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In this paper, different types of plant diseases in the PlantVillage dataset are getting focused 

for classification. In the realm of machine vision, plant disease identification is one of the 

most crucial tasks in the agricultural sector. It is a technique that employs equipment to 

capture images to detect and classify different types of diseases in plants. However, naked-

eye monitoring of plants is impractical due to long processing times and a lack of specialists 

on farms in remote locations. Hence, combining image processing techniques with machine 

learning provides a solution to the problem of agricultural production while also ensuring 

food security. The plant features are extracted using a modified gray-level co-occurrence 

matrix (GLCM) technique and based on various statistical features. Both of these approaches 

were applied on original images with background and segmented images without 

background. Wavelet transform is also used with segmented images to decompose the image 

into sub-bands. All the features obtained are combined and SMOTE technique is used to 

balance the dataset prior to classification. For the purpose of classification, six machine 

learning models were compared, namely Light Gradient Boosting Machine (LGBM), 

Random Forest (RF), Decision Trees (DT), Logistic Regression (LG), AdaBoost, and 

Support Vector Machine (SVM). Further, different combinations of features were 

experimented and the experimental results prove that employing LGBM and SVM models 

resulted in attaining higher accuracy values i.e. 94.39% and 93.15%, respectively. 
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1. INTRODUCTION

Plants provide the essential foundation and the most 

important support for life on Earth. They are the only 

organisms that can convert the energy of sunlight into food [1], 

in addition to their ability to produce most of the oxygen in the 

air [2], which is the basic element for living organisms to 

survive. However, they are under constant and increasing 

threat from pests and diseases. According to the Food and 

Agriculture Organization of the United Nations (FAO), up to 

40 percent of global food crops are destroyed by plant pests 

and diseases each year. This leads to annual losses estimated 

at billions of dollars, which leaves millions of people facing 

hunger, and causes great harm to agriculture, which is the main 

source of income for poor rural communities. 

Therefore, attention to plant health and early detection of 

diseases, increases the opportunity to preserve the integrity of 

agricultural crops, which requires constant monitoring of plant 

health and their freedom from diseases and pests, through 

early identification of disease symptoms on plants and their 

leaves early. Over the last few decades, naked-eye monitoring 

of plants by experts has been the most common method for 

detecting and identifying plant diseases. Figure 1 shows how 

to recognize diseased plants by noticing the symptoms of the 

disease-causing organism, abnormal growth, or insect eggs 

that develop into larvae that feed on plants. However, in many 

sorts of conditions, this strategy is impractical due to long 

processing times and a lack of specialists on farms in remote 

locations [3]. And that has led field researchers to explore and 

exploit different techniques and tools for the prediction and 

recognition of the different types of illnesses in plants. 

Using image processing techniques has shown to be an 

excellent way for continuous monitoring of plant health and 

early detection of plant diseases [4]. Disease detection may be 

done through visual patterns on the leaves, such as illness in 

plants producing visible signs on leaves. Moreover, combining 

these techniques with machine learning (ML) or deep learning 

(DL) provides a solution to the problem of agricultural

production while also ensuring food security. The use of these

technologies allows farmers to detect diseases affecting crops

in real-time and without much effort to bring in specialists,

especially in remote areas, by applying this research to be used

on smart devices that are increasingly available.

In this paper, major contributions are described as followed 

where a PlantVillage dataset can be utilized for the 

categorization of plant illnesses. The dataset comprises 20,638 

images with three categories of leaves, namely pepper bell, 

potato, and tomato. A modified GLCM that only focused on 

target object (leaf) in the image and statistical features are used 

for examining the texture of leaves and extracting useful 

features from both original images (with background) and 

segmented images (without background). Haar Wavelet 

Transform (HWT) is applied to the segmented images to 

decompose the image into further sub-bands and extract 

potential features from it. 

All the features obtained from both original and segmented 

images are combined for classification purposes. The synthetic 

minority over-sampling technique (SMOTE) is used to 
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balance the dataset prior to classification. Six ML models are 

experimented with and compared for classification accuracy, 

namely LR, DT, RF, LGBM, Adaptive Boosting (AdaBoost), 

and SVM. 

The paper focuses on a brief summary of the related studies 

done in this field is illustrated in Section 2. The entire 

workflow and methodology are described in Section 5, 

followed by experimental analysis in Section 6. Section 7 

represents the achieved experimental results with a detailed 

discussion. The paper concludes in Section 8 with a discussion 

on some of the future research axes. 

 

 
 

Figure 1. Plant Diseases (a) Stunted growth from mealybugs, 

(b) Spots caused by rose black spot fungus, (c) Decay caused 

by rice blast fungus, (d) Malformed stems or leaves caused 

by ash dieback fungus, (e) Discoloration caused by tobacco 

mosaic virus, and (f) The presence of pests (aphids) 

 

 

2. RELATED WORK 

 

Several investigation efforts were carried till date for the 

identification and categorization of the plant illness by 

utilising different feature extraction procedures, ML and DL 

models. Barbedo [5] has experimented on the effect of the size 

of the dataset and image background for effectively analysing 

the plant disease clategorization. Usharani [6] has worked on 

the house plant leaf (Hibiscus herb) disease detection and 

classification using K-nearest neighbor (KNN) algorithm. 

Sabrol and Satish [7] have used a classification tree for the 

purpose of tomato plant disease classification based on five 

types of tomato disease. A review on different ML classifiers 

such as SVM, KNN, RF, Naive Bayes (NB), Fuzzy classifier 

and artificial neural network is done in the plant disease 

research [8-14]. Bauer et al. [15] have used high-resolution 

multi-spectral images for the classification of diseases in sugar 

beet leaves based on conditional random fields. SVMs is used 

extensively to identify symptoms of diseases, such as wheat 

disease recognition using radial basis function SVM [16], 

maize leaf disease detection [17]. Tian et al. [18] have used an 

improved kernel principal component analysis technique for 

selecting features in a plant leaf dataset. Along with that, they 

have proposed a SVM model whose parameters are 

automatically selected using genetic algorithm and orthogonal 

methods. Ramesh et al. [19] have used a Histogram of an 

Oriented Gradient (HOG) method for extracting chracteristics 

from papaya leaves and classified the disease using RF model. 

