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 Finger vein biometrics is one of the most promising ways to identify a person because it can 

provide uniqueness, protection against forgery, and bioassay. Due to the limitations of the 

imaging environments, however, the finger vein images that are taken can quickly become 

low-contrast, blurry, and very noisy. Therefore, more robust and relevant feature extraction 

from the finger vein images is still open research that should be addressed. In this paper, we 

propose a new technique of deep learning that is based on the attention mechanisms for 

human finger vein image identification and recognition and is called deep regional learning. 

Our proposed model relies on an unsupervised learning method that depends on optimized 

K-Means clustering for localized finger vein mask generation. The generated binary mask 

is used to build our attention learning model by making the deep learning structure focus on 

the region-of-interest (ROI) learning instead of learning the whole feature domain. This 

technique makes the Deep Regional Attention Model learn more significant features with 

less time and computational resources than the regular deep learning model. For 

experimental validation, we used different finger vein imaging datasets that have been 

extracted and generated using our model. Original finger vein images, localized finger vein 

images (with no background), localized grayscale finger vein images (grayscale images with 

no background and projected finger vein lines), and localized colored finger vein images 

(colored images with no background and projected finger vein lines) are used to train and 

test our model, which gets better results than traditional deep learning and other methods. 
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1. INTRODUCTION 

 

Personal identity recognition has demonstrated its validity 

as being among the most reliable and trustworthy technologies, 

as well as being rapid in expanding the science of establishing 

the identification of people [1]. A combination of 

measurements (measurements that enable a computer to 

identify individuals in terms of their physical and behavioral 

traits) is known as biometrics [2-6]. Using biometrics can be 

identified as how identification can be validated and 

developed as a method of electroencephalography (EEG) 

authentication [7], anthropometric identification [8], and facial 

recognition [9], which can also serve as distinct forms of 

biometrics, although there are specific options, such as eye iris 

recognition [10] and ear recognition [11], in which additional 

features are involved. Finger vein recognition has several 

advantages as a biometric identification technique: 1) Forging 

is extremely difficult. 2) It is suitable for use in a contactless 

environment or under weak contact measurement conditions. 

3) Fingerprints are difficult to remove. Authentication using 

fingerprint sensors is used on laptops and mobile devices. 

They are embedded into discreet multi-use notebooks and 

smartphones that use budget fingerprint readers. One of the 

significant components of the biometric systems for individual 

identification is fingerprints. This type of identification has 

been utilized in individual identification as well as in forensic 

applications due to its stability and uniqueness from one 

individual to another, even from an individual's birth to death. 

The ridge of a fingerprint holds some unique points, defined 

as "minutiae points." The biometric technology of finger veins 

is less expensive and less intrusive compared to other 

biometric technologies such as face readers or retina scans. 

Finger vein recognition can be used in any type of 

environment. Most individuals discover that they cannot 

capture images by using video cameras or speaking into a 

microphone. Systems based on finger veins are easier to use. 

Moreover, it is considered a flexible alternative due to the 

ability to register multiple fingers. Finger vein technology has 

been tested and used for a long time compared to new 

technologies [12]. 

Nowadays, finger vein recognition and identification attract 

attention as a promising method of framework-based 

biometric identification. In recent years, the finger vein has 

received much attention from researchers. Finger vein images 

have very strong and unique patterns that make them very 

interesting in the biometric recognition field, but with some 
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issues, such as the dryness of fingers, the surface makes 

accurate performance kind of hard to achieve. Sweatiness will 

decrease the output of the device, while dryness on the finger 

can clear the finger pattern. Advances in the quest for 

alternatives to the inadequacies of finger biometrics have 

come to the fore because of the increased awareness of their 

existence. This claim is true, every vein pattern is specific and 

proves to be important in personal verification. Changing the 

patterns of finger veins is tricky as it is an inner feature. The 

captured vein pattern value is difficult to manipulate through 

the skin, for example in the palm or finger veins. In addition, 

biometrics are more precise when compared with manual 

methods because they use the handprint feature in the finger 

vein scanners, which can be reduced in size by half. Compared 

to biometric technologies that use the hands, finger vein 

systems could have smaller devices [13]. 

Finger vein identification and recognition systems are still 

a big challenge since they mainly rely on the finger vein 

patterns beneath the human skin surface. The blood vessels, 

which are the main finger vein features, are used to extract the 

significant pattern of an individual, which is almost impossible 

to counterfeit. However, the blood vessels are invisible and 

require different techniques to extract the correct pattern, and 

it depends on the living individual. The main issue with the 

finger vein application is that there are still some challenges 

that affect the performance of this system, such as finger vein 

image quality and well-defined or extracted feature levels [14]. 

With the growth of the digital economy and safety systems for 

networks, it is now common for identity information to be 

verified. Identity verification is needed in everyday situations 

like using ATMs, unlocking cell phones, logging into personal 

online accounts, and shopping online. Traditional 

authentication methods like passwords and PINs [15] have 

some problems, like being less secure and easy to forget or 

lose. This makes it hard to meet the security needs of many 

applications. In recent years, biometric identification 

technology has gotten more and more attention because of its 

benefits, such as being able to identify living people, being 

hard to steal, and having unique features [16]. 

