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 It is possible to detect visual surface defects with software in industrial tile production and 

increase productivity by automating the quality control process. In this process, low error 

rate and low cost are important indicators. In order to eliminate this negativity and the effect 

of the human factor, error detection software has been developed in an artificial intelligence-

based industrial artificial vision environment. Spots, scratches, cracks, pore defects, which 

are the most common surface defects, are classified according to 6 different geometric and 

wavelet transform attributes. Firstly, an industrial artificial vision environment was created. 

In this environment, a total of 150 tile images, equal numbers from each class, were obtained 

on the real-time production line. The resulting images were converted into binary images by 

preprocessing and filtering. For classification, the support vector machines method, which 

performs high in two-class classifications, is used with the one versus all approach. In 

classifications made using RBF kernel function using wavelet features as classification 

performance, a higher success was achieved in all defect classes than geometric features. 

Real-time application software for all these processes has been developed with the Python 

language on Ubuntu operating system. 
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1. INTRODUCTION 

 

In industrial granite tile production, visual production 

defects such as flecks, spots, pores, cracks, scratches on tiles 

that are shaped by pressing and casting and on which patterns 

are printed after some other processes are defined as 

manufacturing defects. It is very important for the production 

quality of ceramic factories that visual production errors occur 

at a low level in the quality control process and can be 

controlled. In industrial tile production, detecting product 

defects and separating products according to quality classes is 

done with the human eye at the end of the production line. 

Therefore, this process is individual and depends on the 

experience of the employee. 

The manual quality control process causes workers to feel 

physically tired, eyestrain, and lack of attention. This may 

cause products to be misclassified according to their quality 

class. These and similar situations may have negative 

consequences in terms of production costs. As a result of the 

manual examination, a qualitative selection is made as there is 

only an error or there is no error. There are many studies on 

this subject in the literature regarding the classification of 

granite tile surface defects. 

Novak and Hocenski [1] have processed 30 industrial tiles 

with image quality in the 60-72 DPI range and 1142×1459 

pixel dimensions. Of these, 30 have a blackhead 

manufacturing defect, and 30 are defect-free. In this 

classification, the nearest neighbor classification method 

based on Euclidean distance is used. In order to use it in the 

training set, 10 normal and faulty tile images were processed. 

Within the scope of the study, there was no error in 

classification with local binary pattern features. However, 

there was a 22.5% classification error according to the first 

level statistical coefficient attributes of the dark colored single 

patterned tile images. Only one defect was classified in their 

work. 

Elbehiery et al. [2] tried to find crack and stain defects in 

ceramic tiles by using wavelet transform. Continuous, discrete, 

and fast wavelet transform techniques were applied to the tile 

images with these errors. For these techniques, using 

transforms covering translations up to ± 32 pixels horizontally 

or vertically, the 5-level wavelet coefficients of the Haar, 

Daubechies, Coiflets, Symlets, and Biorthogonal wavelet 

types were obtained. They obtained higher accuracy when they 

used the Daubechies wavelet type to detect the specified errors, 

and lower accuracy when they used the Haar wavelet type. 

Najafabadi and Pourghassem [3] presented a system for 

measuring corner angles for visual inspection of ceramic tile 

corners. According to a method based on image processing 

techniques and point product vectors, the ceramic is 

considered defective if the corner angle is greater than 92 

degrees or less than 89 degrees. The method developed in this 

study was evaluated on a sequence of images taken from the 

main system in the ceramic tile production factory and has a 

12.5% error in both normal and faulty tiles. 

Ghazvini et al. [4] by using 2D wavelet transform and 

statistical features, tile defects were detected. In this study, the 

advantages of the Haar wavelet are explored, with the 

recommendation to use the best fit points as the median 

features and to compare them with the rest of the statistical 
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features in the wavelet domain. This method has been tested 

on a variety of ceramic tiles and on average applies to more 

than 90% of the images. Among other advantages, low 

computational load and high speed draw attention. 

Andrade and Eduardo [5] provided automatic observation 

of ceramic tiles by means of Artificial Neural Network (ANN) 

method using infrared ceramic tile images. For the IR image 

processing system, an ANN, a system that detects defective or 

non-defective ceramic tiles, has been implemented. The 

system processes ceramic tiles in order to determine the 

measurement values obtained in the pattern print output. These 

processes have been applied to ceramic tiles containing 

artificial and real defects. The results obtained have proven the 

effectiveness of method error analysis on raw ceramic tiles and 

a successful approach online. It has also shown that it can be 

used in quality control applications. 