One of the most significant characteristics used to distinguish 

rice plant diseases is colour. Thus, Srivastava and Pradhan [20] 

have focused on classification of rice plant disease using color 

features only. Their proposed work provided good results with 

the SVM classifier. Linear Discriminant Analysis (LDA) has 

been used for reducing the dimensionality of features fed to 

the RF classifier by Elhariri et al. [21] where they extracted the 

features using multifeature extraction techniques such as vein 

features, GLCM, first-order texture, shape, and Hue Saturation 

Value (HSV) color moments, and combined them as the 

features vector. DL has also proven to be quite efficient in 

feature extraction of plants and classification of plant diseases. 

Lee et al. [22] have learned about unprocessed characterization 

of leaf features that make use of a Convolutional Neural 

Network (CNN), insights determined aspect using the 

Deconvolutional approach. Similarly, Tan et al. [23] have 

proposed a novel CNN technique D-Leaf for extracting the 

leaf features and classifying them using five ML models, 

namely SVM, ANN, KNN, NB, and CNN. Sembiring et al. 

[24] have used tomato leaves images from the PlantVillage 

dataset and worked on minimizing the complexity of the CNN 

model by using less number of layers using batch 

normalization. Turkoglu et al. [25] have used a Turkey plant 

dataset where they integrated six state-of-the-art CNN models 

for feature extraction, and classified them individually and in 

an ensemble manner using an SVM classifier. Last but not the 

least, a hybrid approach for crop disease detection using CNN 

and Auto-Encoders (AE) was suggested by Khamparia et al. 

[26] where the encoding part of AE was used to obtain the 

useful features. Hassan and Maji [27] used CNN based on 

residual and inception connection, where the depthwise 

separable convolution is used in inception architecture to 

reduce the cost of computation. whereas their proposal work 

experimented on three different datasets of plant disease: plant 

village (corn, potato, and tomato crops), rice, and cassava 

dataset. Mittal and Gupta [28] proposed an approach 

comprising three components. In order to produce the lesion 

snapshot, disease spots were first added to the overall image. 

The second component was the augmentation of data. A third 

component tested and trained the neural network, where the 

model is experimented on cucumber leaves. Pahurkar and 

Deshmukh [29] suggested a model maximizes variance by 

combining ensemble features such as GLCM, edge map, color 

map, and convolutional feature sets with particle swarm 

optimization (PSO). Moreover, a (GA) algorithm is 

incorporated to tune parametric of variant classification 

methods. The dataset used in this experiment is from different 

resources and contains (Apple plants, Cotton, Wheat, Rice, 

and Maize). Kong et al. [30] collected the dataset from three 

different resources (the AIChalle, Inaturalist, and IP102) with 

123,987 images in total, containing 47 diseases and 134 pest 

classes, by this combination a new CropDP-181 dataset was 

introduced. While the feature-enhanced attention neural 

network (Fe-Net) is proposed for the classification of diseases 

and crop pests. Table 1 summarizes some of the existing works 

used in plant disease classification using the PlantVillage 

dataset. It can be observed that ML plays a only minor role in 

the classification of PlantVillage dataset due to the following 

reasons:  

1. In ML models, GLCM considers the whole image for 

extracting the features, that leads to extract the features of 

background of leaf also. Whereas only leaf portion should be 

consided. 

2. Some time the number of samples for each class in the 

dataset is not balanced, that it can lead to inaccurate 

predictions. This is because the model may learn to focus more 

on the majority class and not give enough attention to the 

minority class, resulting in poor performance on the minority 

class. 

3. The size of the dataset used is also quite less with only 

one class of leaf, i.e. Tomato leaves. Moreover, the accuracy 

of ML models used is also less. 
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Table 1. Comparison of existing works using PlantVillage dataset 

 
Author(s) Dataset Classifier(s) Used Result Key Outcomes 

Sembiring et 

al. [24] 

PlantVillage dataset 

(10 classes of Tomato 

leaves) 

Concise CNN, VGG Net, Shuffle 

Net and Squeeze Net 

97.15% accuracy 

using proposed 

model 

- Minimized complexity using less 

number of layers through batch 

normalization 

Khamparia et 

al. [26] 

PlantVillage dataset 

(900 images) 
Convolutional Encoder Network 97.50% accuracy 

- Combined CNN with AE model 

- Only encoding part is used to obtain 

the useful features 

- Less dataset used 

- Time consuming 

Aurangzeb et 

al. [31] 

PlantVillage dataset 

(6004 images) 

SVM (Cubic, Quadratic, Linear, 

Medium Gaussian), LDA, and 

Ensemble Tree 

92.70% accuracy 

using Cubic SVM 

model 

- Feature extraction using HOG, 

Segmented Fractal Texture Analysis 

(SFTA) and Local Ternary Patterns 

(LTP) 

- Less dataset used 

- Less accuracy 

Tan et al. [32] 

PlantVillage dataset 

(10 classes of Tomato 

leaves) 

KNN, SVM, RF, AlexNet, VGG16, 

ResNet34, EfficientNet-b0, and 

MobileNetV2 

99.70% accuracy 

using ResNet34 

model 

- Feature extraction using GLCM and 

color features 

Xian and 

Ngadiran [33] 

PlantVillage dataset 

(10 classes of Tomato 

leaves) 

Extreme Learning Machine (ELM), 

SVM and DT 

91.43% using 

SVM model 

- Pre-processing via HSV colour 

space and feature extraction via 

Haralick textures 

- Less accuracy 

Rahman et al. 

[34] 

PlantVillage dataset 

(tomatoes, corns, and 

apple leaves) 

Different transfer learning 

approaches (MobileNet, DenseNet, 

ResNet, Inception, VGG, and 

Xception) 

99.79% Accuracy 

using MobileNe 

- MobileNet works superior with 

images of low-resolution plant leaves 

 

 

3. MOTIVATION & OBJECTIVES 

 

From the related works in section 2, it can be noted that the 

major research work in the ML area do not consider the 

number of images for each class in the dataset. In some cases, 

less number of images are used by reducing the majority 

classes to be the same as the minority classes. On the contrary, 

DL techniques are used to generate a bunch of images of 

minority classes so that their number is close to the number of 

the majority classes, which in turn takes lots of time. 

Extracting the features from an image by focusing on the 

specific object in the image helps the classification models 

work more accurately. However, the GLCM technique 

considers the whole image even when the background is 

eliminated, dominating the value of the new background on 

the co-occurrence matrix. Therefore, the purpose of the 

research is aimed at the following objectives: 

1. A modified GLCM approach is proposed that focuses on 

the leaf part of the image only even when with the segmented 

image with a black or white background. 