Traditional techniques for recognizing finger veins do not 

work well for a lot of people, so they are slowly being phased 

out. Image processing methods that are based on machine 

learning are the same as these traditional methods. Among 

them, deep learning techniques can be more accurate, but they 

often need a lot of training data, so they are not used very often 

right now. Different approaches for finger-vein image 

recognition and identification have been applied using 

machine learning and deep learning methods, but they still do 

not meet the challenges in this field, such as finger vein data 

localization, finger vein pattern extraction, and performance 

results [17]. For this reason, in this paper, we address those 

two factors and propose a new finger vein biometric 

identification and recognition system that solves the issue of 

image quality and achieves significant levels of feature 

extraction. Therefore, this paper can summarize some research 

problems that are being considered and try to build a strong 

approach and framework that can solve and manage them. 

Finger vein localization method in which background details 

and unnecessary information from finger vein images are 

removed using an unsupervised learning algorithm (optimized 

k-means clustering). Two stages of finger vein feature 

extraction are applied to extract some significant features that 

help the weak classifier achieve higher performance for the 

human finger vein identification approach. The main 

contributions of this paper are summarized: 

·A new deep regional learning approach for finger vein 

recognition is proposed. The regional deep attention learning 

model is applied to the localized finger vein images, such as 

the original and colored, to significantly achieve the highest 

performance results on one of the most challenging finger vein 

datasets. 

·The designed model is based on innovatively using 

attention mechanisms. The Regular Attention Mechanisms 

framework is used to fine-tune the backpropagated synthesis 

in a regular deep network. Instead of that, we used the attention 

mechanisms to fine-tune both feedforward and backward 

propagated synthesis in the same deep network by using a 

regional mask to obtain the ROI learning area. 

·This study used k-means and fuzzy c-means to cluster, 

locate, and isolate the finger image from the entire finger vein 

image, instead of relying on the traditional methodology of 

global image thresholding. 

·This study extracts significant features based on globalized 

feature pattern map indication (GFPMI). 

The rest of this article is organized as follows: Section 2 

presents a review of the literature for feature extraction and 

auto-classification. Section 3 explains the methodology of the 

study. Section 4 describes the details of the proposed method. 

Section 5 explains the experimental results. 

 

 

2. RELATED WORK 

 

Several types of research have been introduced into 

different techniques for finger vein verification and 

identification based on various methods. For instance, 

globalized feature extraction depends on supervised learning 

utilizing the K-nearest neighbor (KNN) classifier or a 

localized feature descriptor based on deep learning named the 

convolutional neural network (CNN). Since deep learning-

focused machine learning systems have mostly replaced 

traditional machine learning systems, CNN currently serves as 

the end-to-end system. It also has impressive speed in contrast 

to standard algorithms. Compared to conventional methods, it 

is distinguishable by higher levels of precision [18]. 

Lu et al. [19] proposed an adoption deep learning model 

based on the convolutional layer model (CNN) that includes 

five convolutional layers and two fully connected layers. Their 

design achieved a recognition rate of 99.53%. Fairuz et al. [20] 

introduced a CNN for finger vein identification and proposed 

the incorporation of a local element to depict the configuration 

of fingers. The presented method demonstrated that the CNN-

based local feature descriptor (CNN-CO) and the feature-

based discriminative finger fine can be extracted. Essentially, 

kernels of complex CNN can detect the same kind of 

functionality and have the same difficulty extracting local 

features based on the Gabor filter. Based on the results of the 

experimental system, it appears that the identification of 

descriptor-based local functions in the vein recognition system 

seems to work efficiently when extended to two public vein 

datasets. In the study of Zhu et al. [21], a recognition-based 

finger vein recognition system using the convolutional neural 

network (CNN) technique has been proposed. Their deep 

learning design model has five convolutional layers and four 

fully connected layers. Their model has achieved better 

accuracy with a score of 100% due to the experimental results 

that have been produced in their paper. A deep CNN approach 

for finger-vein image denoising has been proposed in the study 
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of Hong et al. [22]. The main aim of this approach is to solve 

the feature extraction issue with data collection for finger vein 

images. The approach is based on non-linearity mapping of the 

noisy finger vein images, which are the input of the deep 

convolutional neural network. The denoising images (features) 

are then built through the hidden layers by learning the 

characteristics of the finger vein image. The proposed system 

has two stages. The first one is the convolution subnet, and the 

second stage is the deconvolution subnet. Both are 

implemented to obtain more features from the finger vein 

texture. 

Song et al. [23] proposed a deep learning approach based on 

the convolutional neural network (CNN) to solve the 

degradation in performance recognition issues caused by 

finger positional variation, misalignment, and shading. They 

mainly used different inputs for their deep network by 

calculating the distance between the feature vectors that are 

extracted from the CNN by using a densely connected 

convolutional network (DenseNet). The proposed system has 

been tested on the SDUMLA-HMT finger vein dataset, which 

is the Shandong University homologous multi-modal traits. 

study [24] proposed a deep-learning approach for finger vein 

image identification based on low-quality images. CNN 

proposed this method for achieving stable and high-accuracy 

performance with varying finger vein image quality. The 

experimental results for this approach showed that the 

proposed system has achieved a 95% identification rate for all 

available public finger vein datasets. Table 1 shows how 

CNN-based deep learning methods, such as convolutional 

neural networks (CNNs), can be used to recognize images of 

finger veins. 