Bianconi et al. [6] classified granite tiles with a computer 

vision system. They classified the images on 12 granite tiles 

with different visual properties, with 4 granite tiles in each 

class. It was concluded that the color and texture-based 

features were extremely effective. Provided that the Support 

Vector Machine (SVM) management parameters as a classifier 

are set correctly, it is seen that a better classification success is 

achieved than other classifiers. 

Chen et al. [7] Machine vision methods were used to detect 

defects on ground patterned and patternless ceramic tile 

images. In this study, among 140 images, 70 images have a 

grinding structure and 70 images are without a pattern. In the 

first set of 70 images, 60 images served as training and 10 

images as test samples. The same experimental procedures 

were carried out in the last 70 images. As the shape features, 

the width and height of the smallest rectangle (SR) 

surrounding the defect, its circumferential length, its area, the 

ratio of the perimeter to the area, the ratio of the defect area to 

the SR area, the number of pixels of the minimum convex area 

containing the random concave covering the defect, and the 

ratio of the actual defect area to this area were calculated. 

C4.5-based decision tree classifier was used according to 

shape features. As a result of this study, imperfectly ground 

ceramics were classified with a success rate of over 93%. 

Ghita et al. [8] developed an automated solution based on 

machine vision for the identification of paint and surface 

defects on painted roof tiles. Local Binary Pattern (LBP) 

distributions are used as the texture feature, while tonal 

information is extracted by a self-initiated unsupervised K-

means clustering algorithm. In this study, 235 tiles were tested 

(112 reference-perfect tiles and 123 defective tiles). The 

success rate for correctly classifying the tile was found to be 

98.12% for perfect tiles and 99.18% for defective tiles. 

Hanzaei et al. [9] detected glaze cracking, thin crack, 

pinhole, and pothole defects on the ceramic tile. In this study, 

all detected defects of a ceramic tile are labeled and the 

corresponding geometric features are extracted. The CCD 

camera was used to obtain the images. Of the 230 images 

obtained, 175 were detected with one defect, 42 with more 

than one defect, and 13 as perfect. Each image is 1285×1024. 

To characterize the defect shape, 4 different feature values 

were calculated extend, thinness ratio, eccentricity, and width. 

To characterize the defect size, 4 different geometric features 

as area, perimeter, main axis length, and minor axis length 

were obtained. Next, the one-against-all SVM classifier was 

used to identify the various error types. In order to obtain better 

classification results, Radial Basis Function (RBF) (kernel 

with γ=0.5) and penalty parameter C=10 is used for training 

all SVM classifiers. As a result of the classification, an average 

classification success of 94.5% was achieved, with 97% in 

common glaze cracks, 90.3% in fine cracks, 97% in holes and 

93.7% in pits.  

Macarini and Weber [10] propose a validation system based 

on image processing and machine learning for ceramic tiles. 

The data set consists of 783 ceramic tile images, 80% of which 

are training and 20% are testing. Segmentation Based Fractal 

Texture analysis method was used as feature extraction 

method. SVM is used to classify ceramic tiles. Tiles are 

divided into 2 classes quality and poor quality. This study 

reached an accuracy rate of 98.68%. In these studies, it is seen 

that a single feature extraction (shape, frequency, statistical) 

approach is used in studies using classification methods and 

spot, scratch, pore, fleck and crack defects, which are the 

subject of this study, are not examined. It also appears that 

very few studies are real-time, and most are offline. 

This study is more than just theoretical; It offers a practical, 

innovative and objective system design for the surface defect 

control and manufacturing defect analysis using deep learning 

models. The traditional quality control process in industrial tile 

production cannot be carried out in accordance with the 

standards. This situation creates an important uncertainty in 

the control and improvement of the production process. For 

this reason, a system has been presented for the digitization of 

quality control processes based on deep learning and machine 

vision methods in order to produce industrial tiles in ISO 

standards [11]. In addition, when the literature is reviewed, 

there are no studies in which all the defects examined in this 

study are analyzed and classified together. 

