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Autism Spectrum Disorder (ASD), a neurological abnormality that influences how an 

individual perceives and interacts with others, which leads to issues with social interaction 

and communication. In accordance with the Centers for Disease Control and Prevention, 1 

in every 44 children in USA is affected by ASD. The identification of ASD is based on 

behavioural characteristics and it generally takes a long time from the initial observation of 

behavioural signs to the final diagnosis, due to the complexity and diversity of ASD 

symptoms. The application of Electroencephalography (EEG) signals, recorded from 14 

ASD affected children and 14 healthy controls, as a potential biomarker for ASD 

categorisation, was analysed in this study. After pre-processing, second-order Wavelet 

Scattering Transform (WST) coefficients were extracted from the EEG signals and Deep 

Learning (DL) based ASD detection networks (WST-ASDNets) were used for 

categorisation of ASD and control subjects. Long Short Term Memory Network (LSTM) 

based WST-ASDNet and Convolution Neural Network (CNN) based WST-ASDNet 

achieved accuracy of 94% and 92% respectively, in ASD subject identification. The results 

demonstrate that the proposed WST-ASDNets can efficiently classify ASD and the usage of 

WST coefficients extracted from EEG signals can be used as potential biomarker for ASD 

categorisation.  
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1. INTRODUCTION

Autism Spectrum Disorder (ASD) is a neurodevelopmental 

condition that influences how people connect with others, 

communicate, learn, and behave [1, 2]. Nonverbal behaviors 

such as eye contact, facial expressions and body positions, as 

well as stereotyped repetitive behaviours and interest in social 

functions, communications and activities, are all considerably 

reduced [3]. In accordance with the Centers for Disease 

Control and Prevention, by the age of 8, 1 in every 44 children 

in the United States is affected by ASD [4]. ASD results from 

altered brain development and subjects have higher brain 

volumes than typically developing children [5, 6]. The wide 

range of ASD symptoms makes the ASD diagnosis tough and 

the early diagnosis is essential to prevent an interminable wait 

between the earliest concerns of parents and clinical diagnosis 

of ASD. Early detection of ASD helps in the early intervention 

to benefit the subjects [7]. 

Numerous studies have attempted to establish more 

accurate diagnostic indices for ASD based on 

Electroencephalography (EEG), as a result of the advancement 

of neuroimaging technology. EEG technology is a non-

invasive method of capturing electrical brain signals. Different 

bands with varied frequency ranges can be found in brain 

waves and a range of feature extraction methods for 

categorisation have been applied [8]. EEG is a suitable clinical 

tool for brain function monitoring since it is inexpensive and 

simple to carry out [9].  

Fourier Transform and Wavelet Transform are the most 

common signal processing methods used for feature extraction. 

The Fourier Transform is locally time-invariant; however, it is 

not stable for high frequency deformations. The Wavelet 

Transform is an effective tool for the analysis and 

categorisation of non stationary and non-linear signals. It is 

stable against such deformations, but is not invariant to the 

transformation if under sampling is included. Therefore, the 

Fourier and Wavelet Transforms are not the best strategies for 

feature extraction [10-12].  

Wavelet Scattering Transform (WST), a recently created 

knowledge-based feature extraction method, is a deep 

Convolution Neural Network (CNN) equivalent created by a 

cascade of wavelets, modulus nonlinearities and low-pass 

filters [10]. It produces representations that are stable against 

time-warping distortions, noise-resistant, and time-shift 

invariant [11]. This makes WST a particularly ideal method 

for the feature extraction of non-linear and non-stationary 

signals and it has been broadly applied for the classification of 

audio, hand-written digit recognition and ECG beat 

classification [13-15]. WST has also been applied on EEG 

signals to categorise alcoholic and non-alcoholic subjects [12]. 

1.1 Related work 

Deep Learning (DL) methods have been used in many areas 

[16, 17]. Numerous studies have been conducted to utilise 

EEG signals for ASD categorisation. Machine Learning (ML) 

and DL techniques, which are growing in popularity, have 

been used for ASD identification. ML classifiers like k-

Nearest Neighbour (k-NN) and Support Vector Machine 

(SVM) were employed for ASD categorisation and an 
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accuracy of 93% was attained [18]. Sheikhani et al. [19] 

employed k-NN for classification and Short-term Fourier 

Transform (STFT) for extracting the features to attain an 

efficiency of 82.4% using a dataset consisting of 17 subjects. 

