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Road extraction from high-resolution remote sensing images has a lot of practical value and 

significance and has been a research hotspot. Considering that methods based on deep 

learning and the attention mechanism have achieved good performance in road detection, 

this paper proposes a deep residual network and an attention mechanism based on the fusion 

of multiple road features. The encoder–decoder structure of the U-net network with strong 

multitasking generality is adopted as the basic network. It integrates the spatial multi-scale 

and multi-channel features of the road to enhance the robustness of feature extraction. 

Meanwhile, the decoder design based on the attention mechanism further improves the 

recognition accuracy and effectively curbs the increase in computing cost and time cost. A 

loss function based on the gradient coordination mechanism is introduced to address the 

imbalance of road sample data. Finally, experimental verification is carried out on two 

public road datasets and both qualitative and quantitative comparisons are conducted. 

Results show that the proposed method is satisfactory and outperforms other methods. 
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1. INTRODUCTION

With the rapid development in space science and 

technology, the number of high-resolution remote sensing 

satellites in orbit continues to increase. This has reduced the 

acquisition cost of high-resolution earth observation image 

data, and the data acquired are more diverse and 

comprehensive. Compared with low-resolution remote 

sensing image data, high-resolution remote sensing image data 

have more spatial details, providing a large amount of rich data 

with clear details for remote sensing scientific research [1-3]. 

With the large amount of high-resolution remote sensing im-

age data, the research on remote sensing feature classification 

and detection, including the research on terrain classification 

and road detection, has made great progress [4, 5]. Road 

extraction based on remote sensing images has wide 

applications, for example, in map update, urban planning, 

unmanned navigation, disaster relief, and mitigation [6-8].  

For road extraction, investigations have been carried out for 

decades. Zhao et al. [9] proposed the use of PCA to analyze 

the multi-spectral bands to combine the multi-spectral features 

with statistical features for road detection. Shi et al. [10] and 

Miao et al. [11] adopted the adaptive classification method to 

analyze the multi-spectral features and combined road 

geometric features to extract non-occluded roads. Que et al. 

[12], Shanmugam et al. [13], and Mu et al. [14] compared each 

pixel grayscale feature in remote sensing images with one or 

more thresholds for road detection and declared that the 

difference and critical points help determine the optimal 

threshold. Tan and Zeng realized road extraction and detection 

by using the edge detection algorithm of the Sobel operator 

and Canny operator [15, 16]. Cai et al. [17] proposed an 

improved watershed algorithm to segment the image into 

individual connected closed regions and select appropriate 

thresholds to optimize road segmentation. Jin et al. [18] 

proposed a regional value-added algorithm that continuously 

merges pixels that can satisfy the judgment conditions and 

grows iteratively as new seeds. Cheng et al. [19] proposed a 

method based on texture and geometric features of remote 

sensing images for road extraction, which is not satisfactory 

for discontinuous road recognition.  

In recent years, deep learning algorithms have made 

remarkable achievements in the fields of computer vision and 

artificial intelligence. Cheng et al. [3] proposed a cascaded 

end-to-end convolutional neural network (Cas Net) to 

automatically complete road region extraction and road 

centerline extraction and further used the results for road 

region detection. This method overcomes the problem of 

vehicle and tree occlusion. Lu et al. [20] proposed a multi-

scale multi-task deep learning framework to automatically 

complete both road region extraction and midline extraction. 

In addition, a convolutional neural network method based on 

edge enhancement was pro-posed [21], which effectively 

overcomes the influence of tree shadow and vehicle 

interference in the images.  

High-resolution remote sensing images contain a large 

number of features related to ground objects, and road data 

account for a small proportion of these features. A model with 

high feature learning and feature expression capabilities is 

required to accurately and comprehensively identify and 

extract road features. Therefore, it is a great challenge to 

overcome the data imbalance between ground objects to 

accurately extract road features from high-resolution remote 

sensing images. 
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Road information is hierarchical, that is, in high-resolution 

images of different sizes, the road presents different feature 

information. It is necessary to carry out feature extraction at 

different scales and fuse the feature information on different 

scales to obtain the complete features of the road accurately. 

Therefore, multi-scale road feature recognition is another 

major challenge. 

