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The rolling element bearing is used in various machinery and produces vibration due to 

imperfections, surface irregularities during manufacture, damaged bearings, and 

inaccuracies in the allied element. Also, the rolling element bearing vibration generally 

shows non-linear dynamic characteristics and is masked with heavy background noise. This 

noble investigation advances a hybrid technique for removing background noise from the 

vibration signal and detecting bearing defects. Translation invariant wavelet denoising is the 

initial stage in this hybrid method for noise removal from the signal. The second phase uses 

Hierarchical Entropy (HE) for defect feature frequency extraction. Hierarchical entropy at 

scale four and SampEns of eight hierarchical decomposition nodes was utilized to determine 

the defect feature vector. In particular, low-frequency components are investigated through 

multi-scale entropy (MSE), but hierarchical entropy (HE) incorporates low-frequency and 

high-frequency components and can extract more defective information. Implemented a 

multi-class support vector machine (SVM) for extracting Hierarchical entropy as feature 

vectors. These feature vectors are trained by utilizing particle swarm optimization (PSO). 

To accomplish a prediction model, examine the optimal SVM parameters and then various 

bearing conditions with the variation of type, size, speed, and load severity identified by 

SVM. The investigation results show that hierarchical entropy can adequately and more 

precisely express the features of bearing vibration signals. It is beyond MSE, and the 

proposed Nobel hybrid Translation invariant wavelet denoising and Hierarchical entropy-

based method will effectively remove the noisy background signal. Also, it distinguishes 

different bearings successfully, indicates the bearing conditions correctly, and is more 

prominent than those found on MSE. 
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1. INTRODUCTION

The rolling element bearing (REB) is employed in 

numerous industrial applications, and its failure can lead to 

machinery failure [1, 2]. As a result, defect analysis is required 

to avoid bearing failure [2, 3]. REB vibration data gives a great 

deal of information about problems and their fault location [4]. 

Vibration analysis is often used to detect localized faults in 

REB [5, 6]. The periodic force effects caused by impulsivity 

at a particular frequency in the presence of a defect are 

computed using the shaft speed, sampling frequency, and 

bearing geometry [2-4]. As a result, periodic impulses are a 

vital status indication of REBs, and defect diagnosis classifies 

the bearing characteristic frequencies (BCFs) in most 

circumstances by assuming the outer race is stationary [4, 5, 

7]. Localized flaws appear in bearings at numerous points, 

such as the inner race (IR), the outer race (OR), and the ball 

and cage [8]. Figure 1 depicts the systematic pattern of inner 

race faults. The four fundamental frequencies represent 

different defect sites. The first is ball pass frequency outer race 

(BPFO), followed by ball pass frequency inner race (BPFI), 

fundamental train frequency (FTF), and ball spin frequency 

(BSF). The following are the formulas for specific distinctive 

frequencies [9]: 

𝐹𝑇𝐹 = 𝑓𝑔 =
1

2
[𝑓𝑖 (1 −

𝑑 𝑐𝑜𝑠𝛼

𝑃𝐷
)] (1) 

𝐵𝑆𝐹 = 𝑓𝑟 =
𝐷𝑝

2𝑑
(𝑓𝑖) [1 − (

𝑑 𝑐𝑜𝑠𝛼

𝑃𝐷
)

2

] (2) 

𝐵𝑃𝐹𝐼 = {
𝑁

2
[𝑓𝑖 (1 +

𝑑 𝑐𝑜𝑠𝛼

𝑃𝐷
)]} (3) 

𝐵𝑃𝐹𝑂 = {
𝑁

2
[𝑓𝑖 (1 −

𝑑 𝑐𝑜𝑠𝛼

𝑃𝐷
)]} (4) 

where, 𝑁 is the number of rolling elements, 𝑃𝐷 𝑜𝑟 𝐷𝑝  is the

bearing pitch diameter, ball diameter (𝑑), contact angle (𝛼), 

and the shaft speed (𝑓𝑖).

Figure 1. Bearing with a cracked inner race 
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The vibration signals non-linear variables of REB with 

defects, particularly clearance, friction, and rigidity, indicate 

non-linear characteristics [9]. As a result, traditional time-

domain and frequency-domain signal processing 

methodologies and advanced signal processing are based on 

linear structures. Also, the wavelet transformation cannot 

accurately evaluate REB operating conditions. The growth of 

non-linear dynamic estimating parameters presents an 

excellent alternative to understanding and predicting complex 

non-linear dynamics performance. The parameters based on 

entropy can define the non-linear dynamic vibration signal 

features in the time domain, which were studied and applied 

to diagnosing bearing faults [10]. Pincus [11] has contributed 

approximate entropy (ApEn), a signal complexity metric 

utilized in cardiovascular clinical data series. While 

approximate entropy was adopted and picked as a mechanism 

for vibration signal handling, it is attributable to its self-

adjusting problem. The length of the record has a significant 

impact on the approximation entropy. For short recordings, the 

approximation entropy value is continuously lower than 

predicted and lacks comparative coherence considerably [12]. 

Richman and Moorman revealed a novel signal complexity 

metric to address the flaws in approximation entropy [12]. The 

sample entropy (SampEn) depends on the small data length. 

Sample entropy is used to diagnose heart rate variability [13]. 

Still, there is an increased entropy, but it does not necessarily 

mean that increased entropy correlated with the entropy rise in 

dynamic complexity [14]. Costa et al. suggested a multi-scale 

entropy (MSE) system for processing distinct signals on 

different time scales and utilized analysis of MSE for various 

physiological data to solve this problem [14, 15]. The 

utilization of multiple oscillatory modes of vibration signal 

measurement by Zhang et al. [16] considered mechanical 

machinery with diverse components and the interaction effects 

between these components. 