In the present study, the defects of plain patterned granite 

tiles were tried to be classified so that the deficiency related to 

the subject in the literature was tried to be eliminated. First of 

all, a machine vision environment was created to acquire tile 

images. Then, a defect image set consisting of a total of 150 

images from 5 different defect classes was created. The images 

have been filtered and binarized. Geometric features of the 

defects were obtained in the binary defect images. These 

attributes are classified by SVM. The results obtained were 

discussed and suggestions were made to improve the system. 

Application software has been developed in Python language 

for the real-time operation of the system. 

The rest of this paper structured as follows: Section 2 is the 

materials & methods; the modeling of quality control 

processes in the ceramic tile production line and the methods 

of obtaining data are mentioned. Section 3 presents study 

results and discussion part. And the final part is, which is 

Section 4, Conclusion and Recommendations. 

 

 

2. MATERIAL AND METHODOLOGY 

 

2.1 Machine vision environment 

 

To obtain tile images, a machine vision environment 

consisting of a lighting cabinet, camera, conveyor belt, and 

imaging computer has been created at the laboratory and also 

at the factory production line of Usak Seramik. The image of 

the machine vision environments is given in Figure 1. An 

attempt was made to simulate a factory production line in the 

machine vision environment. Figure 1(a) is the image 

processing infrastructure implemented in the experimental 

environment. Figure 1(b) is the prototype created for the 

factory environment. 
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Figure 1. Experimental (a) and industrial (b) machine vision 

environment for tile inspection 

 

First of all, when a ceramic tile comes in line with the 

cabinet on the production line, the brush (2) and the air blasting 

machine (1) start to work. Thus, it clears the tile surface from 

dusts. If dusts remain on the ceramic tiles surface, the system 

will act as a defect, causing problems with surface quality and 

defect classification. At this stage, thanks to the illumination 

light, it provides an ideal environment that focus to attributes 

of the image and ensures that it is distributed homogeneously. 

Homogeneous distribution of light is provided on the surface 

of the ceramic tile, thanks to the luminaire lens and the diffuser. 

In this study, LED lights were preferred due to their low power 

consumption and small footprint. For homogeneous lighting, 

two linear lighting rods (8) are used at opposite angles to the 

surface. The green (6) conveyor belt provides controllable 

movement at the factory's production line speed. This speed 

can be changed with the speed control device (7) to test 

different production speeds. Thus, as the ceramic tiles (3) are 

inside the lighting cabinet (4), the video images of the ceramic 

tile are captured by the line camera (10) and sent to the 

software system (5) in a simple way. The inner surface of the 

lighting cabinet (9) is covered with matte black material to 

prevent reflections that may occur due to lighting. The 

computer in the imaging system (5) has an Intel Core i7-

9750H CPU with 24GB of RAM and 12MB of cache. The 

graphics card is NVIDIA GeForce GTX 1050 4GB and 640 

cores. Basler brand line scan camera with 51 kHz over GigaE, 

2k resolution and a global shutter is used to capture the images. 

The training data set of the system consists of five different 

defect classes: point, scratch, pore, speckle and crack. Each tile 

surface may have a different number and type of surface 

defects. 30 images were generated for crack defects. In order 

to create a balanced data set in the laboratory environment, 30 

different defect images of each defect type (150) in 64×64 

dimensions were used. Example defect images of the data set 

used in the study are given in Figure 2. 

 

 
 

Figure 2. Defect images data set [12] 

2.2 Filtering & binarization 
 

The Steerable Digital Filter (SDF) acts like a Gabor filter 

because it has a directional structure. SDF was presented by 

Freeman and Adelson [13] in 1991. It has various applications 

in image processing such as texture analysis, enhancement and 

edge detection. In the filtering process, input data is passed 

through basic filters with different orientations and then 

subdivided to find the orientation properties. No matter what 

angle value of the directional filter is specified, after an image 

is passed through a steerable filter, the edges of that angle 

dominate the image, while at certain angle values, the 

directions away from this angle weaken or disappear 

completely. In order to realize this filter, the first derivative of 

the two-dimensional Gaussian function in Eq. (1) is applied as 

a steerable filter [14]. 