2. SMOTE technique is used to fill the gaps while balancing 

the dataset so as to consider a large dataset and give fair 

training for all the classes. 

3. Different combinations of features extracted from images 

through GLCM and statistical features are combined and 

experimented with in order to obtain good accuracy instead of 

using them separately. 

 

 

4. PRELIMINARIES 

 

An image is basically a two dimensional signal defined as 

f(x,y), in which x is horizontal coordinate and y is vertical 
coordinate respectively. A digital image tends to have some 

kind of undesirable background and artifacts that hamper the 

classification process. Thus, pre-processing is a necessary step 

that prepares an image to be more readable and analyses for 

the extraction and classification stage, for example (brightness, 

resize, segmentation, etc). After removing the background 

from an image, it is necessary to denoise and decompose the 

image into different components which can be used for feature 

extraction. This can be achieved by wavelet decomposition 

and transformation. 

 

4.1 Wavelet transform 

 

At each stage of the discrete wavelet transform (DWT), 

image signal will be degraded to two portions with the use of 

the filters high-pass and low-pass. Averaging operator 

corresponding to the low-pass filter, sums up the signal’s 

meaningless statistics. Differential operator, which is also 

known as the high-pass filter, summarizes the comprehensive 

signal information. Two distinct one-dimensional 

transformations result in a two-dimensional conversion [35]. 

The image is then reduced to two factors by filtering the image 

along the y-axis and the x-axis, at the end image is divided to 

sub-bands of four namely high-high (HH), low-high (LH), 

high-low (HL), and low-low (LL). Figure 2 represents all these 

four sub-band images for the red spectrum of the Pepper bell 

Bacterial spot leaf sample. Figure 3 shows the sub-band 

images for the green and blue spectrum of the same leaf 

sample. 

Haar Wavelet Transform: DWT scales and shifts are 

commonly based on power of two, rather than generating 

wavelet coefficients at every conceivable scale, as given in Eq. 

(1): 
 

𝛹𝑎,𝑏(𝑖) = 2−𝑎/2𝛹(2−𝑎(𝑖 − 𝑏)) (1) 
 

where, two denotes the scale base of the image, a denotes the 

scale parameter and b denotes the shift parameter. A signal s(i) 

can be expressed in terms of wavelets as given in Eq. (2):
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𝑠(𝑖) = ∑ 𝑐𝑎,𝑏 𝛹𝑎,𝑏 (𝑖)

𝑎,𝑏

 (2) 

 

where, 𝛹𝑎,𝑏 (𝑖)  denotes the translated mother wavelet. The 

Haar mother wavelet can be defined as given in Eq. (3): 

 

𝛹(𝑖) = {
1, 0 ≤ 𝑖 ≤ 1/2

−1, 1/2 ≤ 𝑖 ≤ 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3) 

 

The function 𝛷(𝑖) that used for image decomposition into 

four sub-band is given in Eq. (4): 

 

𝛷(𝑖) = {
1, 0 ≤ 𝑖 ≤ 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 

 

 
 

Figure 2. Four sub-bands for red spectrum of Pepper bell 

Bacterial spot leaf sample 

 

 
 

Figure 3. (a-d): Green spectrum, (e-h): Blue spectrum - LL, 

HL, LH and HH sub-bands, respectively 

 

Figure 4 shows multiple levels of sub-bands using Haar 

wavelet decomposition, where the low-pass filter coefficients 

LL and LH on the left matrix side and coefficients of high pass 

filter HL and HH on the right matrix side. Because of the 

depletion, the entirely modified image has the same size as the 

original image. The image is then filtered along the y-axis and 

the x-axis before being reduced by two factors. The red, green, 

and blue (RGB) spectrum all are processed using the Haar 

wavelet treatment in order to extract more information about 

the original image. Thus, in this manner a total of 12 images 

are generated. However, the LL sub-band gives an 

approximation image with a low frequency, and as a result, it 

is disregarded and kept unchanged to retain information for 

further decomposition of the image. The other sub-bands LH, 

HL and HH carry more comprehensive information in a 

different orientation, and are thus used to extract features. The 

LH, HL and HH sub-bands from the image extracts the 

features horizontally, vertically and diagonally. 

 

 
 

Figure 4. 3-level decomposition of sub-bands using Haar 

wavelet 

 

4.2 Feature extraction 

 

Feature extraction is the process that is involved in 

translating the raw data into numerical feature, which can be 

further processed by retaining the particulars in the master data 

set. The observed distributed statistical combinations of the 

intensities at specified points of the image in relative with each 

other are used for constructing the texture characteristics in 

statistical analysis. This statistical information is divided 

further to first, second and higher order depending upon the 

intensity instances (pixels) in every combination. In this work, 

two feature extraction techniques are used, namely GLCM, 

and statistical features. Both of them are discussed below. 

 

4.2.1 GLCM 

GLCM is a method in which process of extracting second 

order texture features [36]. Here, the count of rows and 

columns in the matrix is equal to the count of gray levels (L) 

in the image. A matrix element E (k, l | ∆p, ∆q) denotes the 

comparative rate of occurrence accompanied by dual pixels, 

with intensities k and l, and separated by a pixel distance (∆p, 

∆q), occur in a particular neighborhood. Similarly, a matrix 

element E (k, l | m, θ) denotes the statistical probability values 

of second-order with respect to the changes that occur between 

the gray levels k and l, for a distance m at an angle θ. A higher 

intensity level stores much temporary information, i.e. a L x L 

matrix for every combination (∆p, ∆q) or (m, θ). An 

illustration of GLCM formation with five gray levels is shown 

in Figure 5.  

 

 
 

Figure 5. Illustration of GLCM matrix with five gray levels 

 

Here, the original matrix M is used to construct different 

GLCMs with respect to different angles in each direction [37]. 

The matrix G1, denoted by red color, represents the frequency 
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for every combination (k, l) for the changes that occur between 

the gray levels k and l in the original matrix M in the direction 

at an angle of 135◦ and the distance between pixels is equal to 

1. For example, the change between the fourth and second gray 

levels (4, 2) occurs twice in matrix M at an angle of 135◦ and 

a distance of 1 pixel. Similarly, the matrix G2, G3 and G4, 

denoted by green, blue and purple colors, represent the 

frequency values in the direction at an angle of 90◦, 45◦, and 0◦ 

respectively. 