The hierarchical entropy (HE) approach was developed 

using hierarchical decay and entropy analysis to evaluate the 

complexity of the time series [17]. The HE method is used for 

the cardiac interval time series to classify numerous heart 

failures. Considering the lower frequency at each time scale 

component and the higher frequency generated by averaging 

the element by computing the difference between two 

succeeding scales. MSE performs better than HE [17]. Bearing 

vibration signals have high signal complexity. The fault 

information is either masked in the lower frequency 

component or both (Low and High-frequency component), 

from Low-frequency component interaction effects and 

mating part effects of various types generated. It emphasizes 

low-frequency components time series scales, which may not 

be optimal for obtaining defect characteristics from faulty 

REB vibration data. Based on this impression, the HE 

technique is employed to identify roller-bearing problems in 

the current investigation. 

In most cases, the roller bearing defect detection procedure 

necessitates data collection, feature extraction, and Pattern 

Recognition [18]. Then traditional artificial neural network 

(ANN) approaches are examined to investigate whether 

appropriate samples are available. Support Vector Machines 

(SVM) is a supervised learning method, and SVM is applied 

to interpret classification and regression issues such as support 

vector classification (SVC) and support vector regression 

(SVR). The smaller sample sizes in specialization theory have 

a greater conception and guarantee than ANN. The optimal 

local and global solution is precisely the right [19, 20]. A 

minimum number of samples will be used by SVM to address 

the learning issue. It is difficult, or even unlikely, to obtain 

adequate defect samples for functional uses. As a result of its 

high precision and generalization, SVM is used to identify 

faults in rotating machinery. For a more significant number of 

samples, research [21-23] also attempted to use SVM to 

classify the rotating unit conditions. The method described in 

this paper demonstrates how to implement HE and SVM with 

a particle swarm optimization algorithm for rolling-element 

bearing with noisy vibration signals. Then, HEs are calculated 

using sample entropy (SampEn) of eight nodes of hierarchical 

decomposition to create fault vectors incorporating defect 

information. In the next step, the defect input characteristics to 

the SVM Multi-Class Classifier, the defect forms of roller 

bearings, and varying degrees of severity are marked. Figure 2 

represents the flow chart of a hybrid method of TI denoising, 

HE, and SVM using PSO for fault diagnosis of REB. 

 

 
 

Figure 2. Flow chart of the diagnostic procedure 

 

 

2. TRANSLATION INVARIANT WAVELET 

DENOISING WITH CYCLIC SPIN 

 

2.1 Introduction TI with cyclic spin denoising 

 

Sometimes, traditional wavelet denoising displays the 

Gibbs phenomenon visual artifacts [24]. To overcome these 

artifacts, cyclic spinning is a better choice, where the REB 

vibration signal data is to be denoised and diverse time shifts 

translation. Experimentally, cyclic-spinning decreases the root 

mean square error (RMSE) compared with traditional 

denoising [24]. In contrast, the wavelet transform is not time-

invariant, but cycle spinning has periodic time-invariance. 

Calculate multiple estimates of the unidentified signal using 

various shifts and then linearly average the calculations [6] 

[24]. The process of a cyclic spin is reviewed as follows: 

Assume signal 𝑦(𝑡)(0 ≤ 𝑡 ≤ 𝑛)  and by introducing the 

operator of time-shift 𝑆ℎ. 𝑆ℎ represents the circulant shift by h, 

(𝑆ℎ𝑦)𝑡 = 𝑦(𝑡+ℎ)𝑚𝑜𝑑 𝑛  where mod denotes modulus after 

division. Timeshift operator is invertible and unitary; therefore, 

h, (𝑆ℎ𝑦)𝑡 = 𝑦(𝑡+ℎ)𝑚𝑜𝑑 𝑛 . The principles of shifting are to 
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remove visual artifacts in terms of this operator and provide an 

investigation method T, measure instead of T, the time-shifted 

variant �̂�(𝑦; 𝑆ℎ) = 𝑆−ℎ(𝑇(𝑆ℎ(𝑦))). The strategy for taking the

shift parameter is optimization. Generally, a vibration signal 

contains discontinuity, which is likely to interfere with one 

another. Sometimes, the best shift for the first discontinuity of 

signal is the worst shift for the other discontinuity of signal. 

We applied the range of shifts in the vibration signal and 

average over the many results for the above-said reason. 

Therefore, for time shift H is the range of shift, 𝐴𝑣𝑒 is the 

average operator, and  

�̂�(𝑦; 𝑆ℎ )(ℎ⋲𝐻) = 𝐴𝑣𝑒(ℎ⋲𝐻)𝑆−ℎ(𝑇(𝑆ℎ(𝑦))) (5) 

In this way, cycle spinning can identify subspaces and 

calculate the average of denoising projections. 

2.2 Simulated (synthetic) signal 

Let us assume the simulated (Synthetic) signal is 

𝑦(𝑡) = 𝑦1(𝑡) + 𝑦2(𝑡) (6) 

𝑦1(𝑡) = 𝑠𝑖𝑛(2𝜋15𝑡) + 0.9 sin(2𝜋30𝑡) (7) 

where, 𝑦1 (𝑡)  represents the original signal combining two 

harmonic waves and, Gaussian noise 𝑦2(𝑡), with SNR = 10 dB.

The time-domain signal 𝑦1(𝑡)  and time-domain signal 𝑦(𝑡)
Figures 3 (a) and 3(b) are represented, respectively. Assume 

that the sampling frequency is 1024 Hz, and the sample points 

are 1024. Figure 3(b) indicates that the original signal 𝑦1(𝑡) is

associated with random noise. 

In the simulated (synthetic) signal 𝑦(𝑡), the Daubechies 

least symmetric wavelet is considered with four vanishing 

moments, symmetric wavelet (symN); where N = number of 

vanishing moments. Cyclic spinning with 15 shifts. The seven 

shifts to the left and seven to the right, including one zero-

shifted signal. The denoising signal results obtained by the 

cyclic spinning denoising algorithm are represented in Figure 

4(a), and the standard orthogonal denoising algorithm is 

displayed in Figure 4(b), respectively. In the context of 

projections, this work implemented the cycle spinning method 

for denoising. 