In addition, deep learning methods rely on a large number 

of convolution operations to complete the learning and 

training of model parameters, which involves a large 

computing cost. Since convolution is not effective for every 

computation, many computations are redundant, leading to 

unnecessary costs and time expenditure. Therefore, how to 

reduce invalid calculations, saving on calculation costs and 

shortening training time, is also a key problem of deep-

learning-based road recognition methods. 

To overcome the above mentioned problem, this paper 

proposes a novel deep learning network for road extraction 

from high-resolution remote sensing images—MRAU. The 

main contributions of this paper are as follows: 

A deep-learning-based road extraction method with multi-

feature fusion is proposed. Features of different spatial scales 

and multi-channels are extracted using the atrous space 

pyramid method and the residual-based compression 

excitation network, respectively. 

A road feature recognition method based on the attention 

mechanism is proposed. The attention gate network module is 

designed in the decoding stage to improve the metrics without 

significantly increasing the redundant calculation and time 

cost. 

A loss function for road recognition based on the gradient 

coordination mechanism is constructed to solve the 

unbalanced problems of positive and negative samples as well 

as the difficult and easy samples of road target datasets. 

The rest of this paper is organized as follows: Section 2 

details the theoretical prevalence of the proposed method, and 

Section 3 presents both the implementations of numerical tests 

and the results. The conclusions are drawn in Section 4. 

 

 

2. METHODS 
 

In this section, the main sections of the MRAU framework 

for road detection are explained, which are related methods 

and Multi-scale Residual Attention U-net for Road Detection. 

 

2.1 Review of relative methods 

 

2.1.1 U-net 

In 2015, Ronneberger et al. [22] proposed the U-net network 

structure that can obtain higher segmentation accuracy by 

classifying each pixel of the input image (as shown in Figure 

1). 

 

 
 

Figure 1. The network structure of U-net 

The U-net is simple in structure and is used for image 

semantic segmentation, with the image under segmentation as 

input and segmentation results as output. The U-net is mainly 

composed of three parts: down sampling, up sampling, and 

skip connection. Down sampling achieves insight and 

expression of image features, up sampling realizes image 

restoration, and skip connection preserves and transmits image 

information of the same size. U-net is a lightweight network 

with 28 megabits of parameters. Its structure has good 

adaptability. Similar to the FCN, U-net is often used as the 

basic skeleton network. 

 

2.1.2 SE-ResNet 

The residual neural network, proposed by He et al. [23] in 

2016, is mainly used to solve the problem of network 

degradation caused by the increasing number of neural 

network layers. The invented shortcut connection can 

effectively eliminate the training problem of a deep learning 

network (as shown in Figure 2). 

The residual neural network realizes identity mapping 

through the shortcut con-nection structure so that the learning 

of y = H(x) is equivalent to the learning of y = F(x)+x, namely 

F(x) = H(x) - x, called residuals. 

The squeeze-and-excitation network (SEnet), also known as 

the compression and excitation network, is an image 

recognition neural network structure proposed by Hu et al. [24] 

in 2017 and is mainly composed of squeeze operation and 

excitation operation. For SEnet, first, the interdependence 

between its input image channels is modeled and then the 

feature response strength relationship between channels is 

obtained through global loss function training. As shown in 

Figure 3, the compression and excitation network is fused with 

the residual network structure, as described in [24], to form the 

SE-ResNet network structure. 

 
 

Figure 2. Original structure of ResNet 

 

 
 

Figure 3. The network structure of SE-ResNet 
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SE-ResNet applies the squeeze-and-excitation module to 

the residual module: (i) SE-ResNet reduces the feature 

dimension W of the channel to W/SeRadio, where Se-Radio is 

the squeeze coefficient, (ii) it is activated by Relu, and (iii) it 

passes through a fully connected layer. In this way, the 

complex correlation between channels can be fitted better and 

the number of parameters and computations can be minimized. 

 

2.1.3 ASPP 

In 2018, Chen et al. [25] proposes the atrous spatial pyramid 

pooling (ASPP) model, which can increase the receptive field 

without increasing the number of parameters so that more 

semantic information of adjacent pixels can be obtained (as 

shown in Figure 4). 

 

r=1

r=6

r=12

r=18

 
 

Figure 4. The network structure of ASPP 

 

2.1.4 Attention gates 

In 2018, Ozan et al. [26] proposed the attention gates model 

(as shown in Figure 5), which automatically learns the shape 

and size of the object to be segmented. This is an attention 

mechanism model and can learn to focus on learning useful 

salient regions and sup-press the learning of irrelevant 

background regions during training. 

