 

 

3.1 Evaluation dataset 

 

In this paper, the evaluation of this paper's method is carried 

out on two 6D object pose estimation benchmark datasets, 

LineMOD [26] and YCB-Video [27].  

(1) LineMOD datasets 

The LineMOD dataset contains 13 videos of low-texture 

objects against cluttered backgrounds, from which 1214 key 

frames are selected as the training set and 1335 key frames as 

the test set, with each frame labeled with only one real 6D pose 

label of the target object.  

(2) YCB-Video datasets 

The YCB-Video dataset contains 21 videos of textured 

objects in indoor scenes, from which 5,000 keyframes are 

selected as the training set and 1,000 keyframes as the test set. 

In addition the dataset provides synthetic rendered images to 

enhance the training set.  

 

3.2 Model loss function 

 

Suppose the translation prediction vector of the ith feature 

element is �̂�𝑖 . If the rotation matrix �̂�𝑖  obtained from the 

prediction is combined with the translation vector �̂�𝑖 , the 

predicted label between the camera and the target object can 

be obtained as �̂�𝑖 = [�̂�𝑖|�̂�𝑖]. Similarly, the true label can be 

known as 𝑝𝑖 = [𝑅𝑖|𝑡𝑖]. If xj denotes the jth point of M key 

points randomly selected from the real label of the object, the 

visual positional estimation loss function can be defined as the 

distance between the real label of the object and the 

corresponding point on the predicted label.  

 

( ) ( )1 ˆ ˆp

i j i j i

j

L Rx t R x t
M

= + − +  (4) 

 

If the target is a symmetric object, the above loss function 

will cause the learning target to be blurred and multiple cases 

of correct poses may be obtained using Eq. (4), when the 

distance between the predicted label and the nearest point on 

the true pose-label can be minimized to estimate the loss 

function will change to Eq. (5).  

 

( ) ( )
0

1 ˆ ˆminp
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j
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= + − +  (5) 

 

In addition, based on the contextual information of each key 

point it can be determined which bit pose is the best hypothesis, 

and the final loss function is defined as Eq. (6).  

 

( )
1

lnp

i i iL L c w c
N

= −  (6) 

 

In Eq. (6), N is the number of dense pixel features randomly 

drawn from the real model p, and w is a balanced 

hyperparameter. A low confidence level causes a low 

positional estimation loss and leads to a high penalty in the 

second term, and conversely the highest confidence level 

predicted positional is used as the final output. 

 

3.3 Experimental training strategy 

 

In this paper, we adopt the same training strategy as 

DenseFusion [22], using real labels during training and split 

labels during testing. The experimental hardware includes 

Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz, NVIDIA 

GeForce RTX 2080×2. The experimental operating system is 

Ubuntu 18.04, and the software used is CUDA10.0, 

Pytorch1.2.0. The model training epoch is set to 100, and the 

initial learning rate is 0.001. The initial learning rate is 0.001, 

and when the loss value decreases to 0.018, the iterative 

refinement of the model is started, and the number of iterations 

is set to 2.  

 

 

4. EXPERIMENTAL RESULTS ANALYSIS 

 

This section first presents the experimental measurement 

dataset, experimental implementation details, and evaluation 

metrics. Next, the effectiveness of the proposed modules is 

analyzed through an ablation study. Then the proposed method 

is compared with the existing techniques and the effectiveness 

of the proposed method is verified by quantitatively analyzing 

the model segmentation performance based on the 

experimental results. Finally the visualization results of the 

proposed method on two datasets are analyzed qualitatively in 

order to get a more intuitive feeling.  

 

4.1 Evaluation indicators 

 

To comprehensively evaluate the proposed approach, the 

average closest point distance (ADD-S) and the model average 

distance (ADD) are used as quantitative metrics in this paper.  

For non-symmetric objects, the average closest point 

distance (ADD-S) is used for evaluation. As shown in Eq. (7), 

the average distance between two models of predicted poses 

and ground truth poses was calculated. When the distance is 

less than 10% of the model diameter, the predicted poses are 

considered to be correct.  