 

Table 1. Biometric recognition-based finger vein using deep CNN architecture 

 
Ref database FC Ai Input size CL Kernel size PL FC layers Loss function Reference CNN 

[21] Private 300 Biometric Identification 55×67×1 4 7×7 2 2 Mean square error - 

[22] 
Private 

SDUMLA 

318 

636 
Biometric Verification 224×224×3 13 3×3 5 3 softmax VGG-16 

[23] 
Private 

FVRC2016 

300 

1000 
Biometric Verification 128×128×2 10 3×3 4 2 Cross entropy error VGG-16 

[24] Private 300 PAD - Inkjet printed artefact 224×224×3 8 

11×11 

3×3 

5×5 

3 2+3 softmax Alex-Net 

[25] 
FV-USM 

HKPU 

492 

302 
Finger-vein image quality assessment 80×240×1 4 

3×3 

5×5 
2 2 softmax - 

[26] 
FV-USM 

HKPU 

492 

302 
Finger-vein segmentation and recovery 

15×15×1 

39×146×1 

 

3 

2 

3×3 

5×5 

9×9 

5×5 

2 

0 

2 

1 
Mean square error softmax - 

[27] 

HKPU 

FV-USM 

SDUMLA 

UTFVP 

210 

492 

636 

360 

Finger-vein 

Identification 
65×153×1 5 5×5 3 1 softmax - 

Note: C=Finger classes, CL=Conv layer, PL=Pooling layers 

 

There are three well-defined and practical ways to use deep 

learning for finger vein recognition. First, utilize a deep 

learning method for finger vein pattern extraction and compare 

templates for a vein pattern in the image to be able to 

determine whether it is accurate. Second, a new feature 

extraction algorithm is applied to find the fingertip print, 

which is then used as the basis for the deep learning algorithm. 

In the end, the processing method could directly identify the 

original picture of the finger veins by using deep learning. 

Parts of our two-stream approach can be applied to all types 

of deep learning due to the third technique, which uses an end-

to-end architecture that enables it to maximize the benefits. To 

the best of our knowledge, no progress has been made on 

merging CNNs. This is a challenge while collaborating with 

CNN since sufficient criteria need to be found to yield the best 

recognition levels. By this method, we started a series of 

experiments where we constantly increased a single variable 

until it reached the point where it was completely saturated and 

then checked the response of the system. To keep the number 

of tests below three critical parameters, we selected three 

parameters first. We looked for an activation mechanism that 

produced the highest possible accuracy. We checked until we 

found a suitable filter size, and lastly, we found the number of 

CNN layers that would work. To create the received model, 

the CNN design was combined with the combined architecture 

and the rest of the network's architecture. As it turns out, our 

approach was comparable to all of the approaches that were 

evaluated in Table 1. 

 

 

3. MATERIALS AND METHOD 

 

3.1 Image acquisition 

 

In this research, we utilized an available finger vein 

database named DUMLA-HMT. This dataset was constructed 

based on the computer designed by the Joint Lab for Wuhan 

University's Intelligent Computing and Systems, an ICT 

School lab within the WU that has gained a strong reputation. 

This dataset includes images of each person's hands: one has 

an index finger, the other has his middle finger, and the third 

hand is shown by the applicant. One information value is 

obtained six times to expand into a collection of six 

information images for each of the fingers, which works out to 

be six times more efficient. This database of finger veins 

consists of 6×6×106=3,816 images and each image has been 

stored in "BMP" format in 320×240 pixels size. Some sample 

images are shown in Figure 1 [28].
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Figure 1. Sample images of finger vein dataset 

 

3.2 Convolutional neural network (CNN) 

 

A traditional approach to machine learning revolves around 

layer-by-layering, which is the idea of training successive 

layers of the network. Same as traditional machine learning, 

deep learning is a concept in machine learning that is focused 

on the notion of building successive layers of abstract 

representations. This type of hierarchical representation 

provides an opportunity for training data to be used for 

understanding and building concepts [28]. In practice, most 

methods of machine learning use two or three layers of 

neurons, whereas deep learning utilizes hundreds of layers. 

One of the most robust deep learning methods widely used in 

the literature is CNN. The CNNs are implemented to 

differentiate among various classes by producing such a vector 

of probabilities that are indicated by 𝑦̂ =𝑓(𝑥) for all evaluated 

images in the dataset. If 𝑦̂ is the true label of image 𝑥, the CNN 

performance of true label y of image x is measured by a loss 

function l𝑦̂(𝑦̂ )∈𝑅 which assigns a penalty to classification 

errors.  

 

3.2.1 Deep learning using convolutional neural network (CNN) 

mechanisms 

The convolutional layer can convolve the outcome of the 

former layer with a group of earnable filters, where the 

convolution filter can be specified based on weights. This 

results in a more accurate filter classification per filter in the 

volume. Their volume height and width vary from filter to 

filter, producing a 2-dimensional activation chart. Similarly, 

the depth of the input is the same with both of the filters [29]. 

Three hyperparameters govern the size of the overall 

performance. The number of levels and the model's stride can 

be defined with the width, and zero padding can be adjusted 

separately. 

Assume that we have some N×N square neuron layer which 

is followed by the convolutional layer of our layer. If we utilize 

an m×m filter with ω, the convolutional layer will be of size 

(N-m+1). To calculate the pre-nonlinearity input to some unit 

𝑥𝑖𝑗
ℓ  our layer, we need to sum up the contributions (weighted 

by the filter components) from the former layer cells (See Eq. 

(1)): 

 

𝑥𝑖𝑗
ℓ = ∑ ∑𝑤𝑎𝑏𝑦̂(𝑖+𝑎)(𝑗+𝑏)

𝑙−1

𝑛−1

𝑏=0

𝑚−1

𝑎=0

 (1) 

 

After that, the convolutional layer implements its 

nonlinearity using Eq. (2): 

 

𝑦̂𝑖𝑗
ℓ = 𝜎(𝑥𝑖𝑗

ℓ ) (2) 

The pooling layer works by reducing the size of the total 

input as well as the number of inputs, so multi-scale analysis 

is possible. Both operators, maxpooling and average pooling, 

are the two most commonly used pooling operators. Using 

these operators, the maximum or average value of a small 

block of data is found within a spatial entity. Pooling filters 

are considered the optimal filters based on their size 2×2 as 

well as their stride of 2. Eventually, all neurons of the former 

layer will be completely linked and bound to one another 

based on a fully connected layer. In addition, fully connected 

layers are usually used as the last classifier in a network, and 

they are often mostly used as decision classifiers. 