The GLCMs are particularly sensitive to the size of the 

texture samples on which they are calculated because of their 

huge dimension. In result, there is frequent decreased in the 

count of gray levels. 

In this work, five GLCM features, namely Homogeneity, 

Energy, Dissimilarity, Correlation, and Contrast are utilized 

for extracting the features from the image. All these are 

discussed below. 

(a) Contrast 

Also known as inertia or variance, it denotes the intensity 

contrast between a pixel and its neighbor over an entire image. 

The Contrast is given as in Eq. (5): 

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ |𝑘 − 𝑙|2 𝐸(𝑘, 𝑙)

𝐿−1

𝑘,𝑙=0

 (5) 

 

where, k and l are the spatial coordinates of the normalized 

symmetrical GLCM element E (k, l), and L is the gray level. 

(b) Correlation 

It signifies how a pixel is correlated to its neighbor over an 

entire image. In other words, it represents the linear 

dependency of gray levels in neighboring pixels. Its range is [-

1, 1], where -1 denotes negatively correlated image, 1 denotes 

positively correlated image, and NaN for a constant image. 

The Correlation is given as in Eq. (6): 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑
(𝑘 − 𝜇𝑘) (𝑙 − 𝜇𝑙) 𝐸(𝑘, 𝑙)

𝜎𝑘  𝜎𝑙

𝐿−1

𝑘,𝑙=0

 (6) 

 

where, µk, µl, σk, σl denote the mean and standard deviation 

(SD) of pixel intensities, respectively. 

(c) Dissimilarity 

It denotes the distance between two pixels in the region of 

interest, and its range is [0, 1]. The Dissimilarity is given as in 

Eq. (7): 

 

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑ |𝑘 − 𝑙| 𝐸(𝑘, 𝑙)

𝐿−1

𝑘,𝑙=0

 (7) 

 

(d) Energy 

Also known as angular second moment or uniformity, it 

denotes the sum of the squares of the values in GLCM. It is 

high when the pixels are quite homogeneous or similar. Its 

range is [0, 1], where 1 is for a constant image. The Energy is 

given as in Eq. (8): 

 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ (𝐸(𝑘, 𝑙))2

𝐿−1

𝑘,𝑙=0

 (8) 

 

(e) Homogeneity 

Also known as inverse second moment, it denotes the 

proximity of spread of pixels in GLCM with respect to the 

GLCM diagonal. Its range is [0, 1], where 1 is for a diagonal 

GLCM. The Homogeneity is given as in Eq. (9): 

 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑
𝐸(𝑘, 𝑙)

1 + (𝑘 − 𝑙)2

𝐿−1

𝑘,𝑙=0

 (9) 

 

4.2.2 Statistical features 

In this work, six statistical features are used for extracting 

the features from the image, namely mean, SD, skewness in 

the y-axis, skewness in the x-axis, kurtosis in the y-axis, and 

kurtosis in the x-axis. Each pixel in a colored image is denoted 

by a vector of three-color spectrum namely blue, green and red, 

ranging from 0 to 255. The mean for a particular spectrum is 

the average of all the pixel values in that spectrum. SD is the 

dispersed value of pixels from the mean in a spectrum. 

Skewness is a symmetric measure of distribution of pixels in 

images based on the pixel points on both x and y axis. Thus, 

pixels in an image can be positively skewed, negatively 

skewed, or unskewed. Kurtosis signifies whether pixels in 

image are peaked or flat relative to the normal distribution in 

both x and y axis. While skewness is the third moment of SD, 

kurtosis is the fourth moment of SD. The equations for mean, 

SD, skewness and kurtosis of RGB image with size A x B 

pixels is given as in from Eq. (10) to (13): 

 

𝑀𝑒𝑎𝑛 =
1

𝐴 . 𝐵
∑ 𝑤𝑖,𝑗

𝐴.𝐵

𝑗=1

 (10) 

 

𝑆𝐷 = √
1

𝐴 . 𝐵
 ∑(𝑤𝑖,𝑗 − 𝑤𝑖̅̅ ̅)2

𝐴.𝐵

𝑗=1

 (11) 

 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = √
1

𝐴. 𝐵
 ∑(𝑤𝑖,𝑗 − 𝑤𝑖̅̅ ̅)3

𝐴.𝐵

𝑗=1

3

 (12) 

 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = √
1

𝐴. 𝐵
 ∑(𝑤𝑖,𝑗 − 𝑤𝑖̅̅ ̅)4

𝐴 .𝐵

𝑗=1

4

 (13) 

 

where, Wi,j denotes the value of pixel j of ith color spectrum, 

and 𝑊𝑖̅̅ ̅̅  denotes the mean of each spectrum. 

 

4.3 ML classification models 

 

In this work, six ML classification models are used, namely 

LR, DT, RF, LGBM, AdaBoost, and SVM. All these are 

discussed below. 

 

4.3.1 Logistic regression 

To Unlike the name, LR is used for both binary and multi-

class classification in images. In the case of multiple classes, 

it is also known as Softmax Regression since it uses a softmax 

classifier for classification [38]. LR estimates the output 

probability Pi, i=1, ... C, as a C-dimensional vector, giving C 

estimated probabilities, where C is the count of classes in 

dataset. The equation for the output probability Pi is given as 

in Eq. (14): 
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𝑝𝑖 =
𝑒𝑝𝑖

∑ 𝑒𝑝𝑗𝐶
𝑗=0

 (14) 

 

The cost function T of the softmax regressor is given as in 

Eq. (15): 

 

𝑇 = − (∑ ∑ 1{𝑝𝑖 = 𝑗} 𝑙𝑜𝑔 𝑝𝑖

𝐶

𝑗=1

𝑁

𝑖=1

) (15) 

 

where, N denotes the input images, and 1 {Pi=j} denotes 

whether an input image belongs to class j or not. 

 

4.3.2 Decision trees 

It is a greedy algorithm with a flowchart like tree structure, 

which is built in a manner of top-down recursive divide-and 

conquer. Whereby greedy algorithm is an optimization 

algorithm that makes the best choice at each step, and it is used 

for finding the overall, most optimal way to solve a problem. 

The topmost node is the root, the internal nodes represent a test 

on the attribute, branch signifies the test outcome and the leaf 

nodes depict the class labels [39]. Being a greedy algorithm, 

DT uses information gain approach using Shannon Entropy to 

minimize the information needed to classify the tuples. The 

equation for calculating the entropy (Info) is given as in Eq. 