 

𝑔(𝑥, 𝑦) = 𝑒
−(𝑥2+𝑦2)

2
⁄

 (1) 

 

Gaussian functions are often used to represent the 

probability density function of a normally distributed random 

variable. The normalizing constant or scaling constant is used 

to reduce any probability function to a probability density 

function with total probability of one. Since a directed filter 

will be applied on an image here, a probability density function 

with a total probability of 1 is not needed. Besides, the 

normalization constant is utilized for univariate Gaussians. 

Therefore, scaling constant can be ignored [15-17]. For this 

reason, the scaling constant 1⁄√2π is not taken into account in 

Eq. (1) for a simpler structure. A simpler example of a 

steerable function is presented in Eq. (2). 

 

𝑔𝑥(𝑥, 𝑦) =
𝜕𝑔(𝑥, 𝑦)

𝜕𝑥
= −𝑥𝑒

−(𝑥2+𝑦2)
2

⁄
 (2) 

 

The orientable function can be represented with Eq. (3) in 

polar coordinates. 

 

𝑔𝑥(𝑟, 𝜃) = −𝑟𝑒
−𝑟2

2⁄ cos 𝜃 (3) 

 

The expression given above results from an angular 

component and a radial component corresponding to a polar 

separable function. For example, it can be given as in Eq. (4), 

giving α=π/2 rotation [13]. 

 

𝑔𝑥 (𝑟, 𝜃 −
𝜋

2
) = −𝑟𝑒

−𝑟2
2⁄ cos (𝜃 −

𝜋

2
) 

= −𝑟 𝑒
−𝑟2

2⁄ sin(𝜃) 

(4) 

 

In fact, if the steerable function is returned to any angle α, 

the result can be given as Eq. (5). 

 

𝑔𝛼(𝑟, 𝜃 − 𝛼) = cos(𝛼)𝑔𝑥 + sin(𝛼) 𝑔𝑦 (5) 

 

where, gx and gy denote horizontally and vertically oriented 

derivatives in Eq. (5), respectively. To use the SDF on an 

image, the orientation properties of the input image must be 

revealed. The image used as input is first passed through basic 

filters with different orientations and then subdivided. For this 

reason, a filter function with a rotatable structure in Eq. (6) can 

be given as a linear sum of its rotated versions. 
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𝑔𝛼(𝑥, 𝑦) = ∑ 𝑘𝑗(𝛼)𝑔𝛼𝑗

𝑀

𝑗=1

(𝑥, 𝑦) (6) 

 

The resulting image consists of certain directional impact 

responses for the system defined at a certain angle in the α 

value and the weighted sum of gαj(x, y) in the α direction. kj(α) 

are the weight coefficients and provide control of the filter 

orientation in the α direction. 

For the SDF filter, the directed filter responses of the defect 

images are processed as a filter output image. Pixel values 

indicating edges in different directions and in the same 

direction are converted to binary images in binaryization with 

the image used as output. First, the filter output matrix is 

subtracted numerically from the grayscale defect images 

matrix. The average values of the filter output image are then 

obtained as a one-dimensional array. Then the average value 

of the average one-dimensional array is calculated. Pixel 

values greater than the threshold value in the faulty image 

sequence are obtained from binary output images. In this way, 

the adaptive thresholding method is realized. Binarization 

process is given in Figure 3. 

In line scanning cameras, resolution and image transfer rate 

are calculated according to the speed of the moving object, 

unlike area scanning cameras. In this context, the required 

transmission rate and camera line frequency rate to obtain tile 

images were calculated. By using the desired image width (W), 

the number of pixels per mm (ppm) and the conveyor belt 

speed (S), the image size to be transferred per second from the 

line scan camera was calculated in MB/s. The number of pixels 

corresponding to the real area of 100 mm2 on the image were 

measured horizontally and vertically using the ImageJ 

program. By taking the average of these values, the average 

pixel number (ppm) corresponding to 1 mm was calculated. 

The measurement steps are given in Figure 4. The 100 mm2 

area width was measured as 32 pixels and the height as 31 

pixels by the camera. The mean ppm value was calculated as 

3.15 and measured as 100 mm2, 99.975 mm2, and 992 pixels. 

The relative error was found to be 0.00025. Since the relative 

error is quite small, it is considered negligible. 