 

3.2.2 Attention learning mechanisms 

The attention keyword represents an action that guides 

directly to the object, has specific aims, and focuses attention. 

It can be known as giving need as it is the mind's ability to 

assign uneven consideration through the area of sensation. 

Furthermore, concentration confirms input to the center of 

attention while diminishing or ignoring others. 

Technically, the attention given to the current activity has 

helped find the value of the system in the neural networks. The 

action of paying attention assists in terms of credit assignment. 

The key challenge of that action is ensuring that the range 

across which it applies is reliable and durable. A way of 

putting it is that the prediction has become stronger and more 

influenced by the other facts. The central Markov assumption 

is used to be employed in the attention network's Markov 

model to allow various likelihood values for different choices 

in the set of all possible states of the network (see Eq. (3)). 

 

𝑃(𝑤1𝑤2…𝑤𝑛) ≈ ∏ 𝑃(𝑤𝑖|𝑤𝑖−𝑘…𝑤𝑖−1)𝑖   (3) 

 

In other words, at a high level, the attention network has the 

capability of highlighting important information in the input 

and suppressing extraneous noise for the sake of the neural 

network's analysis. This means that it is concentrated on more 

relevant parts of the input instead of irrelevant parts during the 

prediction task. Although this attention network does make it 

possible to gather knowledge at the human level, in this 

situation, attention is required. Thus, the attention network 

described in this case may catch the nature of the input series 

in a single hidden state. 

Here, the pre activation residual has been modified. The 

output of attention module H is given using Eq. (4):  

 

𝐻𝑖,𝑐 = 𝑀𝑖,𝑐(𝑥) × 𝑇𝑖,𝑐(𝑥) (4) 

 

where, ranges are the overall spatial locations and the channel 

index. It is possible to train the entire structure end-to-end. 

When it comes to backward propagation, the focus filter can 

not only act as a feature selector but can also be used as a part 

of the step-size control mechanism. In the soft mask section, 

the gradient of the mask for the input feature can be calculated 

using Eq. (5): 

 
𝜕𝑀(𝑥,𝜃)𝑇(𝑥,𝜃)

𝜕𝜙
= 𝑀(𝑥, 𝜃)

𝜕𝑇(𝑥,𝜃)

𝜕𝜙
  (5) 

 

where, the 𝜃 is the mask section parameters and the N is the 

trunk section parameters. Attention Modules could be 

powerful against noise labels due to this property. The 

branches of the mask can prevent incorrect gradients (from 

noisy labels) to update trunk parameters.  

Similarly, if it can establish a soft mask unit with identical 
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mapping, the performance should not be worse than that of its 

counterpart without attention, according to the opinion in 

residual learning. Therefore, the output of the attention module 

has been modified using Eq. (6). 

 

𝐻𝑖,𝑐(𝑥) = (1 + 𝑀𝑖,𝑐(𝑥)) × 𝐹𝑖,𝑐(𝑥) (6) 

 

where, M(x) ranges from [0, 1], with M(x) approximating 0, 

H(x) will approximate original features F(x). Thus, this 

approach can be named as attention to residual learning. 

 

3.3 Proposed method 

 

Many authors provided many methods for detecting and 

identifying the finger and palm veins, which have been 

described in Table 1. This work proposed a model of finger 

vein image identification and verification based on a deep 

regional learning (DRL) approach using an attention 

mechanisms (AM) model, shown in Figure 2. It mainly has 

three different major phases. The first phase is the globalized 

finger vein lines image construction based on the Globalized 

Finger Vein Lines Extraction Based (GMFPI) method. In this 

stage, we used our second model of double stages of feature 

extraction-based GFPMI for colored finger vein identification 

[30, 31] to automatically generate a perfect globalized finger 

vein line image that will be used for the next stage. The next 

stage is the feature extractor, which uses a convolutional 

neural network to extract the main feature map using the 

original finger vein images. The third stage uses the attention 

mechanisms by using the two generated maps (original and 

globalized line feature maps) to generate the final deep 

attention features map that will be used for the final stage, 

which is the classification stage. 

 

 
 

Figure 2. Deep regional learning approach-based attention mechanisms model proposed system 

 

3.3.1 Globalized finger vein lines image constriction-based 

(GMFPI) 

This stage has been proposed in our second model of double 

phases of feature extraction using GFPMI for colored finger 

vein detection [31, 32].  

 

 
(a)            (b)             (c)              (d) 

 
(e)            (f)             (g)              (h) 

 

Figure 3. (a) Original finger vein image, (b) localized finger 

vein image mask, (c) localized finger vein image, (d) gmpi 

map, (e) projected gmpi on the orginal finger vein image, (f) 

extracted finger vein lines, (g) localized grayscale featured 

finger vein image, (h) localized colored featured finger vein 

image 

It has many steps; our first model proposed a method based 

on using unsupervised learning based on an optimized k-

means clustering approach to generate a perfect localized 

binary image mask, which will be used later for the next step, 

as is shown in Figure 3 (b). Based on the localized binary mask, 

the localized finger vein image is generated, as shown in 

Figure 3 (c). The second step is the localized finger vein 

feature extraction. In this step, the finger vein lines are 

extracted based on the proposed globalized finger map as 

shown in Figure 3 (d), and they are projected onto the localized 

finger vein image as shown in Figure 3 (e). Finally, the finger 

vein feature extraction model based on the globalized feature 

orientation map is used to extract the finger vein lines, as 

shown in Figure 3 (f). The extracted finger vein lines were 

projected onto different finger vein image versions (grayscale 

and color) generated previously by our second model [31], as 

shown in Figures 3 (g) and (h), respectively. 