In another study, the authors used EEG signals from 28 

subjects and employed STFT and Mahalanobis distance in 

alpha band to reach 96.4% accuracy [20]. In yet another study, 

EEG signals were transformed into 2D images using STFT and 

textural features were extracted. Using the textural features, 

SVM attained an accuracy of 95.3% in ASD identification [21]. 

In another study, 4s long EEG segments from 86 ASD subjects 

and 89 normal subjects were band-pass filtered (0.5Hz-45Hz) 

and Discrete Fourier Transform (DFT) was applied to obtain 

time-frequency representations of the EEG signals. Accuracy 

of 92.63% was achieved by CNN in classifying the ASD and 

normal subjects [22]. Bosl et al. [9] obtained EEG signals from 

99 subjects with an older offspring suffering from ASD and 89 

control subjects. EEG signals were divided into six frequency 

bands and nine non-linear features were obtained from the six 

frequency bands. They achieved a sensitivity, specificity and 

positive predictive value of more than 95% in the 

categorisation of ASD and normal controls [9].  

A technique for diagnosing ASD based on Wavelet chaos 

and fractality was proposed by Ahmadlou et al. They obtained 

90% accuracy using a two layer Radial Basis Function Neural 

Network (RBFNN) using EEG data from 17 subjects [23]. 

CNN was utilised to categorise the children with ASD and 

normal controls with an accuracy of 95% after combining EEG 

time-frequency characteristics and eye-tracking features [24]. 

In yet another study, time-frequency spectrograms obtained 

from EEG data were used to categorise the ASD individuals 

and controls using ML and DL techniques [25]. Spectrograms 

obtained from EEG signals have been used for ASD 

identification using pre-trained ResNet50 with an accuracy of 

81% [26]. EEG signals have also been used to obtain 

Scalograms using Continuous Wavelet Transform (CWT) to 

classify ASD using pre-trained neural network models like 

GoogleNet and SqeezeNet [27].  

The application of EEG as a biomarker for ASD detection 

can lead to automated identification of ASD subjects as early 

as possible. In this study, we propose two WST-ASDNets, 

which are computer aided ASD identification systems based 

on WST and DL based models. EEG data from 28 subjects 

were pre-processed using 0.5Hz-50Hz band pass filter and 

Artifact Subspace Reconstruction (ASR) algorithm. A two 

layer WST network was used to extract WST coefficients from 

the data. The WST coefficients were used as input features to 

DL based WST-ASDNets. After feature extraction, Principal 

Component Analysis (PCA) was utilised for feature reduction 

and the proposed DL based WST-ASDNets were utilised to 

identify the ASD subjects and the normal subjects. The 

effectiveness of the suggested models was contrasted with few 

ML based classifiers and the results indicated that the 

proposed models outperform the ML based models. 

 

 

2. METHODOLOGY 

 

WST-ASDNets were utilised for feature extraction and 

categorisation of ASD subjects using EEG signals. The block 

diagram of this work is illustrated in Figure 1. 

The EEG signals recorded from 14 ASD and 14 control 

subjects were pre-processed using a band-pass filter and ASR 

algorithm. WST was used for extracting the features from the 

pre-processed EEG signals. PCA performed dimensional 

reduction and features were normalised before feeding them to 

the (Long Short Term Memory) LSTM Network based WST-

ASDNet and CNN based WST-ASDNet for ASD 

categorisation. ML classifiers were also used to categorise 

ASD using the WST features and the results were compared 

with classification results of LSTM Network based WST-

ASDNet and CNN based WST-ASDNet. The classification 

performances of the proposed LSTM based WST-ASDNet 

and CNN based WST-ASDNet were further evaluated using 

another EEG dataset which contained 16 channel EEG signals 

from 13 ASD and 4 normal subjects. 

 

 
 

Figure 1. Workflow of this study 

 

2.1 Dataset 

 

The EEG data for this research was obtained from Simons 

Foundation for Autism Research Initiative (SFARI). The 

request for EEG data from SFARI was approved by our 

institution's Institutional Review Board (IRB) and ethics 

committee approval was obtained. There are 57 subjects total 

in the original dataset. However, one control subject's haircut 

impeded the acquisition of high-quality data during recording 

and the data from one control subject's EEG recording was lost. 