 

 
 

Figure 3. Binarization process 

 

 
Figure 4. Calculation of the average number of pixels for 1mm 

 

 
 

Figure 5. Number of defect area pixels calculated after filtering 
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Figure 6. Results of filtering and binarization, (a) The raw surface defect image, (b) The actual defect area pixels in ImageJ 

program, (c) SDF filter response, (f) SDF output binary image 

 

 
 

Figure 7. Segmentation and feature extraction process 

 

The ability to represent real defect areas of binary images is 

demonstrated by comparing the pixel counts of the real defect 

areas with the pixel counts of the binary images. The number 

of pixels formed in the output images is counted after 

binaryization. The actual area pixel number is calculated 

manually by the ceramic engineers at Uşak Seramik via the 

ImageJ program and is accepted as a reference value. SDF 

filtering images of the randomly selected error image from the 

error classes, binary images, and the actual error area selection 

obtained using ImageJ are given in Figure 5. 

The number of defect area pixels of the defect images in the 

dataset was found and given in Figure 6. It was observed that 

the number of defective area pixels calculated using the SDF 

matched the actual number of defective areas in Figure 6. 

 

2.3 Feature extraction 
 

Geometric Feature: Before debugging the features of the 

errors, the image areas of the errors in the filtered and 

preprocessed tile image segment should be segmented. Black 

vertical lines and horizontal lines in the section image are 

removed for segmentation. The remaining white areas are 

defined as defective areas. To calculate the geometric features, 

specific features of the defect must be determined. Geometric 

features were determined from the pixel value positions 

(coordinates) on the binary defect image. The segmentation 

and feature extraction process of the defect images on the 

sample tile image section containing the spot defect in the 

software environment is given in Figure 7. 

Explanations of the geometrical properties specified in 

Figure 6 are given in Table 1. The h is explained as the height 

of the smallest rectangle surrounding the defect and calculated 

as the number of pixels along the defect length. The w is 

explained as the width of the smallest rectangle surrounding 

the defect and calculated as the number of pixels across the 

width of the defect.  
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Table 1. Geometric properties of defect 

 
Symbol Geometric feature Description 

h 
Height of the smallest rectangle surrounding the 

defect 
The number of pixels along the defect length. 

w 
The width of the smallest rectangle surrounding the 

defect 
The number of pixels across the width of the defect. 

m 
Major axis length of smallest ellipse surrounding 

the defect (longest axis) 

The distance from the last pixel of the first pixel representing the defect 

horizontally along the defect length 

n 
Minor axis length (shortest axis) of the smallest 

ellipse surrounding the defect 

The distance from the last pixel of the first pixel representing the defect 

vertically across the defect width 

F 
Each focal point of the smallest ellipse surrounding 

the defect 

The distances of the focal points from the center of the smallest ellipse 

representing the defect 

𝐹2 = (
𝑚

2
)

2

− (
𝑛

2
)

2

, 𝑓 = 2𝐹 

a 

The distance from the focal point of the smallest 

ellipse surrounding the defect to the lateral axis end 

point 

The distance of the first pixel representing the defect horizontally along the 

defect length to the last pixel representing the defect vertically along the 

defect width 

 

Table 2. Geometric features of defect 

 
 Feature Calculation value or equation Description 

A1 Defect area A = ∑ ∑ 𝑔(𝑟, 𝑐)

𝑤−1

𝑐=0

ℎ−1

𝑟=0

 

The area is defined as the total number of pixels attached to 

the domain of any detected defect target (𝑔𝑖), with  

number of rows and  number of columns [9]. 

A2 
Area of the smallest rectangle 

surrounding the defect 
𝑤 ∗ ℎ  

P1 Perimeter of defect 𝑃 = ∑

𝑔𝑖(𝑟, 𝑐) = 1

𝑖𝑓 𝑔𝑖(𝑟 + 1, 𝑐)

𝑜𝑟 𝑔𝑖(𝑟 − 1, 𝑐)

𝑜𝑟 𝑔𝑖(𝑟, 𝑐 + 1)

𝑜𝑟 𝑔𝑖(𝑟, 𝑐 − 1) = 0

 

This is the number of pixels on the edge of the defective 

area. Represents the number of white pixels surrounded by a 

black pixel to obtain the perimeter of the defective area. 