 

 
 

Figure 5. The network structure of attention gate 

 

As shown in Figure 5, α (value 0~1) is the attention 

coefficient. By multiplying the attention coefficient and the 

feature map, the value of the irrelevant region in the feature 

map becomes smaller, while the value of the target region 

becomes larger. Since the attention gate model has limited 

parameters, it can achieve feature suppression of irrelevant 

background regions without a lot of training. At the same time, 

the attention gate model has good versatility and can be 

embedded in many convolutional neural network models to 

improve their performance. 

 

2.1.5 GHM-C loss 

Li et al. [27] proposed a coordination mechanism from the 

perspective of gradient. Balancing the contribution of 

gradients in the learning process of different samples weakens 

the gradient accumulation generated by simple samples and 

outliers to make training more effective and stable. 

A common classification loss function is cross-entropy. 
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where, p and p* are the predicted probability and true 

probability, respectively. Let x be the output of the model. 

Then, the gradient of the cross-entropy LCE to x is expressed 

as Eq. (2): 
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G is defined as gradient norm distribution, that is, gradient 

density, as shown in Eq. (3): 
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Gradient density G is a statistical variable, and g depends 

on the specific distribution of each batch of training samples. 

For different samples in different batches, we define a gradient 

density function as follows: 
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where, gk is the gradient density of the kth sample, the 
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In the gradient density function, the constant is a 

hyperparameter that can be conferred different empirical 

values according to different tasks. 

Combining the gradient density function with the cross-

entropy loss function, the GHM-C loss function is then 

proposed for classification, as shown in Eq. (6): 

 

1

( , *)

( )

N
CE i i

GHM C

ii

L p p
L

GD g
−

=

=   (6) 

 

Once the GHM-C loss is used as the loss function of the 

model for training, the weights of a large number of simple 

samples can be reduced using the gradient coordination 

mechanism and the weights of outliers (difficult samples) can 

also be reduced slightly, which solves the problem of the 

difference between the number of positive and negative 

samples. Thus, the imbalance between positive and negative 

samples and between simple and difficult samples can be 

solved at the same time. Since the gradient density is 

calculated iteratively in each batch of training samples, the 

GHM-C loss function is more robust. 

 

2.2 Multi-scale residual attention U-Net for road detection 

 

2.2.1 Structure of MRAU 

This paper proposes a Multi-scale Residual Attention U-Net 

for Road Detection (MRAU) network structure (Figure 6). 
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Figure 6. MRAU architecture frame 
The MRAU structure mainly includes (a) a U-net-based encoder decoder and a skip connection structure as the backbone of the network structure to achieve end-
to-end automatic segmentation and extract high-resolution remote sensing road images. (b) In the encoder part, on the basis of the standard 3*3 convolution structure 

of the U-net network, each layer proposes a new structure-fusion feature extraction module, including a spatial multi-scale feature extraction sub-module, a multi-

channel feature extraction sub-module, and a deep learning feature extraction sub-module. The three modules perform feature learning on the input image in parallel 
and then perform feature fusion. (c) In the decoder part, the output of the symmetry layer in the process of feature extraction is applied and the feature is restored 

through the improved attention skip connection. (d) Loss function based on the gradient density coordination mechanism. 

 

The MRAU network proposed in this paper is a novel end-

to-end network for the tasks of automatic road detection from 

high-resolution remote sensing images. The architecture frame 

is shown in Figure 6. The backbone network of the MRAU 

network is similar to that of the U-net network. The original 

image undergoes two main processing stages: encoder and 

decoder. The roads in the high-resolution remote sensing 

images are identified and output. The encoding process of the 

MRAU network proposed in this paper is similar to the 

contracting path of the standard U-net network, consisting of 

four fusion feature extraction blocks. The decoding process is 

similar to the expanding path of the U-net network, which is 

also composed of four modules to achieve up sampling and 

feature enhancement based on the attention mechanism. To 

effectively overcome the large imbalance between the pixel 

numbers of road and non-road features in high-resolution 

remote sensing images, the loss function of the gradient 

coordination mechanism GHM-C is adopted. 

 

2.2.2 Fusion feature extraction 

One of the main innovations of the MRAU network is the 

fusion feature extraction ability, which consists of four fusion 

feature extraction blocks in the decoding/down sampling 

processing stage (as shown in Figure 6). The fusion features 

here refer mainly to the fusion of spatial multi-scale features, 

spectral multi-channel features, and deep learning feature sub-

modules. 