The approximate error obtained by standard orthogonal 

denoising is 4.2729, and the approximate error obtained by 

cyclic spinning denoising is 3.4248. Therefore, cyclic spinning 

denoising is the most suitable alternative for signal denoising 

and has reduced the approximation error with only 15 shifts. 

Figure 3. The time-domain representation. (a) Original or raw signal 𝑦1(𝑡) (b) noisy signal 𝑦(𝑡)

Figure 4. Comparison of denoising results on the noisy signal obtained by the cyclic spinning denoising algorithm and the 

standard orthogonal denoising algorithm. (a) Cyclic spinning denoising (b) standard orthogonal denoising 
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3. STUDY OF SAMPLE ENTROPY (SAMPEN) AND 

MULTI-SCALE ENTROPY 

 

Sample Entropy (SampEn) is a complexity function like 

approximate entropy (ApEn). However, it does not contain 

self-similar patterns as ApEn does. As a statistic, SampEn 

(𝑚, 𝑟, 𝑁) is based on three criteria. The first (𝑚) defines the 

length of the vectors to be used for analysis; the second ( 𝑟) 

defines tolerance typically was chosen as a standard deviation 

factor (SD), and the third (  𝑁 ) represents the data points, 

respectively. The 𝑁  data points {𝑢(𝑗): 1 ≤ 𝑗 ≤ 𝑁}, form the 

𝑁 − 𝑚 + 1 vectors 𝑥𝑚  (𝑖) for {𝑖|1 ≤ 𝑖 ≤ 𝑁 − 𝑚 + 1} where 

𝑥𝑚(𝑖) = {𝑢(𝑖 + 𝑘): 0 ≤ 𝑘 ≤ 𝑚 − 1} is the vector of 𝑚  data 

points from  𝑢(𝑖) 𝑡𝑜 𝑢(𝑖 + 𝑚 − 1) . The difference between 

two vectors suggested  𝑑[𝑥𝑚(𝑖), 𝑥𝑚(𝑘)] , is defined as to 

be  𝑚𝑎𝑥 {|𝑢(𝑖 + 𝑗) − 𝑢(𝑘 + 𝑗)|: 0 𝑗 ≤ 𝑚 − 1} , Maximum 

variance between their respective scalar elements. The initial 

formulation of SampEn was watched closely by the 

Grassberger Procaccia– Integral correlation. However, it is 

more natural and less notational. The intensive method 

considers that SampEn (m, r, N) is a negative natural logarithm 

of the empiric probability that 𝑑[𝑥𝑚+1(𝑖), 𝑥𝑚+1(𝑘)] ≤ 𝑟  in 

terms of the 𝑑[𝑥𝑚(𝑖), 𝑥𝑚(𝑘)] ≤ 𝑟. Where the values for the 

parameters are designated and let B denote the number of pairs 

𝑥𝑚(𝑖)𝑥𝑚(𝑘) such that 𝑑[𝑥𝑚(𝑖), 𝑥𝑚(𝑖))] ≤ 𝑟, and let A be the 

number of pairs of vectors 𝑥𝑚+1(𝑖), 𝑥𝑚+1(𝑘)  such that 

𝑑[𝑥𝑚+1(𝑖), 𝑥𝑚+1(𝑘)] ≤ 𝑟.  Then  𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) =
−𝑙𝑛(𝐵/𝐴). For convenience, we apply to the combination of 

two vectors of length  𝑚 . Then match the prototype and 

compare the length of two vectors m+1. SampEn is an ApEn 

refining approach to determine the complexity of the time 

series data.  

While SampEn has the benefit that it is limited and reliant 

on the duration of the time sequence, it assigns greater entropy 

to uncorrelated random white noise signals. Because of this, 

SampEn's Entropy is higher for uncorrelated random white 

noise signals. Using the MSE technique, one may create 

sequential coarse-grained time series {𝑦(𝜏)(𝑗)} using the same 

time series stated before. The following is the equation [14]:  

 

𝑦(𝜏)(𝑗) =
1

𝜏
∑ 𝑥(𝑖)

𝑗𝜏

𝑖=(𝑗−1)𝜏+1

 (8) 

 

where, scale factor 𝜏 with range{1 ≤  𝑗 ≤  𝑁 / 𝜏}.  

 

 

4. HIERARCHICAL ENTROPY 

 

In this section, the physiological system complexity 

estimation using the HE technique. On the other hand, the 

multi-scale entropy technique emphasizes the lower frequency 

components while ignoring the higher frequency component's 

characteristics. Furthermore, using only lower frequency 

components will not recreate the original time series—all 

time-series data collected on a multi-scale basis either in lower 

or higher frequency components, or both. Multi-scale entropy 

tests the convolution extremely fit for these entities—this 

information is primarily preserved in its lower frequency 

components in time series. However, a high-frequency 

component will be missing from the data processed. This 

realization leads to the construction of a hierarchical entropy 

technique. 

We are now applying the approach of hierarchical entropy 

(HE). We define the average operator 𝑄0 for the time series 

(𝑥) = {𝑥(1), … , 𝑥(𝑖), … , 𝑥(𝑁)} 

 

𝑄𝑜(𝑥) =
𝑥(2𝑗)+𝑥(2𝑗+1)

2
 𝑗 = 0, 1, 2, … , 2𝑛−1 (9) 

 

The time series 𝑄𝑜(𝑥) with a duration of 2𝑛−1 is the low-

frequency feature of (𝑥)  at scale 2. The operator of the 

difference 𝑄1 for the time series (𝑥) is given by 

 

𝑄1(𝑥) =
𝑥(2𝑗)−𝑥(2𝑗+1)

2
 𝑗 = 0, 1, 2, … , 2𝑛−1 (10) 

 

The time series 𝑄1(𝑥)  with a length of 2𝑛−1  is a high-

frequency Component of (𝑥) on scale 2. As an incorporation 

of this, the time series 𝑄𝑜(𝑥) and 𝑄1(𝑥) are two-scale time-

series investigations of the(𝑥). For 𝑗 = 0 𝑜𝑟 1, 𝑄𝑗  operators 

have a matrix representation: 

 

𝑄𝑗 = [

1

2
0
0

(−1)𝑗

2
0
0

0
1

2
0

0
(−1)𝑗

2
0

. . .