(16): 

 

𝐼𝑛𝑓𝑜 = − ∑ 𝑝𝑖  𝑙𝑜𝑔2 (𝑝𝑖)

𝐶

𝑖=1

 (16) 

 

where, Pi is the probability that a random tuple belongs to class 

C. After that, the entropy for each feature is calculated, based 

on which the decision of root attribute is chosen. The equation 

for attribute entropy (InfoA) is given as in Eq. (17): 

 

𝐼𝑛𝑓𝑜𝐴 = ∑ ∑
𝑝𝑖𝑗

𝑝

𝑣

𝑗=1

 𝐼𝑛𝑓𝑜 (𝑝𝑖𝑗)

𝐶

𝑖=1

 (17) 

 

where, v denotes the distinct samples of particular class i, p 

denotes the total samples, and Pij denotes the number of 

samples of type j belonging to class C. The root attribute is 

decided using the information gain (Ig) of each feature as given 

in Eq. (18): 

 

Ig=Info-InfoA (18) 

 

The feature with the highest Ig is used as the root attribute 

every time. This approach is recursively carried out till there 

are no features left for further partitioning. 

 

4.3.3 Random forest 

RF is a group classifier used for both classification and 

regression. It uses a majority voting technique using decisions 

from several DT, as shown in Figure 6. It overcomes the 

drawbacks the over-fitting of using a single DT by selecting 

random training data with replacement to build individual tree 

[40]. Well defined training data subset will be considered in 

order to generate DT model for each tree, with the leftover one 

of three equal parts of training data that which is used for 

assessing the accuracy of the model. The split criteria for each 

node in the tree are determined using the second random 

sample step. The RF model uses certain parameters like input 

training data, number of trees to build, and the number of 

predictor variables for creating the binary rule for each split. 

 

 
 

Figure 6. Random forest model 

 

4.3.4 LGBM 

It is a tree-based gradient boosting technique that optimizes 

its algorithm by using a random differential loss function. 

Unlike DT, the choice of splitting the leaf node at each step is 

done in a more effective manner. While other algorithms grow 

trees horizontally in a level-by-level manner, LGBM grows 

trees vertically in a leaf-by-leaf manner. Thus, it develops the 

leaf with the highest delta loss and has the ability to decrease 

loss while increasing on the same leaf [41]. This technique can 

not only handle large scale data with faster training speed but 

also takes less memory giving better accuracy. Two innovative 

methods Exclusive Feature Bundling and Gradient based One 

Side Sampling (GOSS) are used for overcoming constraints of 

techniques based on histogram in gradient boosting DT. 

 

4.3.5 AdaBoost 

It is a sequential ensemble learning method that combines 

several weak models to form a strong classifier, improving the 

final predictive performance. For N number of features, the 

equation of an image i can be given as in Eq. (19): 

 

F(i)=a0 f0 (i)+a1 f1 (i)+...+aN fN(i) (19) 

 

where, aN denotes the random initial weights, and fN denotes 

the features [42]. An integral image is created to evaluate the 

Haar-like features by updating the weights of specific features 

that maximize the chances of correct classification. Larger 

weights are assigned to features that offer the classifier a 

higher number of true positives and true negatives since they 

are more accurate to the target class. Features that cause a 

significant amount of false positives and false negatives are 

given lower weights, with the potential of being assigned a 

weight of zero. 

 

4.3.6 Support vector machines 

Multi-class classification is naturally not supported by SVM. 

It allows for binary classification by dividing the feature 

attributes into two groups. Thus, a multi-class problem is 

broken into several binary classification problems in a 

recursive manner, also known as one-to-one approach. In a D 

dimensional space RD, the goal is to design a hyperplane that 

optimizes the dissociation of the data points to the respective 

prospective classes. Support vectors are the data points with 

the shortest distance to the hyperplane (closest points) that are 

based on the kernel function for efficient class separation [43]. 

For N training images, it creates two different classes, jϵ{-1, 

+1}, given as {(i1, j1), ... (iN, jN)} in RD. Images with feature 

vectors on one part of hyperplane can be labeled as -1, and 
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other part as +1. The equations for separating hyperplane with 

r number of features is given as in Eq. (20) and (21): 

 

∑ 𝑊𝑖

𝑟

𝑖=1

. 𝑋𝑖 + 𝑏 = 0 (20) 

 

∑ 𝑊𝑖

𝑟

𝑖=1

. 𝑋𝑖 + 𝑏 = 0 (21) 

 

 

5. METHODOLOGY 

 

The main important steps in the field of image classification 

with numerical features are feature extraction, pre-processing, 

balancing the dataset and training the ML models. Figure 7 

shows the flowchart of the presented work. Here, both the 

original images (with background) and segmented images 

(without background) are considered for classification 

purposes. The modified GLCM technique is approached in this 

paper to focus only on the leaf portion for extracting the 

features, as described in (Algorithm 1) and shown in Figure 

8(a). For the original images, the GLCM technique and six 

statistical features are used directly for feature extraction. In 

the case of segmented images, 2-D discrete Haar wavelet 

transform is used prior to applying modified GLCM and six 

statistical features to extract some potential features. Here, the 

images are divided into four sub-bands, i.e. HH, HL, LH, and 

LL based on wavelet level 1 decomposition using a symmetric 

mode. Since the LL image or approximation coefficient is a 

low-frequency sub-band, it is not considered for extracting the 

features. Thus, the image is re-scaled to half of its dimension, 

and the rest three sub-band features are considered for 

extracting the features. Each channel in an RGB image is 

represented by 8 bits in a range of 0 to 255. However, after 

using wavelet transform, the image texture gets affected and 

the features become out of range. To address this issue, the 

sub-band images are normalized to the range of 0 to 255, and 

the values are converted into an 8-bit unsigned integer prior 

applying the modified GLCM technique. Thus, after 

normalizing the sub-band images, modified GLCM and 

statistical features are used on them. In both, the cases of 

original and segmented images, five GLCM and modified 

GLCM features and six statistical features are extracted as 

described in section 4.2 of this paper. The mathematical 

calculation of all features is described in Table 2. Thirty-three 

features from original images, ninety-nine features from 

segmented images, and a total of 132 features are generated 

through the fusion of features from both types of images. 