Spatial multi-scale features are extracted using the atrous 

spatial pyramid pooling method. Before importing to the 

MRAU network, the original input images are pre-processed 

and resized to 256*256 pixels. The input images go through 

four fusion feature extraction modules in turn, and the image 

sizes of the modules are 256*256, 128*128, 64*64, and 32*32, 

respectively. The atrous space pyramid used in this paper 

adopts a four-level structure, and the atrous convolution 

kernels with magnification ratios of 1, 6, 12, and 18 are 

convolved with the input image, respectively, and then the 

convolution results of different sizes are fused and output. 

Spectral multi-channel features are extracted using the 

squeeze-and-excitation network proposed by Hu et al. [24] in 

2017 to build a spectral multi-channel feature extraction 

module. High-resolution remote sensing images usually have 

multiple different spectral channel data, such as three-channel 

(RGB) image data. The spectral multi-channel feature 

extraction module constructed in this paper first performs 

global pooling on each channel of the input image (3*256*256) 

to obtain the intermediate result (3*1*1). Each channel is 

squeezed using a fully connected layer with a squeeze 

coefficient of 16, yielding an intermediate result (3/16 *1*1). 

Then, the excitation operation is again used for each channel. 

Here, the excitation operation also uses a fully connected layer. 

The intermediate result is 3*1*1. Finally, the sigmoid 

activation function is used to obtain a normalized weight result 

between [0, 1] on each of the multiple channels and a scale 

operation is used to weight the normalized weight to the 

features of each channel. The above-mentioned squeeze-and-

excitation network and the residual network are fused to 

extract multi-channel features of high-resolution remote 

sensing images. 

The fusion feature extraction module in this paper includes 

a deep learning feature sub-module, which uses the fully 

convolutional neural network (FCN) structure of the U-net 

network proposed by Ronneberger et al. [22] and is 

specifically composed of two groups of 3*3 convolution + 

activation function (Figure 6). 

 

2.2.3 Feature enhancement based on the attention mechanism 

Another important innovation of the MRAU network is the 

improved skip connection between down sampling and up 

sampling in the U-net network. The skip connection structure 

enables U-net to fuse the feature maps of the corresponding 

position of the encoder on the channel during the up sampling 

process of each level. The advantage of this method is that 

more low-level information can be obtained during up-

sampling and then the details in the original image can be 

recovered more perfectly and the segmentation accuracy can 

be improved. However, the disadvantage is redundant 
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information. Compared with not using skip connection, the 

segmentation accuracy can be improved, but there is obviously 

room for improvement. Therefore, on the basis of skip 

connection, this paper draws on the attention gate method 

proposed by Ozan et al. [26] in 2018 and forms a feature 

enhancement and up sampling method based on the attention 

mechanism. 

As shown in Figure 6, there are two inputs to the method in 

this paper, in which the output of the encoder corresponding 

layer is used as an input g through skip connection and the 

output of the previous layer of the decoder is used as another 

input, x1. First, g and x1 are, respectively, convolved at 1*1 

and concatenate the output. Then, they perform Relu 

activation, 1*1 convolution, and Sigmoid activation on the 

concatenated output in turn. Finally, the size of the output is 

adjusted to be the same as the input of this layer through 

Resample, which is the attention parameter αi. The value of αi 

ranges from 0 to 1, and then αi is multiplied by the input of this 

layer (the corresponding elements are multiplied one by one) 

to obtain the feature output of this layer's attention 

enhancement. 

In this paper, the up sampling (expanding path) consists of 

four layers and the feature enhancement output of each layer 

is as described above, corresponding to the down sampling 

(contracting path) process (Figure 6). 

 

2.2.4 Loss function GHM-C Loss 

The road image data in the high-resolution remote sensing 

image data account for a small proportion of the entire image 

data, which will cause an imbalance of positive and negative 

samples and difficult and easy samples used for training. 