 

3.3.2 Deep regional learning model 

In our proposed model, we have eight differentiable layers 

of varying weights; the first five of these are considered 

convolutional, and the remaining layers are fully connected. 

The last completely connected layer of the network outputs 

values, which are fed to a 2-way softmax layer, which 

generates a probability allocation for the two-class labels. The 

statistical models we have developed make our network fully 

use the multinomial logistic regression goal, which is equal to 
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increasing the average through cases of training of the log 

probability of the right label under the allocation of prediction. 

In the former, the kernels of the second, fourth, and fifth layers 

are not related to each other, and hence only the kernels of the 

next and subsequent layers are involved. 

In the third and second convolutional layers, all kernel maps 

are connected. Moreover, neurons in fully connected layers 

and former layers are connected. The first and second layers 

of convolutional neural networks are followed by response-

normalization layers. The max-pooling layer has been 

followed by both the fifth convolutional and response-

normalization layers, which choose both response-normalized 

and pooled as input, and the first convolutional layer with 

filters based on 256 kernels in 5×5×48 sizes. Furthermore, the 

same thing was implemented on the third, fourth, and fifth 

layers. The nonlinearity of ReLU is implemented in the results 

produced by fully connected as well as convolutional layers. 

The first convolution layer performs a filtering operation with 

96 convolution kernels of 11×11×3 with a stride of 4 pixels on 

the 227×227×3 input image. This is the number of neurons that 

are further apart from one another than they need to allow for 

more signal overlap to detect targets in a kernel. The second 

convolutional layer is connected to other convolutional layers 

without any intervention in both layers' pooling and 

normalization. The third convolutional layer consists of 384 

kernels, and it is linked to the second convolutional layer 

outputs, which are based on normalized and pooled layers with 

a size of 3×3×256. The number of fourth and fifth 

convolutional layers is 384 and 256 kernels, with a size of 

3×3×192 and 3×3×192, respectively. Finally, each fully 

connected layer has 4096 different neurons. The whole 

structure of our Deep Regional Learning Approach-based 

Attention Mechanisms Model is described in Table 2. 

 

Table 2. Deep regional learning model structure description 

 
Layer Number Layer Type Kernel Size Layer Number Layer Type Kernel Size 

I1 Image Input - 227×227×3 C5 Convolution 256 3x3x192 

C1 Convolution 96 11×11×3 R5 ReLU - - 

R1 ReLU - - A5 Attention Model 1 - 

A1 Attention Model 1 - P6 Max Pooling 1 3x3 

N1 Normalization - - F7 Fully Connected 1 4096 

P1 Max Pooling 1 3×3 R7 ReLU - - 

C2 Convolution 256 5×5×48 A7 Attention Model 1 - 

R2 ReLU - - D7 Dropout - - 

A2 Attention Model 1 - F8 Fully Connected 1 4096 

N2 Normalization - - R8 ReLU - - 

P2 Max Pooling 1 3×3 A8 Attention Model 1 - 

C3 Convolution 384 3×3×256 D8 Dropout - - 

R3 ReLU - - F9 Fully Connected 1 4096 

A3 Attention Model 1 - R9 ReLU - - 

C4 Convolution 384 3×3×192 A9 Attention Model 1 - 

R4 ReLU - - D9 Dropout - - 

A4 Attention Model 1 -     

 

The designed network has an input layer (I1) that has an 

input size of 227×227×3. The image normalization process is 

applied to each input. The second layer of our design is (C1), 

which is the first convolutional layer with a kernel size of 

11×11×3 using 96 kernels with stride [4 4], padding [0 0 0 0]. 

The third layer is the R1, which is the ReLU. The fourth layer 

is the attention layer (A1). The fifth layer in our design is the 

normalization layer, followed by the sixth layer, which is P1. 

P1 is the first pooling layer in our design, with a 3x3 kernel 

size, stride [2 2], and padding [0 0 0 0]. The next layer (seventh 

layer) is C2, which is the second convolutional layer. This 

layer contains 256 kernels, each with a size of 5x5x48 and 

stride [1 1], as well as padding [2 2 2 2]. The next layer is R2, 

which is the second ReLU. The design is followed by A2, 

which is the ninth layer. The ninth layer is the second attention 

layer, followed by the normalization layer (N2) and max 

pooling (P2) with a 3x3 kernel size, stride [2 2], and padding 

[0 0 0 0]. C3, C4, and C5 are the next three convolutional 

layers, with 384, 384, and 256 kernels, respectively, using 

3x3x256, 3x3x192, and 3x3x192 kernel sizes. Both are used 

with stride [1 1] and padding [2 2 2 2]. The convolutional and 

max-pooling layers are both followed by the ReLU and 

Attention Model layers. The last max-pooling layer is P6, 

which is used with a 3x3 kernel size, stride [2 2], and padding 

[0 0 0 0]. Finally, the fully connected layer with a feature size 

of 4096 is followed by the response layer (R7), response 

locality unit (ReLU), and attention layer (A8). A dropout of 

50% is used with ReLU (D8). Another fully connected layer 

(F9) is used with the ReLU, Attention, and Dropout layers. 