 

 
 

Figure 7. Flowchart of proposed metho 

 

 
 

Figure 8. (a) Wavelet image, (b) Image contour, and (c) 

Masked image 

 

The formal modified GLCM algorithm is represented in 

Algorithm 1, which computes the co-occurrence matrix 

accumulation, where the inputs of the algorithm are image i.e. 

leaf image with dimensions m x n, distance δ has k1 elements, 

angle θ has k2 elements, levels indicates the level of color 

gradation in the image typically 256 for an 8-bit image, and 

mask is an image which highlights the object of input image 

i.e. leaf part that gives a value of 1 to the pixels of the leaf, and 

a value 0 to pixels of the leaf background for which the 

cooccurrence matrix will be counted. The output of algorithm 

is the co-occurrence matrix accumulation of GLCM. Figure 

8(b) illustrates the relevant portion of the leaf for which the 

co-occurrence matrix should be calculated. whereby the mask 

of the leaf is generated and passed to Modified GLCM as 

shown in Figure 8(c). the mask is obtained by using a Sobel 

filter for edge detection of the leaf. Then experimentally, the 

threshold operator with a value of 50 is determined to consider 

the leaf only and eliminate the background. 

 

Table 2. Total features extracted for classification 

 
Image Type Color Spectrum (a) Technique (b) Total Features (a) * (b) 

Original 

Red 

Green 

Blue 

(3) 

GLCM (5) 15 

Statistical Features (6) 18 

Total 33 

Image Type Color Spectrum (a) Wavelet Sub-band (b) Technique (c) Total Features (a) * (b) * (c) 

Segmented 

Red 

Green 

Blue 

(3) 

LH 

HL 

HH 

(3) 

GLCM (5) 
 

45 

Statistical Features (6) 54 

Total 99 

Total Features 132 
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ALGORITHM 1. MODIFIED GLCM ALGORITHM 

𝐼𝑛𝑝𝑢𝑡: [𝐼𝑚𝑎𝑔𝑒]𝑚∗𝑛 , [𝛿]𝑘1, [𝜃]𝑘2, 𝑙𝑒𝑣𝑒𝑙𝑠, [𝑀𝑎𝑠𝑘]𝑚∗𝑛 

𝑂𝑢𝑡𝑝𝑢𝑡: 𝑐𝑜 − 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠  

1. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎𝑛𝑔𝑙𝑒 𝜃𝑖  𝑑𝑜 ;  𝑖 = 0, 1, . . . , 𝑘1 

2.   𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝛿𝑗  𝑑𝑜 ;  𝑗 = 0, 1, . . . , 𝑘2 

3.       є𝑟   𝑆𝑖𝑛(θ𝑖) ∗  δ𝑗   

4.       є𝑐  𝐶𝑜𝑠(θ𝑖) ∗  δ𝑗   

5.        𝑅𝑠, 𝑅𝐸 max( 0, − є𝑟), min( m , m −  є𝑟) 

6.        𝐶𝑠, 𝐶𝐸 max( 0, − є𝑐), min( n , n −  є𝑐) 

7.     𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑟𝑜𝑤 𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒: 𝑑𝑜 ;  𝑟 =  𝑅𝑠, … , 𝑅𝐸 

8.       For each column c in the image: do; c=Cs, …, Cs 

9.         If Mask [r, c] is equal 0 

10.             Continue 

11.          𝑃  𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐼𝑚𝑎𝑔𝑒[𝑟, 𝑐]  

12.          𝑟′
 𝑟 + є𝑟 

13.          𝑐′  𝑐 + є𝑐  

14.          𝑃′  𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐼𝑚𝑎𝑔𝑒 [𝑟′, 𝑐′] 

15.   If 0≤P< levels and 0≤P'< levels: 

16.             𝑐𝑜 − 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠[𝑃, 𝑃′, δ𝑗 , 𝜃𝑖]  𝑐𝑜 −

𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠[𝑃, 𝑃′, δ𝑗 , 𝜃𝑖]  +  1 

 

Algorithm 1 Explanation: Lines 1 and 2 executes the 

algorithm for all the distance δ and angle θ, respectively. Lines 

3 and 4 compute the offset for row and column, given by єr 

and єc, for each new distance and angle in the loop, 

respectively. Lines 5 and 6 compute the start and end index of 

each of the rows (RS, RE) and columns (CS, CE) with 

considering their offsets. Lines 7 and 8 create loops to compute 

co-occurrence matrix accumulation after initializing the 

indexes (RS, RE) for rows and (CS, CE) for columns. Lines 9 

and 10 define a condition where pixels in input image 

corresponding to mask image with a value 0, i.e. background 

pixels, are ignored. On the contrary, whereas pixels in input 

image corresponding to mask image with a value 1, i.e. leaf 

pixels, are passed for the calculation of co-occurrence matrix 

accumulation. Lines 11 assigns the values of pixel as P. Lines 

12 and 13 compute the offset index of current pixel for row r' 

and column c', where the value of the offset pixel is assigned 

as P'. Finally, lines 15 and 16 compute the co-occurrence 

matrix accumulation by adding 1 to its previous value. 

However, the features dataset is still imbalanced due to the 

unequal distribution of classes in the dataset that can affect the 

classifier’s performance. The count of minority (positive) 

class tests is very less as compared to the majority (negative) 

class tests. Most of the forecasts belong to the majority class. 

The noise persisting in the data comes under the features of the 

minority class and will be ignored. As a result, the prototype 

possesses considerable bias. In order to address this issue, the 

minority class synthetic samples are over-sampled using 

SMOTE [44]. It is more concerned on the feature space for 

producing new examples by incorporating with the positive 

instances which are close. Depending on the over-samplings 

required, neighbors are picked in random from the k closet 

required [45]. The synthetic samples are obtained as follows: 

1. The variance between the considered feature vector and 

its closest neighbor is considered.  

2. The difference thus obtained will be multiplied with a 

random value that varies between (0, 1) and then is added to 

the considered feature vector. 

3. In result, an arbitrary location is opted between the two 

definite characteristics across the line segment. 

The balanced data is thus used for classification using the 

six ML models as discussed in section 4.3 of this paper. 

6. EXPERIMENTAL ANALYSIS 

 

6.1 Dataset description 

 

In this paper, the PlantVillage dataset is downloaded from 

the Kaggle website [46] and used as a dataset for training and 

testing purposes. It comprises of three different types of crop 

leaves, namely Pepper bell, Potato, and Tomato. These three 

crops make 15 various classes of diseased and healthy leaves 

with a total of 20,638 images, as shown in Table 3. It can be 

observed that there are two classes of pepper bell, three classes 

of potato, and ten classes of tomato leaf. The segmented image 

sample for all the 15 classes of leaf is shown in Figure 9. 