Referring to the practice of Li et al. [27], and using the 

distribution relationship of difficult and easy samples, when 

the gradient is small, the number of samples is large, and when 

the gradient is moderate, the number of samples is relatively 

small. Samples with a small gradient can be multiplied by a 

suppression coefficient, and samples with a large gradient can 

be multiplied by an excitation coefficient, where the 

suppression coefficient and incentive coefficient are 

determined according to the gradient distribution of the 

samples. The loss function used in this paper is as follows: 
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3. DATASETS 
 

This paper is experimentally validated on two different 

datasets: the first dataset is the Massachusetts Roads Dataset 

[28] and the second is the Deep Globe [29] global satellite 

image road extraction competition dataset. 

 

3.1 Massachusetts roads dataset 

 

The Massachusetts Roads Dataset contains a total of 1171 

remote sensing images with an image size of 1500*1500 pixels, 

each image covers an area of 2.25 square kilo-meters, and the 

entire Dataset covers about 340 square kilometers. This dataset 

was published in 2013 by the University of Toronto, Canada. 

The images were mainly obtained from the relevant areas of 

Massachusetts, USA, and the land features were mainly urban, 

suburban, and rural. In this paper, 351 images are selected 

from the Massachusetts Roads Dataset as the training set and 

30 as test set. To speed up the training of the model and reduce 

the time spent in the training process, the data image is cropped 

to a size of 256*256 pixels in this experiment (as shown in 

Figure 7). 

 

 
 

Figure 7. Images and road maps of the Massachusetts Roads Dataset 

 

 
 

Figure 8. Images and road maps of the Deep Globe Dataset 
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3.2 Deep globe dataset 

 

The Deep Globe Satellite Image Road Extraction 

Competition Dataset was provided by the American Digital 

GLobe Company in the global satellite image road ex-traction 

competition held in 2018. It was mainly obtained from 

Thailand, Indonesia, and India, covering a land area of 2220 

square kilometers, containing a total of 8570 remote sensing 

images. To compare with the experiments on the 

Massachusetts Roads Dataset, in this paper, 312 images are 

selected from the dataset as the training set and 30 as the test 

set and the data image is cropped to 256*256 pixels (Figure 8). 

 

 

4. RESULTS 

 

4.1 Measurement approach 

 

To quantitatively measure the performance of different road 

detection methods, this paper adopts three indicators: 

precision, recall, and F1. In the road recognition task, precision 

refers to the probability that the model will predict that all 

pixels belonging to the road are actually positive samples (that 

is, actually road pixels). The recall rate refers to the probability 

that the model will predict a positive sample in real road pixels 

(i.e., the prediction belongs to road pixels). The F1 value is a 

balance index obtained by using the harmonic mean combined 

with the recall rate and the precision rate, which is used to 

measure the performance of the classifier and classification 

algorithm. 

A binary classification problem such as road detection has 

four situations in terms of the prediction results and actual 

results of the model, represented by TP, FP, TN, and FN. 

TP: The model predicts road pixels as road pixels;  

FP: The model predicts non-road pixels as road pixels;  

TN: The model predicts non-road pixels as non-road pixels;  

FN: The model predicts road pixels as non-road pixels. 

 

TP
P rices

TP FP+
=  (8) 

 

TP
Recall

TP FN+
=  (9) 

 

1

2 Precise Recall
F

Precise Recall

 
=

+
 (10) 

 

4.2 Experimental configurations 

 

In this paper, the above two datasets are used for the training 

and validation of the experimental model and the Tensor flow 

1.5 machine learning platform is used. The processor is Intel(R) 

Xeon(R) E7530, with the following parameters: 1.87 ghz, 64 

GB memory, GPU 2 Tesla T4, 16 GB video memory, Centos7 

operating system, Linux Version 3.10.0-1160.6.1.el7.x86_64. 

For the Massachusetts and Deep Globe Datasets, the 

MRAU network is compared with fCN-8s [30], U-net [22], 

ResUNet [31], DenseUNet [32], ResUNet++ [33], Attention 

U-Net [26], and other methods. The training batch is set to 50, 

and the initial learning rate is set to 1*10-5. 

 

4.3 Experimental results 

 

4.3.1 Experiment 1 

Experiment 1 is based on the Massachusetts Road Dataset, 

and the MRAU network is trained and compared with six 

network models, fCN-8s [30], U-net [22], ResUNet [31], 

DenseUNet [32], ResUNet++ [33], and Attention U-Net [26], 

on the same dataset. The visualization effect is shown in 

Figure 9, and the quantitative comparison is shown in Table 1. 