 

3.3.3 Deep attention model for globalized finger vein feature 

map extraction and classification 

The stacked of residual learning differs from our attention 

residual learning [31]. The residual learning of original ResNet 

is performed using Eq. (7):  

 

𝐻𝑖,𝑐(𝑥) = 𝑥 + 𝐹𝑖,𝑐(𝑥) (7) 

 

Approximates the residual function, in our formulation, 

Fi,c(x) represents the features that are extracted based on deep 

convolutional networks. The key lies in our mask branches 

M(x). They work as feature selectors that improve features and 

eliminate noises from trunk features. 

 

 

4. EXPERIMENTAL RESULTS 

 

4.1 Dataset 

 

To evaluate the proposed model, we use the SDUMLA-

HMT [29] finger vein dataset. In training, a set of images is 

selected, then they are divided into five different folds. The set 

of all folds is equal to that randomly selected. Only one-fold is 

withheld for the validation step. In the training and testing 
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steps, the same folds are utilized to train classifiers, where, 

based on the result of voting among all classifiers of each fold, 

the classifier with the best performance is selected. In Table 3, 

the dataset distribution based on training, validation, and 

testing datasets is given in Table 3. 

 

Table 3. Total number of subject and finger vein images in 

the training and testing dataset 

 

Subjects Total 

Training (80%) 

Testing (20%) Training 

(60%) 

Validation 

(20%) 

10 360 216 72 27 

 

4.2 Performance results of training dataset 

 

In the evaluation, we use the results of experiments on 

accuracy and validation assessments to compare the 

classification methods. Confusion matrix to see if the 

classification method validates the findings. A confusion 

matrix for the identification system is known as an m × m 

matrix, where m indicates the class number. Information about 

both classifications is predicted as well as actualized within 

the confusion matrix, which is done by an identification 

system. The performance of these models is typically 

evaluated using the matrix's existing data. The predicted class 

in the matrix is represented by the column, whereas the actual 

class is represented by the row in the matrix. Classes that have 

been correctly or incorrectly classified can be shown based on 

the confusion matrix. 

The evaluation of performance is computed by utilizing 

three different measurements: recognition rate (RR), precision 

(PR), sensitivity (SE), and specificity (SP) [32]. The results of 

the performance evaluation of the proposed system (Deep 

Regional Learning Approach-Based Attention Mechanisms 

Model for Finger Vein Human Image Recognition and 

Identification) for the training dataset Our original localized 

finger vein image dataset achieves the highest accuracy (100%) 

compared with the original finger vein image dataset (without 

localization). 

The convergence of the model was achieved by using a 

sigmoid loss function throughout the training process, with the 

goal being to achieve the lowest possible global loss. To 

achieve faster convergence, the loss function was minimized 

using the Adam optimizer with a learning rate of 0.0001. 

During the training process, a batch size of 32 was utilized, 

and 64 epochs were utilized in total. When the network 

hyperparameters have been tuned and saturation has been 

reached in both training and validation losses, it is imperative 

that the training of the model be terminated at this time. To do 

this, we utilized a method known as early stopping, in which 

the training was terminated at the point where it was 

determined that there would be no more improvements to the 

loss of validation data in comparison to the training epochs. 

Tables 4 to 7 present an illustration of the generalized learning 

curves produced by the proposed model when applied to the 

training dataset. Even though the training epoch was set to 64. 

At this moment, training ended, and the model eventually grew 

resistant to overfitting as a result of intensive training. 

Additionally, it can be noticed that the model offered 

extremely high convergence in the loss function for the 

identification of the vein images.  

Table 4 shows the experimental results of the finger vein 

identification-based deep learning model using our localized 

finger vein image dataset. We can notice that the highest score 

has been achieved based on using 64 epochs and 500-learning 

patch size. 

Table 5 shows the experimental results of the finger vein 

identification-based deep learning model using the original 

finger vein image dataset (without localization). We have used 

different epochs for the original images (8, 16, 32, and 64). 

The proposed model obtained the lowest accuracy for epoch 

16. However, it is obvious that the highest score has been 

achieved based on using 64 epochs and 500 learning patch 

sizes. 

Table 6 shows the experimental results of the finger vein 

identification-based deep learning model using the localized 

feature extraction finger vein image dataset (gray localized 

localization approach). The proposed model achieved the 

lowest score at epochs 64 and 32. However, a good score is 

obtained at epoch 8. We can notice that the highest score was 

100%, which was achieved based on using 16 epochs and 100 

learning patch sizes. 

 

Table 4. Performance results on training dataset using our localized finger vein image dataset 

 
Model Epoch Patch Size Learning Rate Ac 

Localized Finger Vein Image Dataset 

64 

20 

0.0001 

70.00 

40 74.55 

100 91.82 

200 93.64 

500 100 

32 

20 

0.0001 

75.45 

40 87.27 

100 98.18 

200 99.09 

500 98.18 

Localized Finger Vein Image Dataset 

16 

20 

0.0001 

96.36 

40 98.18 

100 100 

200 100 

500 100 

8 

20 

0.0001 

96.36 

40 99.09 

100 100 

200 100 

500 100 
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Table 5. Performance results on training dataset using our original finger vein image dataset 
 