. . .

. . .

0
0
1

2

0
0

(−1)𝑗

2

]

2𝑛−1𝑋2𝑛

 (11) 

 

In the time series, the operator matrix shape depends on the 

length of the operation. These operators are repetitively used 

to construct a multi-scale time analysis series(x). For example, 

suppose that N is a positive integer for 𝑛 ∈ 𝑁  and 

[𝑣1, 𝑣2, … … 𝑣𝑛] ∈ {0, 1}, the integer 

 

𝑒 = ∑ 𝑣𝑗2𝑛−1

𝑛

𝑗=1

 (12) 

 

When 𝑛 ∈ 𝑁 is fixed, the non-negative integer e is a unique 

vector [𝑣1, 𝑣2, … , 𝑣𝑛] which corresponds to it by Eq. (9). The 

hierarchical components of a time series (𝑥) are defined by  

 

𝑥𝑛,𝑒=𝑄𝑣1
, 𝑄𝑣2

, … , 𝑄𝑣𝑛
(𝑥) (13) 

 

Observation reveals 𝑥𝑛,0  represents the low-frequency 

element of the time series (𝑥) in scale (𝑛 + 1), whereas 𝑥𝑛,1 

represents the equivalent high-frequency component. The 

initial time series (𝑥)  is (𝑥0,0) . The signal (𝑥𝑛,𝑒 ) is the 

hierarchical decomposition of signal (𝑥) at different scales for 

distinct (𝑛)  and (𝑒) . When {τ= 2𝑛} , the node (𝑥𝑛,0)  of 

hierarchical decomposition is the identical to the time series 

{𝑦(𝜏)}  of MSE investigation. The hierarchical tree of the 

hierarchical decomposition of four scales is shown in Figure 5. 

 

 
 

Figure 5. Signal (𝑥) four scales hierarchical decomposition 

 

Lastly, the SampEn of each (𝑥𝑛,𝑒) component is determined 

and applied to calculate the complexity of the REB Signals. 

This method is called hierarchical entropy investigation. 
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SamplEn depends strongly on parameters (𝑚) and (𝑟). As a 

result, the choice of these two constraints is critical. The 

selection is as detects: (𝑚 = 2)  and {𝑟 = 0.2 ×
𝑠𝑡𝑑(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)} and of time series, founded on 

preceding investigations [12]. Assuming that SampEn is not 

accountable for the data length, the accepted calculation 

is 𝑁 =  2048. 

 

 

5. SUPPORT VECTOR MACHINE 

 

5.1 Multi-class SVM 

 

The REB defect identification is a classification of several 

levels that consider different types of faults and varying levels 

of severity. (One-against-all) and (One-against-one) typical 

strategies for the multi-class category. According to Hsu and 

Lin, one-on-one is a conclusive strategy [25]. Consequently, 

the one-against-one approach is selected here. If 𝑘  is the 

number of classes, then 𝑘(𝑘 − 1)/2 is formed as classifiers. 

Each of them trained on data from two classes. We solve the 

training data of the 𝑖𝑡ℎ and 𝑗𝑡ℎ groups. The following two-tier 

classification problem: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 
1

2
‖𝜔 𝑖𝑗‖2 + 𝐶 ∑ 𝜉𝑡

𝑖𝑗(𝜔 𝑖𝑗)𝑇

𝑡
 (14) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  
(𝜔 𝑖𝑗)𝑇𝜙(𝑥𝑡) + 𝑏 𝑖𝑗

≥ 1 − 𝜉𝑡
𝑖𝑗 , 𝑖𝑓 𝑥𝑡𝑖𝑛 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑐𝑙𝑎𝑠𝑠, 

(15) 

 

(𝜔 𝑖𝑗)𝑇𝜙(𝑥𝑡) + 𝑏 𝑖𝑗

≥ −1 + 𝜉𝑡
𝑖𝑗 , 𝑖𝑓 𝑥𝑡𝑖𝑛 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑐𝑙𝑎𝑠𝑠, 

(16) 

 

The Max Win Strategy [26] classification is introduced as 

follows: if Sign (𝜔𝑖𝑗)𝑇𝜙(𝑥𝑡) + 𝑏𝑖𝑗  states that 𝑥 is in the 𝑖𝑡ℎ 

class of voting for one applied to the 𝑖𝑡ℎ class. Otherwise, the 

𝑗𝑡ℎ would be expanded by one of them. Then 𝑥 is assigned to 

the class with the highest numeral of positive majority 

opinions. The radial base function (RBF) of the kernel is 

rational. Primary preference and description of the functional 

implementation of SVM as 

 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−ϒ‖𝑥𝑖 − 𝑥𝑗‖
2

) (17) 

 

Two parameters appear in the definition for classifying 

defects: kernel and parameter penalty ϒ and 𝐶, respectively. 

 

5.2 Parameters preference with PSO 

 

Particle Swarm Optimization (PSO) is advanced computing. 

Kennedy 1995 [27, 28] proposed the PSO procedure. And are 

inspirited by the communal element conduct of a bird 

assembling. PSO centered on an algorithm for the actions of 

the assemblage swarm. The algorithm looks for the Optimum 

value by exchanging cognitive and social knowledge among 

the particles in the solution space because of its fast 

convergence property of easy implementation with favorable 

outcomes [29]. This study combines PSO with k-fold cross-

validation to achieve parameter preference of SVM classifier 

[30]. 