P2 

Perimeter of the smallest 

rectangle surrounding the 

defect 
2 ∗ (𝑤 + ℎ)  

F1 Extend ratio 
𝐴1

𝐴2
⁄  

Dividing the area of the defect by the area of the smallest 

rectangle surrounding the defect 

F2 Lining ratio 
𝑃1

𝑃2
⁄  

Dividing the defect perimeter by the perimeter of the 

smallest rectangle surrounding the defect 

 

 
 

Figure 8. Vertical, horizontal and diagonal detail coefficients of sample defect images 
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The geometric features are given in Table 2 were calculated 

by using the geometric properties specified in Figure 7 and 

Table 1. 

Wavelet Features: The wavelet transform method is used to 

extract the frequency domain features of the defect images. 

Wavelet transform is a feature extraction tool that divides data, 

functions, or operators into different frequency components 

and then examines each component with a resolution 

appropriate to its scale [18]. The wavelet transform uses 

narrower windows as window length at high frequencies, 

while wider windows are used at low frequencies. Therefore, 

it is useful in the frequency domain when converting a signal 

or image into lower-dimensional data that can be represented. 

For this purpose, a single-level 2-dimensional (2-D) Haar-type 

discrete wavelet transform was used for images. First, a 1-D 

filter bank was applied to the rows of the image. Then, the 

same transformation is applied to the columns of each channel 

of the result. For this reason, 3 high-pass channels (detail 

coefficient) corresponding to vertical, horizontal, and diagonal 

and one approach image were obtained. The resulting surface 

view map of the vertical, horizontal, and diagonal 1st level 

detail coefficients is presented in Figure 8. The averages of the 

obtained wavelet coefficients were calculated and evaluated as 

the feature value. The mean, variance, and standard deviations 

of the obtained wavelet coefficients were calculated, 

respectively. These values are evaluated as the feature value. 

The best accuracy result has been obtained through diagonal 

coefficients. 

 

2.4 SVM classification 
 

As a machine learning algorithm, the SVM based on 

supervised learning, which is used as a fast classifier in the 

literature, was used. In simple terms, SVM can be defined as 

the separation of the data of two different classes on the same 

plane, with a boundary line formed by a linear equation. SVM 

is a kernel-based learning approach that gives very fast and 

accurate results in subjects such as linear and nonlinear 

classification, regression analysis, outlier detection, function, 

and density estimation. It is especially used in classification 

problems where the patterns between the variables of the data 

to be classified in data mining are not known. Real-life 

classification problems are often non-linear problems made up 

of many different classes. SVM aims to solve these problems 

more easily by making the nonlinear sample space linear on a 

higher plane. While doing this, it tries to find the linear 

equation that maximizes the distance between the closest 

elements of the classes. This is called margin maximization in 

the literature [19-23]. In other words, SVM aims to create the 

furthest upper (hyper) plane between the vectors of two classes 

with a linear decision function. The positive aspects of SVM 

can be listed as follows; 

 It does not require prior knowledge assumption about 

the distribution. 

 It achieves high accuracy values. 

 Model complex decision boundaries. 

 It can work with a large number of independent 

variables. 

 It can work with both linear and non-linearly 

separable data. 

 Compared to other classification methods, the 

problem of overfitting is less. 

The SVM method is widely used in two-class problems [24]. 

Within the scope of the study, the data processed in SVM 

were used linearly. The problem that is tried to be solved in 

this paper is accepted as a multiple classification problem 

because it consists of 5 classes. SVM is insufficient as it stands. 

For this reason, for each class belonging to the surface defect 

classes, it was tried to be solved as a binary classification 

problem by accepting all other classes as a single class. It has 

been accepted as the one against all (one vs. all) method in the 

literature. Two feature types should be used in the solution of 

binary classification problems. Since the best results from 

these features were obtained from F1 and F2 features. These 

features were used for classification. Of the 150 feature values, 

90 data (60%) were used for training and 60 data (40%) for 

test. Polynomial and RBF are used as SVM kernel functions. 