 

Table 3. Composition of PlantVillage dataset 

 
SL. 

No. 
CLASS NAME 

Number of 

Images 

1 Tomato mosaic virus 373 

2 Tomato Yellow Leaf Curl Virus 3208 

3 Tomato Target Spot 1404 

4 Tomato Septoria leaf spot 1771 

5 Tomato Early blight 1000 

6 Tomato Leaf Mold 952 

7 
Tomato Spider mites Two spotted 

spider mite 
1676 

8 Tomato Late blight 1909 

9 Tomato Bacterial spot 2127 

10 Tomato healthy 1591 

11 Pepper bell Bacterial spot 997 

12 Pepper bell healthy 1478 

13 Potato Late blight 1000 

14 Potato healthy 152 

15 Potato Early blight 1000 

 Total 20,638 

 

 
 

Figure 9. (a) Tomato Spider mites Two spotted spider mite, 

(b) Tomato Yellow Leaf Curl Virus, (c) Tomato Target Spot, 

(d) Tomato Septoria leaf spot, (e) Tomato Bacterial spot, (f) 

Potato Late blight, (g) Tomato Late blight, (h) Tomato Leaf 

Mold, (i) Tomato Early blight, (j) Tomato healthy, (k) 

Tomato mosaic virus, (l) Potato healthy, (m) Potato Early 

blight, (n) Pepper bell healthy, and (o) Pepper bell Bacterial 

spot 

 

6.2 Experimental setup and parameters 

 

Every experiment enclosed in this paper is performed in a 

Windows 10 system version 21H1, with 64-bit operating 

system and 8 GB RAM. Python 3.8.10 was used as the 

programming language and all the experiments were 

performed on Spyder platform. RunwayML is used as a 
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platform to eliminate the background from the images using 

U2Net architecture. The various experimental factors that are 

considered in the analysis are represented in the Table 4. 

 

Table 4. Experimental parameters 

 
Technique Parameter Value 

GLCM 
distance 3 

direction 0o (East GLCM) 

Dataset 

Split 

Training 80% 

Testing 20% 

AdaBoost 

classifier RandomForestClassifier 

max_depth 7 

n_estimators 15 

DT random_state 42 

RF 

n_estimators 15 

random_state 42 

criterion Entropy 

LR 
random_state 42 

penalty L2 

SVM 
decision_function_shape ovo 

kernel rbf 

LGBM 

learning_rate 0.05 

Objective multiclass 

max_depth 10 

 

 

7. RESULTS AND DISCUSSION 

 

7.1 Classification results 

 

The results obtained after applying all the parameters 

described in Table 4 and using the six ML techniques on the 

balanced dataset are presented in Table 5. It shows accuracy 

values obtained using different combinations of features in 

original as well as segmented dataset. The highest accuracy 

values obtained in each set of combination is marked in red 

bold, while the second highest accuracy is marked in green 

bold. Table 5 shows the highest accurate value of 94.76% is 

obtained using the LGBM classifier when all the features are 

combined using both original and segmented datasets, i.e. 

Both (c) and (f) columns. Similarly, the second highest 

accuracy value of 93.51% is obtained using the SVM classifier 

for the same combination. The second-best combination is 

acquired when GLCM is used with original dataset features, 

i.e. Both (c) and (d) columns. The lowest accuracy is obtained 

when only statistical features are used with the segmented 

dataset, i.e., column (e). Further, it can be observed that the 

LGBM classifier performs best in most of the cases, followed 

by the SVM classifier. However, the DT classifier performs 

the poorest among all the classifiers used in every combination. 

Another experimentation comparing the accuracy and mean 

absolute error (MAE) of imbalanced v/s balanced dataset, and 

wavelet level 1 (L1) v/s level 2 (L2) decomposition is 

presented in Table 6. The MAE denotes the difference of 

average between the actual and measured value over total 

number of data samples as in Eq. (22): 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦�́� − 𝑦𝑖|

𝑛

𝑖=1
 (22) 

 

where, yi is true value, 𝑦
𝑖
́  is prediction value, and n is the total 

number of data points. From the Table 6, it can be observed 

that there is a significant difference is noticed in accuracy and 

MAE values between the imbalanced and balanced datasets. 

 

Table 5. Accuracy values obtained using different combination of features and ML models 

 
ML MODELS DT AdaBoost LR RF SVM LGBM 

Both 

(c) & (f) 

80.65 89.43 91.07 91.84 93.51 94.76 

Both 

(c) & (e) 

77.02 86.57 88.13 88.67 91.39 93.18 

Both 

(c) & (d) 

78.98 87.36 89.80 90.45 92 93.69 

Both 

(b) & (f) 

74.58 83.05 85.21 86 88.87 88.76 

Both 

(a) & (f) 

75.36 84.19 86.54 86.11 89.25 90.82 

Both 

(b) & (e) 

71.13 80.57 82.96 82.49 85.09 85.68 

Both 

(a) & (d) 

71.98 81.45 84.01 84.33 86.62 87.14 

Without Background Both (f) 67.49 76.62 78 78.20 79.23 79.80 

SF (e) 53.44 61.36 62.79 62.24 64.91 66.27 

GLCM (d) 60.03 69.21 69.95 70.10 71.22 72 

With Background Both (c) 75.40 84 86.92 87.05 90.28 92.11 

SF (b) 65.35 75.03 76.38 75.97 77.85 77.24 

GLCM (a) 69.57 78.60 80.87 81.14 83.44 82.92 

 

Table 6. Comparison between unbalanced and balanced dataset 

 
ML MODELS DT AdaBoost LR RF SVM LGBM ML MODELS 

Balanced Dataset Wavelet (L2) MAE 0.882 0.495 0.407 0.441 0.315 0.229 

Accuracy 78.94 88.15 90.33 89.90 92.37 94.02 

Balanced Dataset Wavelet (L1) MAE 0.791 0.417 0.358 0.332 0.246 0.205 

Accuracy 80.65 89.43 91.07 91.84 93.51 94.76 

Imbalanced Dataset MAE 1.664 1.216 0.845 0.707 0.672 0.566 

Accuracy 64.58 76.26 80.12 83.01 83.81 85.63 
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Figure 10. Precision, Recall and F1-score for ML models 

used (x100) 

Figure 11. Confusion matrix (a) Imbalanced dataset, (b) 