For the sake of simplicity, this article does not address the 

PSO algorithm, which is widely available in a lot of literature 

[29]. For the conventional PSO, the following equations are 

utilized. 

 

𝑣𝑖𝑗(𝑡 + 1) = 𝑤𝑣𝑖𝑗(𝑡) + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑥𝑖𝑗(𝑡))

+ 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑗 − 𝑥𝑖𝑗(𝑡)) 
(18) 

 

𝑥𝑖𝑗(𝑡 + 1) = 𝑥𝑖𝑗(𝑡) + 𝑣𝑖𝑗(𝑡 + 1) (19) 

 

where, 𝑣𝑖(𝑡)  is the 𝑖𝑡ℎ  particle velocity at the 𝑡𝑡ℎ  iteration; 

𝑝𝑏𝑒𝑠𝑡𝑖(𝑡) is termed as the particle's best location; Also the 

𝑔𝑏𝑒𝑠𝑡𝑖(𝑡)  represents the global best location amongst all 

particles.  

In this article, the size of population (swarm size) 𝑝 = 20, 

the inertia weight  𝑤 = 1 , personal acceleration coefficient 

𝑐1 = 2, social acceleration coefficient 𝑐2 = 2, 𝑡ℎ𝑒 maximum 

number of iteration 𝑡𝑚𝑎𝑥 = 200 are selected respectively. The 

cross-validation fold number is 𝑘 = 5, and the search range 

of ϒ and 𝐶  is [10−2, 10+2]. The PSO optimization of SVM 

parameters is divided into the following steps: 

 

Stage 1: Initialization. To every particle (equivalent to 𝑐 

and 𝐶  of the particle of Variables SVM), build the original 

location and velocity arbitrarily. Set 𝑝, 𝑤, 𝑐1, 𝑐2, 𝑡𝑚𝑎𝑥 . 
Stage 2: Fitness assessment. Find the fitness values for 𝑡 =

 1 . A rating SVM classifier with k-fold cross-validation 

considering fit has a high overall consistency: several previous 

studies suggest that a high health degree value predicts a lower 

probability of classification inaccuracy. 

Stage 3: Changes. The velocity and location of each are 

updated using particle-based Eqns. (18) and (19). 

Stage 4: Stop it. If the predefined 𝑡𝑚𝑎𝑥 has been reached, 

execute stage 6.  

Stage 5: set the vector iteration: 𝑡 =  𝑡 +  1 and move to 

Step 2. 

Stage 6: Yield the optimum parameters value of ϒ and 𝐶. 

 

 

6. APPLICATION 

 

6.1 Experimental setup 

 

The current manuscript experimented with the SKF test 

setup to collect vibration signatures for stable and distinct 

types of defective bearings. The investigation rig comprises a 

1 HP induction engine to allow variable speed up to 2900 rpm, 

as seen in Figure 6. The accelerometer was attached to a rigid 

bearing housing. In this case, self-aligned ball bearings are 

used for investigation purposes. Table 1 displays the 

particulars of the experimental bearing used during the 

investigation and the working condition of the test bearing-the 

defects produced on various bearing components utilizing an 

electrical discharge drill. Table 2 displays the characteristic 

frequencies of REB used, and Table 3 shows the rolling 

element bearing parameters. Baseline data was collected by 

running a healthy bearing in the investigation rig. Then, the 

various faulty, defective information was obtained using the 

SKF GX Series Microlog CMXA-75 (Handheld FFT 

analyzer). 

Defects considered for the current work as presented in 

Figure 7. In this inquiry, the subsequent four classes of REB 

conditions are classified. Time series vibration data were 

registered at 820 rpm and 1500 rpm for normal and faulty 

bearings. The sampling rate used to capture the vibration 

information was 6.4 kHz, and the REB vibration data were 
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recorded and captured for 5 seconds. Periodic and low 

amplitude peaks are associated with healthy bearings, whereas 

the higher magnitude of non-periodic peaks must be noticeable 

for IR defects.  

 

 
 

Figure 6. Experimental setup 

 

 
 

Figure 7. Defects (a) Inner race fault, (b) Outer race fault 

 

The ball and outer race defects identified low and 

intermittent amplitude vibration behavior. However, such 

behavior was not detected by the time domain vibration signal. 

These time-domain vibration signals show non-stationary 

behavior. Thus, these signals have been analyzed using a non-

stationary signal processing technique which is part of this 

work. 

 

6.2 Results and analysis 

 

To demonstrate the suggested procedure for the 

experimental findings from the above tests is used to test a 

roller bearing defect diagnostic. Table 4 to Table 12 shows test 

REB vibration data from four distinct circumstances, 

including healthy bearing data, bearings with IR defects, OR 

defects, ball defects, and varying degrees of severity for 

individual defects. In Figure 10 and Table 4, a ten-class issue 

emerged from the experimental investigation due to the 

multiple faults and their proportions. The experimental data 

contains 400 samples, with 820 rpm sample data abbreviated 

to a 2048-point time series and 1500 rpm sample data to a 

4096-point time series. In addition, none of them overlapped 

the 400 vibration sample data. One hundred samples are 

randomly picked for training data, while the remaining 300 are 

for test data to create the model. 

A total of Ten different bearing conditions (Healthy bearing, 

IR defect, OR defect, and ball defect) time-domain original 

signal was obtained from the test bearing, as shown in Figure 

8. Figure 8 displays that the impact part is obscured by ambient 

noise due to the fault that exists in the rolling bearing and noise 

due to the experimental test setup associated component. 

Apply the translation-invariant wavelet denoising and obtain 

the purified signal Figure 9. The background noise present in 

the different bearing conditions is effectively suppressed. 