Model Epoch  Patch Size Learning Rate Ac 

Original 

64 

20 

0.0001 

70.00 

40 74.55 

100 91.82 

200 93.64 

500 100 

32 

20 

0.0001 

75.45 

40 87.27 

100 98.18 

200 99.09 

500 98.18 

Original 

16 

20 

0.0001 

79.09 

40 80.91 

100 99.09 

200 99.09 

500 96.36 

8 

20 

0.0001 

91.82 

40 93.64 

100 100 

200 100 

500 100 
 

Table 6. Performance Results on Training Dataset using our localized grayscale featured finger vein image dataset 
 

Model Epoch Patch Size Learning Rate Ac 

Localized Feature Extraction (Gray) 

64 

20 

0.0001 

67.27 

40 71.82 

100 90.00 

200 91.82 

500 91.82 

32 

20 

0.0001 

75.45 

40 80.00 

100 96.36 

200 94.55 

500 93.64 

Localized Feature Extraction (Gray) 

16 

20 

0.0001 

76.36 

40 90.00 

100 100 

200 100 

500 100 

8 

20 

0.0001 

90.19 

40 85.45 

100 97.27 

200 96.36 

500 99.09 
 

Table 7. Performance results on training dataset using our localized colored featured finger vein image dataset 
 

Model Epoch Patch Size Learning Rate Ac 

Localized Feature Extraction (Gray) 

64 

20 

0.0001 

66.36 

40 86.36 

100 97.27 

200 98.18 

500 99.09 

32 

20 

0.0001 

83.64 

40 96.36 

100 95.45 

200 95.45 

500 96.36 

Localized Feature Extraction (Gray) 

16 

20 

0.0001 

94.55 

40 97.27 

100 100 

200 94.55 

500 94.55 

8 

20 

0.0001 

94.55 

40 95.45 

100 98.18 

200 95.45 

500 98.18 
 

1998



Table 7 shows the experimental results of the finger vein 

identification-based deep learning model using the localized 

colored feature extraction finger vein image dataset (colored 

localized localization approach). We can also notice that the 

highest score was 100%, which was achieved based on using 

16 epochs and 100 learning patch sizes. 

 

4.3 Performance results of testing dataset 

 

The performance results of the proposed system on the 

testing dataset using the original finger vein image dataset are 

shown in Table 8. The performance results show that on the 

original dataset, the proposed system achieves the highest 

accuracy of 100% and also 100% on precision, recall, and F1 

Score. The experiential results of the testing dataset for all the 

classes using different parameters such as epoch and patch size 

are shown in Table 7. For instance, (epoch 8, patch size 100), 

(epoch 16, patch size 100), (epoch 32, patch size 100), and 

(epoch 64, patch size 100) all achieved the higher accuracy of 

100%. Using the original dataset. 

The performance results of the proposed system on the 

testing dataset using the localized finger vein image dataset are 

shown in Table 9. The performance results show the proposed 

system achieves the highest accuracy of 100% and higher 

performance on precision, recall, and F1 score. The 

experiential results of the testing dataset for all the classes 

using different parameters such as epoch and patch size are 

shown in Table 8. For instance, epoch 16 with patch size 100 

and epoch 64 with patch size 500 both achieved a higher 

accuracy of 100%. 

The performance results of the proposed system on the 

testing dataset using the localized gray features on the finger 

vein image dataset are shown in Table 10. The performance 

results show the proposed system achieves the highest 

accuracy of 100% and higher performance on precision, recall, 

and F1 score. The experiential results of the testing dataset on 

all the classes using different parameters such as epoch and 

patch. For instance, (epoch 16, patch size 100) has achieved a 

higher accuracy of 100%. The performance results of the 

proposed system on the testing dataset using the localized 

colored feature finger vein image dataset are shown in Table 

10. 

 

Table 8. Performance Results on the Testing Dataset using the original of finger vein images dataset 

 

 

Table 9. Performance Results on the Testing Dataset using the localized of finger vein images dataset 

 

 

Table 10. Performance Results on the Testing Dataset using the localized grayscaled feature of the finger vein images dataset 
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20 99 95.5 96.5 95.4 
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100 100 100 100 100 100 100 100 100 100 

16 

20 99.27 96.4 97.3 98.5 

64 

20 94 74.7 77.8 72.1 

40 99.45 98.2 95.8 98.2 40 98 94.6 95.8 94.6 

100 100 100 100 100 100 100 100 100 0.00 
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32 
200 99.8 100 99.2 98.6 

40 95.28 82.8 88.5 79.0 500 99.6 98.2 98.5 98.2 

100 100 100 100 100 

64 

20 94 69.9 80.6 67.8 

200 99.27 96.4 96.8 96.4 40 94.9 74.5 83.3 71.9 

500 99.27 96.4 96.4 96.6 100 98.3 91.9 93.3 91.7 

32 

20 95.09 75.5 79.8 74.7 200 98.7 93.7 95.3 93.4 

40 97.30 86.8 90.2 85.1 
500 100 100 100 100 

100 100 98.2 98.4 98.2 
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40 99.27 96.4 96.7 96.4 100 99.2 96.5 97.1 96.4 

200 99.82 99.1 99.2 99.1 200 98.9 94.6 95.2 94.4 

16 

20 99.82 99.1 99.2 99.1 500 98.7 93.7 94.3 93.7 

40 98. 90.1 92.1 89.7 

64 

100 98 90 91.3 89.3 

100 100 100 100 100 200 98.5 92.8 94.1 92.4 

32 20 95.09 75.6 76.2 74.3 500 98.3 91.8 93.1 91.2 
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After the training of the network was completed without a 

hitch, the test set was utilized to conduct a performance 

assessment of the proposed model for finger vein 

identification. As mentioned before, a variety of images from 

each class were selected for the purposes of testing to show the 

proposed model's performance in terms of recognition. 