Balanced dataset 

The SMOTE balanced dataset provides quite better 

accuracy than the imbalanced dataset. In case of wavelet, L1 

decomposition gives better accuracy and less MAE values 

than L2 decomposition. However, there is not a significant 

difference between both the levels. Figure 10 shows the plots 

for precision, recall, and F1-score values obtained for all the 

ML models. The ratio of the precisely forecasted positive 

samples and the absolute anticipated positive samples is 

termed as Precision. The ratio of the precisely predicted 

positive samples and all positive samples in actual class is 

termed as Recall. The harmonic weighted average balance 

persisted between precision and recall is the F1-score. Where 

the equations for Precision, Recall, and F1-score are denoted 

in Eq. (23)-(25) respectively: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
(23) 

Recall =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
(24) 

F1 = 2 ∗ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ Recall 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + Recall
(25) 

A confusion matrix is a 2x2 matrix which visualizes and 

summarizes a classifier performance based on a group of test 

data whose real values are known prior. Each column of the 

matrix represents the instances in a predicted class while each 

row represents the instances in an actual class (or vice versa). 

The diagonal of the matrix represents the number of correct 

classifications for the same class and the rest represents the 

number of misclassifications between two classes. The 

confusion matrix obtained in the case of both imbalanced and 

balanced datasets is shown in Figure 11. From Figure 11(a) 

denoting the confusing matrix for the imbalanced dataset, it 

can be observed that the misclassified samples in the minority 

classes are more than half of its test set due to the model 

training the majority classes better than the minority ones. This 

dataset is not good enough for distinguishing because of the 

similarity between some samples which leads to misclassified 

samples. However, this issue is addressed using SMOTE, as 

shown in Figure 11(b). 

7.2 Discussion 

From Table 5, it can be generalized that the DT classifier is 

not a good choice for image datasets. Images are purely based 

on local connections between the features, i.e., the proximity 

of the pixel to its neighbors. Because DT does not account for 

this, the outcomes are subpar and greatly influenced by noise. 

They also do not perform well with large datasets. Further, 

with large number of features, DT needs overfitting of data 

because they can split on many distinct combinations of 

features, that leads to high variance and error in output with 

high inaccuracy. AdaBoost classifier, on the other hand, 

generalizes well with large data and is less susceptible to 

overfitting. However, it considers only important features in 

the dataset, ignoring the rest. Thus, not considering all the 

pixel features in images can lead to not getting good results at 

times. Though there is not a significant difference between LR 

and RF, the RF classifier however performs well than LR in 

most cases. Image features are hierarchical and complicated, 

and deducing them using LR with a single linear layer is 

sometimes difficult. RF using an ensemble learning technique 

eliminates the overfitting problem in DT. However, using a 

large number of trees is sometimes ineffective for real-time 

predictions. Coming to SVM, this classifier has the ability to 

model complicated non-linear boundaries, especially in high 

dimensional spaces. The Gaussian RBF kernel works quite 

(a)

(b)
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well with non-linear image data, making it less prone to 

overfitting. For this reason, it is one of the best ML models 

used in image classification. Finally, the LGBM classifier, 

being a powerful histogram-based gradient boosted algorithm, 

performs the best among all other classifiers. It is much 

compatible even with large complex datasets, and has a faster 

training speed among all other classifiers because of its high 

speed. Instaead of level-wise split approach, leaf-wise split 

strategy is used for building remarkable complicated trees, 

which acts as a major element to obtain greater accuracy. 

From Table 5, two more points can also be generalized. First, 

GLCM features, either taken alone or combined provide better 

accuracy than statistical features. This is because GLCM 

features are based on second-order statistics, while the 

statistical features used in this work are based on first order 

statistics. The first-order statistics provide features that offer 

information about the image’s gray-level distribution. 

However, the statistics will not provide details regarding the 

comparative placements of numerous gray levels of images. 

These characteristics will not be able to conclude if all gray 

levels of low value can be grouped together or can be swapped 

for further gray levels of higher value [47]. However, this data 

may be obtained from the GLCM technique, which evaluates 

second-order image statistics and considers pixels in pairs. 

Second, combination of GLCM and modified GLCM and 

statistical features provides better accuracy, than either of 

these used alone. All of these features work together to 

produce a high level of discrimination between two types of 

images. 

Similarly, from Table 6, two points can be generalized. First, 

the accuracy of an imbalanced dataset is less than that of a 

balanced dataset, because of the significant bias obtained due 

to the presence of less number of bulk predictions and minority 

class samples for the majority class samples. Thus, SMOTE is 

used for addressing this issue which in turn provides quite a 

good accuracy. Second, the accuracy of wavelet L1 is better 

than that of L2 decomposition. Decomposing an image leads 

to a decrease in Bits per Pixel (BPP), Peak Signal-to-Noise 

ratio (PSNR), compression ratio [48], and an increase in root 

mean squared error (RMSE), mean squared error (MSE) and 

MAE. This in turn leads to a loss of information. Thus, wavelet 

L1 preserves more information than wavelet L2, and thus 

provides better accuracy. 

 

 

8. CONCLUSIONS 

 

Plant disease detection is one of the crucial challenges in the 

agricultural industry. Diagnosing illnesses in plants at an early 

stage is critical for avoiding severe losses in annual crop 

production. Both ML and DL take part crucial contribution in 

the detection and classification of plant diseases. This paper 

concentrates on the classification of plant diseases using six 

ML classifiers. GLCM, modified GLCM and statistical 

features were used for extracting the potential features of the 

plant images. Different combinations of features using original 

as well as the segmented dataset are used, and it was observed 

that the LGBM and SVM models perform the best among all 

other classifiers. As the analysis is performed using the dataset 

with a limited number of samples, further work can be carried 

out to analyse samples by considerably increasing the dataset. 

Moreover, some robust deep neural networks such as Hybrid 

CNN, Generative Adversarial Network, etc. can also be used 

to extract potential features from the images for a better 

classification of the diseases. Thus, future works would rely 

on using the complete dataset along with some powerful 

feature extraction techniques and DL models for the detection 

and classification of plant diseases. 
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NOMENCLATURE 

 

Notation Description 

θ The angle between two different gray levels 

δ The distance between two different gray levels 

єr Row offset 

єc Column offset 

RS, RE Start and end index of rows respectively 

CS, CE Start and end index of columns respectively 

P Pixel value of current index 

r' Offset index of current pixel for row 

c' Offset index of current pixel for column 

P' Pixel value of offset index 
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