The patients received a clinical diagnosis for ASD. Using a 

128-channel HydroCel Geodesic net and a Net Amps 300 

amplifier for amplification, the resting-state EEG signals were 

recorded. The EEG signals were sampled at 500 Hz and 

average referenced. The data had undergone high pass filtering 

at 1 Hz and notch filtering at 60 Hz.  

 

Table 1. Demographic and genotype information of the 

subjects 

 
Genotype Sex Site 

Control Males:6 Females:8 Boston 

ASD Males:9 Females:5 Boston 

 

In this study, we used data from 28 subjects (14 subjects 

with ASD and 14 control subjects), who were in the age 

between 30-165 months. The demographic and genotype 

information about the subjects used in this study is presented 

in Table 1. 

Another dataset which was used to evaluate and compare 

the results obtained by WST-ASDNets in categorising ASD 

and normal subjects was obtained from King Abdulaziz 
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University, Jeddah. The dataset consisted of EEG signals of 13 

ASD and 4 normal subjects. More detailed information about 

the original dataset is provided in the study of Alhaddad et al. 

[28]. Resting-state EEG signals that are 256 Hz sampled were 

band-pass filtered (0.5Hz-50Hz) and then a dataset of size 

768×4096 (signals × samples) was prepared. It consisted of 

50% data from ASD subjects and 50% from normal subjects. 

 

2.2 Pre-processing 

 

The pre-processing was performed in two steps: band-pass 

filtering and bad segment rejection. The EEG signals were 

band-pass filtered (0.5Hz-50Hz) to remove the unwanted 

frequencies in the signals. Adaptive spatial filtering approach 

called ASR algorithm was employed to find and eliminate 

high-amplitude data components (such as those resulting from 

muscle contractions, eye blinks and sensor motion) that have 

higher amplitude comparably to some artifact-free reference 

data [29, 30]. This technique is based on sliding-window PCA, 

which statistically interpolates any high-variance signal 

components that surpass a certain threshold in relation to the 

calibration dataset's covariance. Artifact-free 6944 EEG 

signals (50% from ASD subjects and 50% from healthy 

controls) consisting of 4096 samples were used in this study. 

 

2.3 Feature extraction 

 

The DL based WST-ASDNets performed feature extraction 

from the pre-processed data by using a two layer WST 

network. WST creates signal representations that are 

translation invariant, stable and informative. It is resistant to 

deformations and maintains class discriminability, making it 

very useful for EEG categorisation.  

At layer 0 (zero order), the input signal ‘x’ is convolved with 

a scaling function ‘ϕ’, which yields zero order scattering 

coefficients as shown in Eq. (1). 

 

𝑆0𝑥 = 𝑥 ∗ 𝜙 (1) 

 

where, * represents convolution. After obtaining the zero order 

scattering coefficients, the signal is then convolved with 

mother wavelet ‘ψ’ at a center frequency (p1) of the first order 

wavelets. The modulus (a non-linear operator) of the obtained 

CWT coefficients is convolved with a low pass filter ‘ϕ’ 

(scaling function), which produces layer 1 (first order) 

scattering features, as shown in Eq. (2). This process is also 

known as temporal averaging. The time-shift invariance and 

stability against time-warping deformations are imposed by 

this averaging. 

 

𝑆1𝑥(𝑡, 𝑝1) = |𝑥 ∗ 𝜓𝑃1
| ∗ 𝜙 (2) 

 

The second CWT is performed directly on top of the first 

CWT; in other words, a second-order wavelet ‘𝜓𝑃2
’ uses the 

entire first CWT as its input and convolves with each row, 

much like a low-pass filter does. Modulus of the second CWT 

is convolved with low-pass filter to get second-order 

coefficients as shown in Eq. (3). 