As a result of this experiment, the vibration signal test data 

is three times as large as the training data in this study. The 

original time-domain signal of 10 bearing circumstances is 

represented in Figure 8, and the purified time-domain signal 

of the corresponding ten bearing conditions is illustrated in 

Figure 9. The SampEn of eight nodes of HE decomposition for 

ten purified time-domain waveform bearing conditions is 

represented in Figure 10. It is apparent in Figure 10 that when 

the HE of the healthy bearing increases, the low-frequency 

components become more dominant. However, bearings with 

IR faults, OR faults, and ball faults have a high-frequency 

value in both frequency regions. This guarantees that, under 

healthy situations, the system on vibration signals is generally 

preserved in its low-frequency components. When no fault is 

present, the majority opinion is supported by evidence that no 

high-frequency impulse is generated. It can be observed that 

distinct defective situations have different HE values, even 

though the corresponding HE values follow a similar pattern. 

Table 1. Working condition of the experimental REB 

 
 REB Model Motor load Fault characterization Speed (rpm) REB Condition 

Case Study 1 2207EKTN9 0-1 HP Diameter: 0.18, 0.53 & 1mm 1500 Ball defect 

   Depth: 0.2mm 820 IR defect 

    (IR & OR) OR defect 

    Depth: 0.1 mm (Ball Fault) (Centered @ 6:00) 

 

Table 2. Characteristic frequencies of REB 

 
Characteristic frequencies (Hz) Shaft Frequency FTF BSF BPFI BPFO 

Case Study 1 25 9.81 55.5 182 117.81 

 13.66 5.36 30.37 99.55 64.37 

 

Table 3. REB parameters 

 
 Number of ball 

𝑵 

Angle of contact 

𝜶 

Ball diameter 

𝒅 

Outside 

Diameter 

Inside 

Diameter 

Pitch Diameter 

𝑫𝒑 

Case Study 

1 

9 0 7.9 52 25 46.4 
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Figure 8. Ten various bearing conditions time-domain waveform 

 

 
 

Figure 9. Ten various bearing conditions purified the time-domain waveform 

 

  
(a) Healthy bearing condition (b) IR defect 
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(c) OR defect (d) Ball fault 

 

Figure 10. The eight nodes in hierarchical decomposition and their HE values under the following ten bearing conditions 

 

By referring to Figure 10, the HE is suitable for usage as an 

indicator of faulty features, as it deviates from each other HE. 

Following the extraction of HE as Feature vectors produced 

from training and test data, respectively. Test data 

characteristic vectors are divided into a training set and a test 

set, each with 100 samples. 

As designated in Section 4.2, the PSO technique is coupled 

through Cross-validation to produce the optimum Penalty 

parameter 𝐶, kernel parameter ϒ, and Training method, 

resulting in optimal 𝐶=0.1000 and ϒ=9.8337. A multi-class 

SVM classifier uses the training set to create a forecast model. 

After that, the testing data set is fed into the trained model, 

then the various defect configurations and severity of REB are 

reported. 

No misclassified samples were under any of the ten bearing 

situations, as shown in Table 5. Indicate that both the test and 

the training are 100 percent accurate. To demonstrate the 

advantages of TI denoising with HE in this study, MSEs were 

computed over eight scales of the sample data to create 

characteristic vectors toward observation. Optimal and ϒ = 

7.4838 are found using the same approach described 

previously. 

According to Table 6, eight samples were miscategorized 

throughout the test data collection, and the overall test 

efficiency is 97.3 percent. The investigation recommends HE 

will be able to extract both low- and high-frequency findings. 

The suggested TI denoising using the HE technique is 

predominant to the MSE technique for categorizing various 

REB circumstances. To better illustrate the performance and 

dominance of HE as defect characteristics, an ANN has a 

weaker simplification than SVM in the event of a short 

quantity of data to comprehensively detect ten distinct defect 

configurations. A frequently used backpropagation (BP) 

algorithm for ANN preparation is utilized. The input layer, 

output layer, and hidden layer/s are the three layers that make 

up an ANN. 

The input layer receives the data from the network and 

stores it in a database. As the essential information is obtained 

from the input layer, it is processed by the hidden layer. It is 

then transferred to the output layer, which will also analyze the 

information from the hidden layer and provide the output. The 

number of the feature vector is used to determine the input 

layer node number. The input number of layer nodes is 8, 

whereas the number of output nodes is 10, and the number of 

defect categories calculates it. Three types of node number of 

hidden layers arbitrarily endeavored in this article, which is 18, 

20, and 22, respectively.  

 

Table 4. Experiment group 1: The proposed method for different cases is constructed by variations of type (IRF, ORF, and REF), 

size (Slight, Moderate and Severe), speed rpm (820 and 1500), and load (0 hp and 1 hp) of fault bearings 

 
Fault 

Class 

Fault 

Size 

(mm) 

Fault 

Severity 

Load 

(hp) 

RPM Number of 

Training 

data 

Number 

of Testing 

data 

Class 

Label 

Number of 

Misclassified 

Samples 

Wrong 

output of 

testing 

data 

Recognition 

rate 

Normal 0 ----- 0 1500 10 30 1 0 0 100% 

IRF 0.18 Slight 0 820 10 30 2 0 0 100% 

 0.53 Moderate 1 820 10 30 3 0 0 100% 

 1.00 Severe 1 1500 10 30 4 0 0 100% 

 0.18  0 1500 10 30 5 0 0 100% 

ORF 0.18  0 820 10 30 6 0 0 100% 

 0.53  1 1500 10 30 7 0 0 100% 

 1.00  1 1500 10 30 8 0 0 100% 

REF 0.18  0 820 10 30 9 0 0 100% 

 0.53  1 1500 10 30 10 0 0 100% 

In Total     100 300  0 0 100% 
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Table 5. Experiment group 1: The results of the recognition are based on MSE and SVM for different cases are constructed by 

variations of type, size, speed rpm, and a load 

 
Fault 

Class 

Fault 

Size 

(mm) 