Figure 9 is a visual comparison between the MRAU 

network and the six network models: fCN-8s [30], U-net [22], 

ResUNet [31], DenseUNet [32], ResUNet++ [33], and 

Attention U-Net [26]. The first column is the original image, 

the second column is the label, the third to eighth columns are 

the results of the six networks (fCN-8s, U-net, ResUNet, 

DenseUNet, ResUNet++, and Attention U-Net), and the ninth 

column dis-plays the results of the MRAU network in this 

paper. In Figure 9, the green-framed area is the area where the 

road is mistakenly identified as the background and the red-

framed area is the area where the background is mistakenly 

recognized as the road. 

 

 
 

Figure 9. The visual comparison of methods on the Massachusetts Road Dataset 
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Table 1. Quantitative comparison of methods on the Massachusetts Road Dataset 

 

Method 
Image 1 Image 2 Image 3 Image 4 Average 

P R F1 P R F1 P R F1 P R F1 P R F1 
U-net 0.8645 0.9166 0.8898 0.9228 0.908 0.9153 0.9271 0.9102 0.9186 0.8972 0.9142 0.9056 0.9029 0.9123 0.9073 

fCN-8s 0.5912 0.6541 0.6211 0.5883 0.6222 0.6048 0.6012 0.6568 0.6278 0.6017 0.6681 0.6332 0.5956 0.6503 0.6217 

ResUNet 0.9023 0.8946 0.8984 0.8962 0.8744 0.8852 0.9079 0.9018 0.9048 0.8963 0.8712 0.8836 0.9005 0.8855 0.893 

DenseUNet 0.9422 0.9186 0.9303 0.9372 0.9116 0.9242 0.9412 0.9138 0.9273 0.9245 0.8985 0.9113 0.9363 0.9106 0.9233 

ResUNet++ 0.9443 0.9268 0.9355 0.9566 0.9435 0.95 0.9518 0.934 0.9428 0.9404 0.9205 0.9303 0.9483 0.9312 0.9396 

Attention 

U-Net 
0.9509 0.9328 0.9418 0.9625 0.9487 0.9556 0.9573 0.9234 0.94 0.9601 0.9413 0.9506 0.9527 0.9365 0.9477 

MRAU 

(ours) 
0.9487 0.9369 0.9428 0.9643 0.9525 0.9584 0.9574 0.9297 0.9433 0.9531 0.9493 0.9512 0.9559 0.9421 0.9489 

Table 1 shows the quantitative comparison results between 

the network used in this paper and the six network models 

(fCN-8s, U-net, ResUNet, DenseUNet, ResUNet++, and 

Attention U-Net). The first to fourth columns displays the 

quantitative comparison results of four images, and the fifth 

column displays the comparison results of 30 test sets. 

 

4.3.2 Experiment 2 

Experiment 2 is based on the DeepGlobe Road Dataset. The 

MRAU network is trained and compared with six network 

models—fCN-8s [30], U-net [22], ResUNet [31], DenseUNet 

[32], ResUNet++ [33], and Attention U-Net [26] on the same 

dataset. The visualization effect is shown in Figure 10, and the 

quantitative comparison is shown in Table 2. 

Figure 10 is a visual comparison between the MRAU 

network and the six network models of fCN-8s [30], U-net 

[22], ResUNet [31], DenseUNet [32], ResUNet++ [33], and 

Attention U-Net [26]. The first column is the original image, 

the second column is the label, the third to eighth columns 

display the results of the six networks (fCN-8s, U-net, 

ResUNet, DenseUNet, ResUNet++, and Attention U-Net), and 

the ninth column dis-plays the results of the MRAU network 

in this paper. In Figure 10, the green-framed area is the area 

where the road is mistakenly identified as the background and 

the red-framed area is the area where the background is 

mistakenly recognized as the road. 

Table 2 shows a quantitative comparison between the 

network in this paper and six network models: fCN-8s, U-net, 

ResUNet, DenseUNet, ResUNet++, and Attention U-Net. The 

first to fourth columns display the quantitative comparison 

results of four images, and the fifth column displays the 

comparison results of 30 test sets. 