 

𝑆2𝑥(𝑡, 𝑝1, 𝑝2) =  ||𝑥 ∗ 𝜓𝑃1
| ∗ 𝜓𝑃2

| ∗ 𝜙 (3) 

 

With a time-average ‘S0x= x*ϕ’, the zero-order scattering 

coefficients are obtained, which define the local translation 

invariance of the signal. The high-frequency components of 

the convolved signal are lost as a result of the averaging 

operation at each stage, but they can be retrieved by 

convolution with the wavelet at the subsequent stage. The 

process of WST coefficients extraction from the EEG signals 

is illustrated as a flowchart in Figure 2. 

 

 
 

Figure 2. Two-layer WST performed on EEG signals 

 

As the number of layers increases, the energy of the 

scattering coefficients diminishes and 99.9% of energy is 

contained in the first two levels [14]. Additionally, Ahmed et 

al. [31] found that two WST layers were sufficient to extract 

features from EEG. The same number of layers were 

employed to extract features from the EEG data in this study 

(i.e., second order WST coefficients were used). The mother 

wavelet employed was the Morlet (Gabor) wavelet [12]. ‘Q’ 

specifies the number of wavelets per octave. High frequency 

wavelet filters are wider than low frequency wavelets. 

However, there isn't a general formula for choosing an octave 

frequency resolution. In the first filter bank, we utilised 8 

wavelets per octave and in the second filter bank, we used 1 

wavelet per octave. The Morlet wavelets ψP1 (Q1=8) and ψp2 

(Q2=1) are shown in Figure 3. 
 

 
 

Figure 3. Morlet wavelets used in this study 
 

The invariance scale (low-pass filter time scale) for which 

the WST is invariant to translations was selected from a set of 

T={1, 2, 4, 6} s. Invariance scale is one of the most important 

parameters of the WST which affects the accuracy of 

classification models. We selected an invariance scale (T=2s) 

using which the WST and DL based WST-ASDNets obtained 

maximum accuracy. The low-pass filter's bandwidth increases 

as the invariance scale decreases. For a constant value of Q, a 

reduction in the invariance scale increases the number of the 

coefficients/features.  
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In the pre-processed dataset, the network treats each row 

(EEG channel) as a separate signal. The selection of T, N 

(number of scattering layers) and Q affects the number of 

scattering routes and time frames in the representation for each 

signal. Using T=2s, N=2, and Q=(8, 1), the extracted second 

order WST coefficients from the dataset of dimensions 

6944×4096, is a tensor with 16 time frames for each of the 147 

scattering routes for each signal as its output. The tensor of 

dimensions 147×16×6944 was reshaped into a matrix of size 

111104×147. 

 

2.4 Classification 

 

Classification of ASD and normal subjects based on the 

WST coefficients (used as input features for classification 

algorithms) extracted from EEG signals was performed using 

ML classifiers and WST-ASDNets. SVM algorithm, Logistic 

Regression (LR), k-NN and Decision Tree (DT) were the ML 

algorithms used.  

SVMs are supervised classifier models that are used to solve 

issues such as classification and regression. SVM with 

Guassian kernel function and kernel scale of 1 was used. The 

LR model gives the probability of occurrence (between 0 and 

1) of a class or event. The DT model used in this study 

employed Gini’s diversity index as split criteria and the total 

number of splits performed was 100. In this study, we used a 

k-NN in which number of neighbours was one and Euclidean 

distance was used as a distance metric.  

One WST-ASDNet used WST extracted features and 1D-

CNN for ASD categorization. Another WST-ASDNet used 

WST features and LSTM network for ASD classification. The 

information about the CNN layers, input size for each layer 

and other parameters are given in Table 2. 

 

Table 2. Layer and parameter details of the proposed CNN 

based WST-ASDNet 

 

Layer Type Input size Filters 
Kernel 

size 
Activation 

0 Input layer (None, 50, 1)    

L1 
1D 

Convolution 
(None, 50, 1) 256 3 ReLU 

L2 
1D 

Convolution 

(None, 48, 

256) 
256 3 ReLU 

L3 Dropout 
(None, 46, 

256) 
   

L4 
Max pooling 

1D 

(None, 46, 

256) 
   

L5 Flatten 
(None, 23, 

256) 
   

L6 Dense (None, 5888)   ReLU 

L7 Dense (None, 124)   Sigmoid 

 

The kernel size and number of filters, which obtained the 

maximum accuracy, were used. The CNN consisted of two 1D 

convolution layers, a dropout layer, a max-pooling layer (pool 

size=2), a flatten layer and two fully connected layers. 