The Sequential Minimum Optimization (SMO) method was 

chosen as the optimization solver in the SVM model. In the 

studies conducted with the SVM algorithm, the effect of 

different kernel functions on classification success was 

investigated. In some studies, the RBF kernel function-based 

classifier was found to be more successful, and in some studies, 

the polynomial kernel-function classifier was more successful 

[25-30]. Therefore, in this study, the success of both core 

functions in classification was measured. 

 

 

3. METRICS 

 

The confusion matrix and evaluation criteria were used to 

measure classification success. Since there is more than one 

classification in this study, a complexity matrix was obtained 

for the performance measurement for each defect class. For 

this reason, a complexity matrix was created for each class 

according to the definition of actual values and predicted 

values in Table 3. 

 

Table 3. Confusion matrix definition of each class 

 

Prediction 

Reference 

Defect Class Other Classes 

Defect Class True Positive (TP) False Positive (FP) 

Other Classes False Negative (FN) True Negative (TN) 

 

Table 4. Classification evaluation metrics 

 
Metric Formula 

Accuracy (A) 
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 

Precision (P) 
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

Recall (Sensitivity) (R) 
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

F-Score 

2 (
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
) (

𝑡𝑝
𝑡𝑝 + 𝑓𝑝

)

(
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
) + (

𝑡𝑝
𝑡𝑝 + 𝑓𝑝

)
 

Specificity (S) 
𝑡𝑛

𝑓𝑝 + 𝑡𝑛
 

AUC 
1

2
(

𝑡𝑝

𝑡𝑝 + 𝑓𝑛
+  

𝑡𝑛

𝑡𝑛 + 𝑓𝑝
) 

False Positive Rate (FPR) 
𝑓𝑝

𝑓𝑝 + 𝑡𝑛
 

Balanced Accuracy (BA) 
1

2
(

𝑡𝑝

𝑡𝑝 + 𝑓𝑝
+

𝑡𝑛

𝑓𝑝 + 𝑡𝑛
) 

 

A confusion matrix with a multi-class structure was used to 

measure the performance of each class, such as Precision, 

Sensitivity, Accuracy, Specificity, F-Score, Balanced 
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Accuracy, AUC (Area Under the Curve), and False Positive 

Ratio. The formulas of these measurement metrics are given 

in Table 4. 

For the implementation of the methods described, the 

application software was developed in Python (3.8) and the 

Keras (Quasi-SVM) library was used for SVM. The 

application software has been tested on the Ubuntu (21.04) 

operating system. 

 

 

4. RESULTS 

 

The classification was carried out by selecting the F1- 

Extend ratio and F2- Lining ratio feature groups using the 

SVM method. F1 and F2 features data graphics are given in 

Figure 9. 

1st level wavelet detail coefficients of vertical, horizontal, 

and diagonal are given in Figure 10 respectively. 

Classification results of geometric and wavelet feature with 

different kernel functions (RBF, polynomial) are given in 

Figure 11a, Figure 11b, Figure 11c, and Figure 11d 

respectively. 

ROC (Receiver Operator Characteristic) graphics of each 

defect class of geometric features with different kernel 

functions (RBF, polynomial) are given in Figure 12a and 

Figure 12b respectively. ROC (Receiver Operator 

Characteristic) graphics of each defect class of wavelet 

features with different kernel functions (RBF, polynomial) are 

given in Figure 12c and Figure 12d respectively. 

The confusion matrix of each class of geometric and 

wavelet features with RBF and polynomial kernel function are 

given in Figure 13a, Figure 13b, Figure 13c, and Figure 13d 

respectively. The classification performance results obtained 

using the confusion matrix are given in Table 5. 

When Table 5 is examined, it is seen that 100% 

classification success is achieved for all classes and all core 

functions with wavelet features. It is seen that a higher success 

value is obtained compared to the results obtained in the 

previous study [30] and manual examination. Also, it seems 

that kernel functions do not have a direct effect on 

classification success. The validation losses for the cross-

validation classification model of the classification model 

obtained using the SVM method are given in Table 6. 

It can be seen that the validation loss is quite low for the 

attributes and kernel functions of all classes from Table 6. This 

result shows that correct results are produced for classification 

with SVM in all feature groups. Although it is understood that 

there is no effect of kernel functions in the classification 

results given in Figure 12c, Figure 12d, Figure 13c, Figure 13-

d, and Table 5 for the wavelet feature group, when the 

validation loss values given in Table 6 are examined, it is more 

difficult because the validation loss of the radial basis kernel 

function is small when the data set grows. It is expected to 

produce successful results. The real-time application interface 

of detection system is given in Figure 14. The localizations of 

the defects are also determined in real-time application. The 

application software is developed in Python language. It is 

planned to run on operating systems such as Windows, Ubuntu. 