 

 
 

Figure 10. The visual comparison of methods on the Deep Globe Road Dataset 

 

Table 2. Quantitative comparison of methods on the Massachusetts Road Dataset 

 

Method 
Image 1 Image 2 Image 3 Image 4 Average 

P R F1 P R F1 P R F1 P R F1 P R F1 

U-net 0.9057 0.802 0.8507 0.9126 0.8574 0.8841 0.9185 0.8663 0.8916 0.9083 0.8282 0.8664 0.9113 0.8385 0.8734 

fCN-8s 0.6228 0.6847 0.6523 0.5871 0.625 0.6055 0.566 0.6128 0.5885 0.6042 0.6774 0.6387 0.595 0.65 0.6213 

ResUNet 0.8412 0.8127 0.8267 0.8161 0.7854 0.8005 0.8562 0.8497 0.8529 0.8263 0.8147 0.8205 0.835 0.8156 0.8252 

DenseUNet 0.9056 0.8932 0.8994 0.9145 0.8854 0.8997 0.9087 0.8853 0.8968 0.9204 0.8314 0.8736 0.9123 0.8738 0.8926 

ResUNet++ 0.914 0.7107 0.7997 0.9289 0.8332 0.8785 0.9271 0.8141 0.8669 0.9271 0.8141 0.8669 0.9243 0.793 0.8536 

Attention 

U-Net 
0.9506 0.7685 0.8499 0.9654 0.7926 0.8705 0.9541 0.7573 0.8444 0.9401 0.7627 0.8422 0.9526 0.7703 0.8518 

MRAU 

(ours) 
0.9225 0.9454 0.9338 0.9488 0.9482 0.9485 0.9431 0.9457 0.9444 0.9202 0.9526 0.9361 0.9337 0.948 0.9408 
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5. DISCUSSION 

 

Experiment 1 shows that the FPs and FNs by the FCN are 

the most serious and there are many misidentifications. 

Compared with the fCN-8s network, the simple U-net network 

displays an improvement in FNs but the FPs are still serious 

and there are still many misidentifications. Compared with the 

FCN, there is a relative improvement in the FPs and FNs in the 

experimental results of the ResUNet network, but compared 

with the simple U-net network, there is a certain deterioration, 

which can also be seen from the comparison of quantitative 

data. In ResUNet, a skip connection is added to the simple U-

net network and CLAHE enhancement is added. Here, the 

CLAHE enhancement operation does not eliminate the noise 

interference inside the ROI, which brings noise interference to 

the road recognition task and increases the FNs and FPs. In 

DenseUNet, the output of a certain layer is used as part of the 

input of several subsequent layers and the input of a certain 

layer results from the combination of the outputs of the 

previous layers. Through such a cross-layer output and input 

association structure, features extracted from different sizes 

are effectively used, which significantly improves FPs and 

FNs. The ResUNet++ network uses the atrous space pyramid 

pooling module connection between the encoder and the 

decoder and also uses the attention mechanism in the decoder 

part. The Attention U-Net network uses the attention 

mechanism in the skip connection between the same layer of 

the encoder and the decoder so that the output of the encoder 

part is processed by the attention mechanism to guide the 

decoder restoration process more accurately. Compared with 

FNs and FPs of the DenseUNet network, the improvement of 

the two networks is obvious. Compared with the Attention U-

Net, the MRAU network proposed in this paper has significant 

improvements in FNs and FPs (Figure 9). 

Similar to the results of Experiment 1, the FPs and FNs by 

the FCN are the most serious and there are many 

misidentifications. There is some improvement in terms of 

FNs and FPs by the simple U-net network but the FPs are still 

serious. Compared with the FCN, FPs and FNs are improved 

significantly in the ResUNet network. However, the ResUNet 

network is similar to Experiment 1 in the DeepGlobe Dataset, 

which also presents noise interference and increased FNs and 

FPs. Compared with fCN-8s, simple U-net, and ResUNet, 

DenseUNet and ResUNet++ display obvious improvements in 

FPs and FNs but there are still obvious misidentifications. 

Attention U-Net improves significantly in terms of FPs but 

still displays obvious FNs. In the network in this paper (Figure 

10), the FNs and FPs have been significantly suppressed and 

the misidentified areas are significantly improved compared 

with the above six networks. 