Rectified Linear Unit (ReLU) and Sigmoid functions were 

utilised to carry out the nonlinear activations in the hidden and 

output layers, respectively, in order to acquire more efficient 

feature representations. 

The LSTM network used in this study consisted of two 

LSTM layers, a flatten layer, and a fully connected layer. The 

overall characteristics of the LSTM network are given in Table 

3. 

The Adaptive Moment Estimation (Adam) optimizer was 

used to update the model weights in both these networks. To 

reduce over-fitting, regularisation was applied to the CNN and 

LSTM network using a dropout of 0.5. The final output layer 

of both these networks had a size of 1, which is appropriate for 

a binary classification problem. 

 

Table 3. Overall features of the proposed LSTM based WST-

ASDNet 

 
Layer Type Input shape Units 

L0 Input layer (None, 50, 1)  

L1 Lstm (None, 50, 1) 256 

L2 Lstm (None, 50, 256) 256 

L3 Batch Normalization (None, 50, 256)  

L4 Dropout (None, 50, 256)  

L5 Flatten (None, 50, 256)  

L6 Dense (None, 12800) 128 

L7 Dense (None, 128) 1 

 

 

3. RESULTS AND DISCUSSION 

 

Data with fewer dimensions requires less processing power 

and training time, which improves ML algorithms' overall 

performance. Over-fitting is also avoided via dimensional 

reduction. PCA was used for reducing the dimensions of the 

dataset from 111104×147 to 111104×50. The number of 

columns was reduced from 147 to 50 by using PCA. Feature 

reduction had no considerable effect of the classification 

accuracies of the ML and DL models. However, the 

computational time decreased quite considerably. WST-

ASDNets were trained using the number of epochs as 50 and 

a batch size of 32. When the number of epochs was increased 

to 75 or 100, it didn’t lead to increase in accuracy of the models 

and the training and validation curves plateaued out after 

certain number of epochs. 

 

3.1 Classification results of WST-ASDNets and ML 

classifiers 

 

SVM, k-NN, LR and DT are the four ML based models 

which were used for ASD categorisation by using the WST 

features extracted from EEG signals. Among the four ML 

based classifiers, k-NN algorithm performed better in terms of 

accuracy (90%), sensitivity (69%), specificity (97%), 

precision (89%) and the other performance metrics that were 

used for the performance evaluation of the models. In case of 

ML based models, the sensitivity/recall was lower than the 

specificity/true negative rate. DT model achieved the highest 

sensitivity of 74% among the ML based models and the LR 

model achieved the minimum sensitivity of 36% among all the 

classifiers. The classification results obtained by all the 

classifiers used in this study are presented in Table 4. Two 

WST and DL based WST-ASDNets were proposed in this 

work for ASD categorisation. The classification results 

obtained by the WST-ASDNets have been presented in Table 

4. The learning curves and the confusion matrices of the 

proposed LSTM based and CNN based WST-ASDNets are 

shown in Figure 4 and Figure 5. 

The proposed LSTM based WST-ASDNet achieved an 

accuracy of 94% and the CNN based WST-ASDNet achieved 

an accuracy of 92% in identifying the ASD subjects. The 

achieved sensitivity, specificity and all the other performance 

metrics were higher in LSTM based WST-ASDNet than the 
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CNN model. The sensitivity is lower than the specificity in 

case of the DL based models as well. The comparison of the 

classification performances of the ML and DL based models 

is shown in Figure 6. 

 

 
(a) 

 
(b) 

 

Figure 4. a) Learning curve of LSTM based WST-ASDNet 

b) Learning curve of CNN based WST-ASDNet 

 

 
(a) 

 
(b) 

 

Figure 5. a) The confusion matrix of LSTM based WST-

ASDNet b) The confusion matrix of CNN based WST-

ASDNet 

 
 

Figure 6. Performance comparison of DL and ML based 

models 

 

As shown in Figure 6 and Table 4, The DL models 

performed better in terms of accuracy, sensitivity, precision, 

F1 Score and all the other performance evaluation metrics that 

were used in this study in identifying the ASD and healthy 

controls. 