Also, it can run computers such as Raspberry Pi or Nvidia 

Jetson tx2. The developed system was set up for testing at the 

Uşak Seramik factory. The industrial machine vision 

environment is given in Figure 15. 

 

 
 

Figure 9. F1 and F2 feature set 

 

 
 

Figure 10. 1st level wavelet detail coefficient means, (a) vertical, (b) horizontal, (c) diagonal 

2018



 

 
 

Figure 11. Classification results 

 

 
 

Figure 12. ROC area of each class 
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Figure 13. Confusion matrix of each class 

 

Table 5. Classification results 

 
Defect Feature Kernel A P R F S BA AUC FPR 

Fleck 

Geo 
R 0.91 0.81 0.75 0.78 0.95 0.88 0.85 0.041 

P 0.91 1 0.58 0.73 1 1 0.79 0 

Wavelet 
R 1 1 1 1 1 1 1 1 

P 1 1 1 1 1 1 1 1 

Pore 

Geo 
R 0.95 0.8 1 0.88 0.93 0.86 0.96 0.06 

P 0.88 0.63 1 0.77 0.8 0.85 0.92 0.14 

Wavelet 
R 1 1 1 1 1 1 1 1 

P 1 1 1 1 1 1 1 1 

Spot 

Geo 
R 0.9 0.75 0.75 0.75 0.93 0.84 0.84 0.06 

P 0.96 0.85 1 0.92 0.95 0.95 0.97 0.041 

Wavelet 
R 1 1 1 1 1 1 1 1 

P 1 1 1 1 1 1 1 1 

Crack 

Geo 
R 1 1 1 1 1 1 1 0 

P 0.98 1 0.91 0.95 1 1 0.95 0 

Wavelet 
R 1 1 1 1 1 1 1 1 

P 1 1 1 1 1 1 1 1 

Scratch 

Geo 
R 0.93 0.9 0.75 0.81 0.97 0.93 0.86 0.02 

P 0.95 1 0.75 0.85 1 1 0.87 0 

Wavelet 
R 1 1 1 1 1 1 1 1 

P 1 1 1 1 1 1 1 1 
Note: R: RBF Kernel, P: Polynomial Kernel, A: Accuracy, P: Precision, R: Recall, F: F-Score, S: Specificity, BA: Balanced Accuracy, FPR: False Positive Rate 
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Table 6. Validation loss for the cross-validation 

classification model of classes with the SVM 

Features Kernel Fleck Pore Spot Crack Scratch 

Geometric 
R 0.066 0.022 0.033 0 0.011 

P 0.0055 0.099 0.022 0 0.022 

Wavelet 
R 0.066 0 0 0 0.011 

P 0.055 0.022 0.033 0.011 0.011 

Figure 14. Real-time application interface 

Figure 15. Test phase of industrial machine vision 

environment 

5. CONCLUSION AND FUTURE WORKS

In this study, a real-time application has been developed to 

classify defects such as cracks, flecks, pores, scratches, spots 

on the surface of granite tiles. First, the defect image dataset 

was created. SDF filtering and binarization processes were 

performed to make the defect areas clear. The defect images 

were obtained as a result of segmentation from the tile image 

sections obtained from the line scan camera. The geometric 

features such as extend ratio and lining ratio of defects were 

obtained. Within the scope of the multiple classification 

problem, it has been classified using the SVM classifier (one 

vs. all) approach. The effect of different kernel functions on 

classification success was researched. With the RBF kernel 

function, pore and crack defects were classified more 

successfully, and with the polynomial kernel function, spot 

and scratch defects were classified more successfully. In 

general, classification successes for different kernel functions 

are quite close to each other. As a result, a high-performance 

real-time defect detection software has been developed. The 

defect area detection capabilities of different filtering methods 

are comparable to SDF. The results of this study can be 

compared by classifying the defect images in the dataset with 

different classification algorithms. 
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