Fault 

Severity 

Load 

(hp) 

RPM Number of 

Training 

data 

Number 

of Testing 

data 

Class 

Label 

Number of 

Misclassified 

Samples 

Wrong 

output of 

testing 

data 

Recognition 

rate 

Normal 0 ----- 0 1500 10 30 1 0 0 100% 

IRF 0.18 Slight 0 820 10 30 2 0 0 100% 

 0.53 Moderate 1 820 10 30 3 0 0 100% 

 1.00 Severe 1 1500 10 30 4 0 0 100% 

 0.18  0 1500 10 30 5 0 0 100% 

ORF 0.18  0 820 10 30 6 0 0 100% 

 0.53  1 1500 10 30 7 0 1 96.6% 

 1.00  1 1500 10 30 8 0 2 93.3% 

REF 0.18  0 820 10 30 9 0 4 86.6% 

 0.53  1 1500 10 30 10 0 0 100% 

In Total     100 300  0 8 97.3% 

 

Table 6. Experiment group 2: The second cluster of an experiment for Defect type identification with the same defect severity, 

different fault types, and the same load 

 
Fault Severity 

(mm) 

Load 

(hp) 

Number of 

Categories 

Number of 

Training data 

Number of Testing 

data 

Recognition 

rate 

RPM Variance 

0.18 (Slight) 0 03 (IRF, ORF & 

REF) 

10 30 100% 820 0 

 1 03 10 30 100% 820 0 

0.53 (Moderate) 0 03 10 30 100% 820 0 

 1 03 10 30 100% 820 0 

1.00 (Severe) 0 03 10 30 97.66% 820 0.12 

 1 03 10 30 98.32% 820 0.30 

0.18 0 03 10 30 100% 1500 0 

 1 03 10 30 100% 1500 0 

0.53 0 03 10 30 100% 1500 0 

 1 03 10 30 100% 1500 0 

1.00 0 03 10 30 99.88% 1500 0.32 

 1 03 10 30 99.77% 1500 0.23 

 

Table 7. Experiment group 3: Defect type identification with similar defect severity, different fault types (IRF, ORF, and REF), 

and the additional loading (0 hp and 1 hp) 

 
Fault Severity 

(mm) 

Number of 

sample 

Number of 

Categories 

Number of 

Training data 

Number of 

Testing data 

Recognition 

rate 

RPM 

(hp) 

Load Variance 

0.18 (Slight) 100 03 (IRF, ORF & 

REF) 

40 60 100% 820 0 0 

0.53 

(Moderate) 

100 03 40 60 100% 820 0 0 

1.00 (Severe) 50 03 20 30 97.46% 820 0 0.35 

0.18 100 03 40 60 100% 1500 1 0 

0.53 100 03 40 60 100% 1500 1 0 

1.00 50 03 20 30 99.52% 1500 1 0.31 

 

Table 8. Experiment group 4: Defect type identification with different defect types and irrespective of the level of defect severity 

under a similar load 

 
Load 

(hp)  

Number of 

sample 

Number of 

Categories 

Number of Training 

data 

Number of Testing 

data 

Recognition 

rate 

RPM  Variance 

0 200 03 (IRF, ORF & 

REF) 

40 60 99.09% 820 0.10 

1 200 03 40 60 97.63% 820 0.29 
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Table 9. Experiment group 5: The second cluster of an experiment for the level of defect severity identification with the different 

levels of defect severity with the same fault type and the same load 

 
Fault 

type 

Load 

(hp)  

Number of Categories Number of Training 

data 

Number of Testing 

data 

Recognition 

rate 

RPM  Variance 

IRF 0 03 (Slight, Medium & 

Severe) 

40 60 99.92% 820 0.28 

ORF  03 40 60 100 820 0 

REF  03 40 60 100 820 0 

IRF 1 03 (Slight, Medium & 

Severe) 

40 60 99.11% 820 0.24 

ORF  03 40 60 100 820 0 

REF  03 40 60 99.56% 820 0.81 

IRF 0 03 (Slight, Medium & 

Severe) 

40 60 100% 1500 0 

ORF  03 40 60 100 1500 0 

REF  03 40 60 99.46 1500 0.66 

IRF 1 03 (Slight, Medium & 

Severe) 

40 60 99.81% 1500 0.07 

ORF  03 40 60 100 1500 0 

REF  03 40 60 99.23% 1500 0.19 

 

Table 10. Experiment group 6: The second cluster of an experiment for the level of defect severity identification with the 

different levels of defect severity with the same fault type and irrespective of the load 

 
Fault 

type 

Number of Categories Total Number of 

Sample  

Number of Training 

data 

Number of Testing 

data 

Recognition 

rate 

Variance 

IRF 03 (Slight, Medium & 

Severe) 

180 80 100 99.35% 0.28 

ORF 03 180 80 100 99.70% 0 

REF 03 180 80 100 99.20% 0 

 

Table 11. Experiment group 7: Eight malfunctioning working conditions with different fault types and different levels of defect 

severity under a similar load (0 hp and 1 hp) 

 
Load 

(hp) 

Number of 

Sample 

Categories Total Number of 

Sample 

Number of 

training data 

Number of 

Testing data 

Recognition 

rate 

Variance 

0 200 08 100 40 60 99.12% 0.17 

1 200 08 100 40 60 98.88% 0.15 

(Categories 08: IRF, ORF and REF, Slight, Moderate and Severe, 0 hp and 1 hp) 

 

Table 12. Experiment group 7: Regardless of the load, there are eight faulty operating circumstances with distinct fault kinds and 

varying levels of defect severity 

 
Categories Total Number of Sample  Number of training data Number of Testing data Recognition rate Variance 

11 600 200 400 98.02% 0.13 

(Categories 08: IRF, ORF and REF, Slight, Moderate and Severe, 0 hp and 1 hp) 