 

3.2 Classification results of WST-ASDNets using 16 

channel EEG dataset 

 

The performance of WST-ASDNets was tested on a 

different 16 channel EEG dataset. After pre-processing, WST 

was applied and it transformed the dataset into 147×16×768 

tensor, which was then reshaped into a 12288×147 matrix. The 

PCA reduced the dimensions of 12288×147 matrix to 

12288×50.  

The proposed WST-ASDNets were used for ASD 

categorisation. 80% of the data was utilised for training the 

networks and 20% was utilised to test the performance of the 

trained networks. The confusion matrices obtained by LSTM 

based WST-ASDNet and CNN based WST-ASDNet are 

shown in Figure 7. 

 

 
(a) 

 
(b) 

 

Figure 7. a) The confusion matrix of LSTM based WST-

ASDNet b) The confusion matrix of CNN based WST-

ASDNet 
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Table 4. The Classification results obtained by all the classifier 

Model Accuracy % 
Sensitivity 

% 

Specificity 

% 
Precision % 

F1 

Score 

Negative 

Predictive 

value 

False 

Positive 

rate 

False 

discovery 

rate 

False 

Negative 

rate 

Mathews 

correlation 

coefficient 

LSTM-

WST-

ASDNet 

94 82 97 90 0.86 0.94 0.03 0.09 0.17 0.82 

CNN-

WST-

ASDNet 

92 80 96 87 0.84 0.94 0.03 0.12 0.19 0.79 

k-NN 90 69 97 89 0.77 0.90 0.02 0.10 0.30 0.72 

Decision 

Tree 
89 74 94 80 0.77 0.92 0.05 0.19 0.25 0.71 

SVM 84 42 97 82 0.56 0.84 0.02 0.17 0.57 0.51 

Logistic 

Regression 
80 36 94 64 0.46 0.82 0.06 0.35 0.63 0.37 

Table 5. The classification results of WST-ASDNets using 16 channel EEG dataset 

Model Accuracy % Sensitivity % Specificity % Precision % F1 Score 

Negative 

Predictive 

value 

False 

Positive 

rate 

False 

discovery 

rate 

False 

Negative 

rate 

Mathews 

correlation 

coefficient 

LSTM-

WST-

ASDNet 

95 89 98 92 0.90 0.96 0.02 0.07 0.11 0.87 

CNN-

WST-

ASDNet 

95 90 97 91 0.91 0.97 0.03 0.09 0.09 0.87 

k-NN 93 78 98 95 0.85 0.93 0.01 0.04 0.21 0.82 

Decision 

Tree 
91 80 95 83 0.81 0.93 0.05 0.16 0.20 0.76 

SVM 91 67 98 93 0.88 0.90 0.01 0.07 0.32 0.73 

Logistic 

Regression 
86 60 95 81 0.68 0.87 0.04 0.19 0.40 0.61 

As presented in Table 5, the proposed WST-ASDNets 

perform exceptionally well in identifying ASD subjects and 

healthy controls. 

3.3 Performance evaluation of WST-ASDNets 

EEG signals have the potential to be a trustworthy source of 

data for computer assisted ASD diagnosis. In this study, a new 

approach to automate the identification of ASD was proposed. 

For that purpose, WST based features were extracted from 28 

subjects to categorise the ASD and healthy controls using ML 

and DL based classifiers. As can be observed from the results, 

the proposed WST-ASDNets (WST+LSTM and WST+CNN) 

clearly outperformed the conventional ML classifiers 

(WST+SVM, WST+LR, WST+k-NN and WST+DT) in 

categorising the ASD and healthy controls. The classification 

ability of LSTM based WST-ASDNet was better in 

comparison to CNN based WST-ASDNet. It also 

outperformed all the other classifiers that were used in this 

study. The ASD categorisation efficiency of the proposed DL 

models was tested using another 16 channel EEG data set. 