 

( ) ( )
0

1 ˆ ˆmin j i j i
k M

j

ADD S Rx t R x t
M  

− = + − +  (7) 

 

For symmetric objects, the average distance (ADD) of 

model points is used for evaluation, as shown in Eq. (8). The 

distance is calculated using the nearest point, and the nearest 

distance can be calculated by the fast search algorithm KNN 

(KNearest Neighbor).  
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4.2 Model ablation experiments 

 

In order to verify the effect of bitwise iterative refinement 

and to obtain the optimal number of iterations, ablation 

experiments with 0-4 bitwise iterative refinements were 

designed in this paper, and the experimental results are shown 

in Table 1.  

The pose refinement module can significantly improve the 

accuracy of the final pose prediction and achieve the original 

purpose of the network design. As the results in the table show, 

two iterations of refinement are finally chosen in this paper 

after each prediction of the initial pose, while satisfying the 

real-time requirements of pose estimation. 

Table 1. Pose estimation results of ablation experiments 

 

Evaluation 

dataset 

Accuracy 

0th 1th 2th 3th 4th 

LineMOD [26] 94.6 96.2 97.8 97.6 96.7 

YCB-Viedo [27] 92.1 95.1 95.3 95.0 95.1 

 

4.3 Model performance comparison 

 

In order to better evaluate the performance of the 

multimodal information fusion pose estimation algorithm, this 

paper compares with two methods, DenseFusion [22]and 

MaskedFusion [28], on two pose estimation benchmark 

datasets, LineMOD [26] and YCB-Viedo [27], and the results 

are shown in Figures 10 and 11.  

 

 
 

Figure 10. Comparison with the same type of method on the LineMOD dataset 

 

 
 

Figure 11. Comparison with the same type of methods on the YCB-Viedo dataset 

 

The method in this paper achieves a significant 

improvement over the same type of positional estimation 

network because the model uses both image and point cloud 

modal data, and the interaction between the extracted color 

and geometric features strengthens the mapping relationship 

between the features and the positional information, making 

the positional estimation algorithm more efficient.  
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4.4 Comparison of detection effects 

 

In this section, the proposed network is tested on LineMOD 

and self-built container datasets, and the final output of the 

network is rotation vectors with translation vectors. In order to 

express the effect of the positional detection more intuitively, 

the results of the network prediction are projected onto a two-

dimensional image for qualitative analysis of the model 

performance, and the visualization results are shown in Figure 

10.  

(1) LineMOD Datasets 

Figure 12 shows the visualization of the experimental 

results in the LineMOD dataset. From the figure, it can be seen 

that the algorithm can well weaken the influence of 

environmental factors on the positional estimation results, and 

it is also applicable to a variety of situations such as poor 

lighting conditions and low-texture targets, which 

demonstrates the reliability of the positional estimation 

algorithm in this paper.  

(2) Self-built Container Datasets 

Figure 13 shows the visualization of the experimental 

results on the container dataset. From the figure, it can be seen 

that the positional estimation results fit the containers better 

under different lighting conditions, which shows the reliability 

of the positional estimation algorithm in this paper. 

 

 
 

Figure 12. Visualization of experimental results on 

LineMOD dataset 

 

 
 

Figure 13. Visualization of experimental results on container 

dataset 

 

 

5. CONCLUSIONS 

 

In this paper, we propose a multimodal information fusion 

approach for pose estimation for six degrees of freedom pose 

detection problem in complex scenes. First, the network takes 

RGB-Point heterogeneous data as input, and extracts dense 

color features of the input image by a modified DenseNet 

network and spatial geometric features of the input point cloud 

using a PointNet++ network. Then, the extracted color features 

are embedded into the spatial features to achieve pixel-level 

feature fusion, and the target coarse poses are estimated based 

on the fused features. Finally, using a differentiable bit-pose 

iterative network, the rough bit-pose estimate of the previous 

frame is iterated cyclically as the initial bit-pose to fit a more 

accurate bit-pose and achieve end-to-end bit-pose estimation. 

The proposed method obtains excellent positional detection 

results on two positional estimation benchmark datasets, 

LineMOD (97.8%) and YCB-Video (95.3%), which can better 

cope with the effects of severe occlusion and changes in 

lighting conditions, and initially meets the requirements of a 

wave-compensated positional detection system.  
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