As can be seen from Table 1, the MRAU network proposed 

in this paper performs the best overall. In terms of precision 

index, the performance of the network in this paper is basically 

similar to that of Attention U-Net, but the recall rate and the 

F1 value are significantly improved. From the specific 

validation data, the precision index is as follows: Compared 

with fCN-8s, U-net, ResUNet, DenseUNet, ResUNet++, and 

Attention U-Net, the network in this paper has been improved 

by 36.03%, 5.3%, 5.54%, 1.96%, 0.76%, and 0.32%, 

respectively. Recall rate index: Compared with fCN-8s, U-net, 

ResUNet, DenseUNet, ResUNet++, and Attention U-Net, the 

network in this paper has been improved by 29.18%, 2.98%, 

5.56%, 3.15%, 1.09%, and 0.56%, respectively. F1 value 

index: Compared with fCN-8s, U-net, ResUNet, DenseUNet, 

ResUNet++, and Attention U-Net, the network in this paper 

has been improved by 32.73%, 4.16%, 5.59%, 2.56%, 0.93%, 

and 0.12%, respectively (as shown in Figure 11). 

Table 2 shows the results of a quantitative comparison 

between the network in this paper and the six network models 

of fCN-8s, U-net, ResUNet, DenseUNet, ResUNet++, and 

Attention U-Net. The first to fourth columns display the 

quantitative comparison results of four images, and the fifth 

column displays the comparison results of 30 test sets. In terms 

of precision index, compared with fCN-8s, U-net, ResUNet, 

DenseUNet, ResUNet++, and Attention U-Net, the network in 

this paper has been improved by 33.86%, 2.24%, 9.87%, 

2.14%, 0.96%, and -1.89%, respectively. Recall rate index: 

Compared with fCN-8s, U-net, ResUNet, DenseUNet, 

ResUNet++, and Attention U-Net, the network in this paper 

has been improved by 29.80%, 10.95%, 13.24%, 7.42%, 

15.5%, and 17.77%, respectively. F1 value index: Compared 

with fCN-8s, U-net, ResUNet, Dens-eUNet, ResUNet++, and 

Attention U-Net, the network in this paper has been improved 

by 31.95%, 6.74%, 11.56%, 4.82%, 8.72%, and 8.90%, 

respectively (as shown in Figure 12). 

 

 
 

Figure 11. The accuracy of the quantitative results 

corresponding to different models in Experiment 1 

 

 
 

Figure 12. The accuracy of the quantitative results 

corresponding to different models in Experiment 2 

 

The above experiments show that the MRAU network does 

not improve the precision index significantly. For example, in 

Experiment 1, the method in this paper is only 0.32% better 
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than Attention U-Net and even decreases compared with 

Attention U-Net in Experiment 2. However, the effect of the 

recall rate indicator is obvious. In Experiment 2, the recall rate 

of the network in this paper is 15.7% higher than the average 

value of other networks. The recall rate indicator is 17.7% 

higher than that of the Attention U-Net network. The MRAU 

network adopts the loss function based on the gradient 

coordination mechanism, which effectively suppresses the 

sample imbalance and significantly improves the recall rate of 

the model. In Experiment 1, as shown in Table 3, the MRAU 

network takes 244 min when training batch (epoch) = 50 and 

Attention U-Net takes 242 min when training batch (epoch) = 

50. The MRAU network significantly improves the recall rate 

and the F1 value, while the time consumption does not 

increase. 

 

Table 3. Quantitative comparison of time consumption 

 
Epoch Attention U-Net(min) MRAU(min) 

10 51 49 

20 93 98 

30 150 147 

40 200 198 

50 242 244 

 

 

6. CONCLUSIONS 

 

This paper proposes the MRAU network for accurate road 

recognition in high-resolution remote sensing images by 

fusing the multi-scale, multi-channel, and depth residual 

learning features of road objects. At the same time, the up 

sampling process based on the attention mechanism of the 

proposed method combines the attention gate module with a 

skip connection, which further enhances the robustness and 

accuracy. Use of the optimized loss function based on the 

gradient coordination mechanism suppresses the imbalance of 

road samples in high-resolution remote sensing images and 

improves the recall rate significantly. Through detailed 

experimental verification of Massachusetts Roads and Deep 

Globe Datasets, compared with other road extraction methods, 

the proposed method provides more subtle insight into the road 

and does not increase the calculation. 

In this paper, we found that the performance of different 

datasets is still slightly different. The reason is that the transfer 

learning ability of the proposed method needs to be 

strengthened. In the future, we will focus on how to enhance 

the versatility of road extraction methods from high-resolution 

remote sensing images and continuously improve the network 

model. In addition, the imbalance problem of road samples in 

high-resolution remote sensing images is typical in object 

detection and needs more insightful study to solve and 

improve in subsequent network models. 
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