Both the Proposed LSTM and CNN WST-ASDNets achieved 

an accuracy of 95% in categorising the ASD subjects and 

healthy controls using the 16 channel EEG dataset. The 

performance evaluation metrics such as, accuracy, sensitivity, 

precision and F1score of the DL based WST-ASDNets is close 

to 1, which indicates that the models were able to distinguish 

between actual ASD subjects and actual control subjects, 

which is an important factor considering the importance of 

false predictions, which can lead to ASD subjects being 

diagnosed as normal subjects and normal subjects being 

diagnosed as ASD subjects. The classification results obtained 

by the proposed DL models using the two EEG datasets 

indicate that the WST feature extraction technique is an 

excellent method for ASD categorisation which doesn’t 

require high computation cost and time. The ASD 

categorisation efficiency of the proposed DL models was 

tested using another 16 channel EEG data set. Both the 

proposed LSTM and CNN WST-ASDNets achieved an 

accuracy of 95% in categorising the ASD subjects and healthy 

controls using the 16 channel EEG dataset.  

Various AI based techniques have been employed for ASD 

diagnosis in recently conducted studies. A handful of studies 

have used the EEG dataset obtained from SFARI dataset 

(which was used in this study) for ASD categorisation. 

Autoregressive coefficients, shannon entropy and DFT 

features were extracted and an accuracy of 93% was attained 

in ASD categorisation [18]. In yet another study, CNN was 

used and an accuracy of 92.2% was attained in ASD 

categorisation [32]. 

ASD categorisation was performed in several studies by 

using the EEG dataset obtained from King Abdulaziz 

University. A study reported to have achieved an accuracy of 

99.5% in identifying autism using EEG [33]. Ari et al. used 

pre-trained CNN to classify ASD using EEG signals as images 

and obtained 98% accuracy [34]. Tawhid et al. used STFT to 

convert EEG signals into spectrogram images and obtained an 

accuracy of 99.15% using CNN for ASD identification [25]. 

In yet another study, EEG signals were transformed into 

Scalogram images and then CNN models were used to identify 

ASD and normal subjects. The authors reported to have 

achieved an accuracy of 82.98% using SqueezeNet pre-trained 
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CNN [27]. These studies have either used several feature 

extraction techniques or transformed EEG signals into images 

and then performed ASD categorisation. The manual 

extraction of features from EEG signals is a time consuming 

process and requires expert domain knowledge. Training the 

pre-trained CNNs and conversion of EEG into images is 

computationally expensive and time consuming. All the 

studies that have been performed using the same dataset that 

were used in this study have been validated using only one 

dataset. 

The use of WST ensures faster training and the DL based 

WST-ASDNets are capable of ASD categorisation using small 

training datasets. These models are also computationally less 

complex than the methods used in previous studies. This paper 

represents a first attempt to diagnose ASD using the wavelet 

scattering coefficients/features obtained from EEG signals of 

ASD and normal participants by using the LSTM and CNN 

based WST-ASDNets. In order to test how effectively WST-

Nets models work with data from various age groups, 

recording devices, sampling rates, channel counts, and 

geographic locations, two datasets were utilised for ASD 

classification. The proposed DL based WST-ASDNets 

performed exceptionally well in ASD categorisation using 

both the EEG datasets. The classification results of the two DL 

based WSD-ASDNets on different EEG datasets also indicate 

that the models are capable of adjusting to the diversity of the 

subjects and can perform ASD identification even if the 

subjects belong to different age groups. 

4. CONCLUSIONS

Numerous studies have attempted to establish more 

accurate diagnostic indices for ASD based on EEG as a result 

of the advancement of neuroimaging technology. The findings 

of this study, based on the classification results obtained, 

indicate that EEG is reliable tool to help the clinicians in 

making ASD diagnosis. Future research must demonstrate not 

just the differences in ASD and normal controls but also the 

differences between ASD and other neurodevelopmental 

disorders. In this study, two WST and DL based WST-

ASDNets were proposed for ASD classification by using the 

EEG signals. The models were trained and evaluated using 

124 channel data from 14 ASD subjects and 14 healthy 

controls. The WST based features were categorised using ML 

based classifiers as well. The comparison of the classification 

results of ML based classifiers and the WST-Nets revealed that 

the DL based WST-ASDNets outperformed the conventional 

ML classifiers in every performance metrics that were used for 

performance evaluation of the models. The performance of the 

WST-ASDNets was also tested on a second 16 channel EEG 

dataset and obtained an accuracy of 95% in classifying ASD. 

The results obtained in this study show that WST based DL 

models are exceptional tools for detecting ASD from EEG 

signals and can be vital components for clinical diagnosis of 

ASD. 
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