 

Table 13. Assessment of the suggested method's average testing accuracy and variance with MSE-ICDSVM, IMFPE-SFNN, 

IMFPE-SVM, and IMFPE-RBFNN 

 
Load (hp)  Average 

testing 

accuracy 

IMFPE-

SFNN/ 

Variance 

IMFPE – 

RBFNN/Variance 

MSE-

ICDSVM/Variance 

IMFPE-

SVM/Variance 

Proposed 

method/Variance 

0  95.63% 95.85% 96.88% 81.33% 99.12% 

  95.63% 95.85% 96.88% 81.33% 99.12% 

1  96.22% 96.18% 98.56% 83.21% 98.88% 

  0.98 0.72 0.75 0.89 0.15 

Irrespective 

of the load  

 95.15% 95.56% 96.50% 80.87% 98.02% 

 0.55 0.32 0.68 0.65 0.13 
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Table 14. To classify fault types and fault severity and this current research was compared to existing literature 

 
Source Characteristic 

features 

Classifier Defect 

considered 

Number of 

classified 

states 

Classification 

Rate 

Observations  

 [31] (LCD) + fuzzy 

entropy (ANFIS) 

(ANFIS) N, B (0.1778, 

0.5334 mm),  

IR (0.1778, 

0.5334 mm), 

OR (0.1778, 

0.5334 mm), 

7 100  

 [32] Frequency and Time-

domain features 

Multi-staged decision 

algorithm based on ANN 

and (ANFIS) 

N, IR (0.3, 0.6, 

1, 2 mm) 

OR (0.3, 0.6, 1, 

2 mm) 

9  ANN: 89-100 for 

each condition 

ANFIS: 92-100 for 

each condition 

 [33] Lempel–Ziv 

complexity  

Quantitative based on 

CWT, EMD, analysis  

Wavelet packet 

transform, 

Entropy, Kurtosis 

NA IR (0.5, 2, 3.5, 

5 mm) 

OR (0.5, 2, 3.5, 

5 mm) 

8  NA 

Current 

Work 

TI, HE and SVM HE/SVM with PSO with 

PSO optimization 

algorithm 

IR (0.18, 0.53, 

1 mm) 

OR (0.18, 0.53, 

1 mm) 

3,8,11 98.67-100 Normal condition 

detect rate 100% 

 

The results of the ANN recognition indicate the utility and 

applicability of TI denoising and the HE method as a function 

of REB fault analysis. Correspondingly, each pattern has ten 

samples that are used to train the ANN. Also, the 100 samples 

are used as training data, while the residual 300 are used as 

assessment data. The classification accuracy is 100 percent 

when the trained ANN is applied to the test samples, regardless 

of the hidden layer's node number. 

Similarly, experiment group (3), represented in Table 7, 

performs the test on defect type identification with similar 

defect severity (Slight, Moderate, and Severe), different fault 

types (IRF, ORF, and REF), and additional loading (0 hp and 

1 hp). Experiment group (4), represented in Table 8, performs 

the test on Defect type identification with varying types of the 

defect (IRF, ORF, and REF) and irrespective of the level of 

defect severity (Slight, Moderate, and Severe) under a similar 

load (0 hp and 1 hp). Experiment group (5) Table 9 represents 

the second cluster of an experiment for the level of defect 

severity identification with the different levels of defect 

severity (Slight, Moderate, and Severe) with the same fault 

type (IRF, ORF, and REF) and the same load (0 hp and 1 hp). 

Experiment group (6) Table 10, represents the second cluster 

of an experiment for the level of defect severity identification 

with the different levels of defect severity (Slight, Moderate, 

and Severe) with the same fault type (IRF, ORF, and REF) and 

irrespective of the load (0 hp and 1 hp). Whereas in Table 11 

Experiment group 7, the test consists of eight malfunctioning 

working conditions with different fault types (IRF, ORF, and 

REF) and different levels of defect severity (Slight, Moderate, 

and Severe) under a similar load (0 hp and 1 hp). The Table 12 

Experiment group 7 test consists of eight malfunctioning 

working conditions with different fault types (IRF, ORF, and 

REF) and different levels of defect severity (Slight, Moderate, 

and Severe) and irrespective of the load (0 hp and 1 hp). 

Assessment of the suggested method average testing accuracy 

and variance with MSE-ICDSVM, IMFPE-SFNN, IMFPE-

SVM, and IMFPE-RBFNN are represented in Table 13. Table 

14 compares the current research with existing literature and 

indicates a 98.67 to 100 percent classification rate. The 

recognition results demonstrate the utility and applicability of 

the TI denoising and HE methods as a function of REB fault 

analysis. 

 

 

7. CONCLUSIONS 

 

This article presents a novel hybrid bearing fault detection 

approach-based TI denoising with HE and SVM using the 

particle swarm optimization (PSO) method for REB faults 

detection. The rolling element bearing vibration generally 

exhibits the effects of mechanical components interaction, 

which shows non-linear dynamic characteristics. The HEs of 

REB signals at scale 4 under different conditions establish 

characteristic defect vectors. These vector features are 

subsequently input into the SVM to classify the defect. PSO 

was utilized throughout the SVM prediction model training 

procedure to customize the SVM of a particular process or 

activity. The experimental findings have proved to be 

successful. For reference, an experiment on the classification 

of fault bearings uses MSE as a fault feature, which shows TI 

denoising with HE can extract additional fault information 

than MSE, and the HE approaches will achieve better 

classification accuracy, up to 100 percent of it. The result 

recognises that the provided approach for defect investigation 

is practical for the REB's condition monitoring, despite the 

limited sample size. Furthermore, the experimental research 

given here is characterised by a uniform pace. Future research 

will focus on determining the resilience of the proposed 

approach in the presence of rotation speed variations. The 

empirical mode decomposition (EMD) approach is also 

adaptable and is used for non-stationary signals. 
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