Original finger vein images, localized finger vein images, a 

localized grayscale feature of the finger vein images, and a 

localized colored feature of finger vein images are used in 

testing. During the process of evaluating the proposed model, 

preprocessed data from test images from each data set was 

utilized as input to the proposed model so that corresponding 

probability scores could be obtained. Tables 8 to 11 compare 

the recognition accuracy, precision, recall, and F1-score 

produced by the proposed model to other given findings based 

on the application of a variety of epochs and patch sizes. We 

can see that, for original finger vein images, the proposed 

method obtained 100% accuracy in epochs 8, 16, 32, and 64 at 

patch size 100. Our proposed model obtained good accuracy 

for the localized finger vein images dataset. For this dataset, 

we witnessed the lowest accuracy of 94% obtained at epoch 

64 with patch size 20, whereas epoch 64 obtained 100% at 

epoch 500. Moreover, we have achieved 100% accuracy at 

epochs 16 and 32 at patch size 100. Furthermore, our proposed 

model achieved 99.82% accuracy for epoch 8 at patch size 200, 

99.2% accuracy for epoch 32 at patch size 100, and 98.5% 

accuracy for epoch 64 at patch size 200 for the localized 

grayscale features of the finger vein images. For epoch 16 with 

patch size 100, the proposed model achieved 100% greater 

accuracy. Moreover, the proposed model has been evaluated 

using a localized colored feature of finger vein images. This 

dataset has the lowest accuracy of 96.7% using 32 epochs with 

20. We scored a higher accuracy of 99.8% for this dataset at 

epoch 16 with patch size 100. 

The accuracy of the proposed technique is greater for both 

the original finger vein image and the localized finger vein 

image datasets. This is due to the fact that the method makes 

its best attempt to capture the feature information of the finger 

vein as much as possible. However, the localized grayscale 

feature of the finger vein image and the localized colored 

feature of the finger vein image datasets are both slightly lower. 

In addition to this, due to the nature of the vein patterns that 

are associated with low-quality images, which are highly 

vague, the network of feature extraction of the existing models 

is unable to extract distinctive features from these vein patterns, 

making it extremely challenging to achieve higher recognition 

accuracy. This is because the vein patterns are extremely 

vague. Besides, the proposed model has a feature extraction 

network that is able to capture huge and ambiguous instances 

of the input by making use of much bigger kernels in the main 

layers. Because of this, it is possible to realize a notable 

accumulation of features at the final layer, which is sufficient 

to properly identify every sample, whatever the visual quality 

of the sample. In addition, as mentioned, the incorporation of 

the proposed model makes it possible for the network to 

capture the fundamental textural vein patterns regardless of the 

size of the veins, which greatly contributes to an improvement 

in recognition accuracy. 

 

Table 11. Performance Results on the Testing Dataset using the localized colored feature of finger vein images dataset 

 

 

 

5. CONCLUSIONS 

 

In this paper, we describe the design of a deep regional 

learning approach-based attention learning mechanism for 

finger vein image identification and recognition. The designed 

model is based on using attention mechanisms in an innovative 

way. The regular Attention Mechanisms framework is used to 

fine-tune the backpropagated synthesis in a regular deep 

network. Instead of that, we used the attention mechanisms to 

fine-tune both feedforward and backward-propagated 

synthesis in the same deep network by using a regional mask 

to obtain the ROI learning area. The proposed approach shows 

significant performance when applied to one of the most 

challenging finger vein datasets. The experimental results of 

the proposed system show that our approach has achieved the 

highest accuracy on the testing dataset in most cases using 

different versions of finger vein image datasets that are 

generated using our proposed approach, including the original, 

localized, localized grayscale-featured, and localized colored-

featured finger vein images. 

As is the case with any new approach, there are some 

problems that remain unsolved and should be given more 

thought. For the particular development of the proposed model, 

we present a feature extraction method to extract image 

information, and we were successful in achieving our goals 

regarding performance. However, more exploration in future 

research is required to extract more effective information from 

images. A significant amount of training data is necessary in 

order to effectively train the model that has been presented. 

Nevertheless, it is frequently the case that it will be impossible 

to acquire this quantity of data in many of the experimental 

setups that are used. As a result, the expansion of training data 
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32 

20 96.7 83.7 85.7 82.4 

40 98.91 94.6 95.4 94.6 40 99.2 96.4 96.7 96.3 

100 99.45 97.3 97.6 97.2 100 99 95.5 95.8 95.5 

200 99.09 91.9 96.4 95.4 200 99 95.5 96.3 95.4 

500 99.64 98.2 98.3 98.2 500 99 95.5 96.3 95.4 

16 

20 99.64 98.2 98.3 98.2 

64 

20 98.3 91.8 93.1 91.2 

40 99.45 97.3 97.7 97.3 40 98.9 92.4 93.7 91.8 

100 99.8 98.2 98.5 98.2 100 98.5 92.8 94.1 92.4 

200 99.8 98.2 98.5 98.2 200 98.8 93.1 94.4 92.7 

500 98.9 94.9 95.4 94.5 500 99.1 92.6 93.9 92 
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through the incorporation of proper data augmentation is 

scheduled to take place in future work. In addition, the 

approach that was proposed will be used to analyze various 

kinds of vein images, such as palm-vein or hand-vein images, 

and their results will be analyzed. Furthermore, we will 

undertake a study on the multi-modal combining of various 

types of biometric data using the approach that was proposed 

in this research. 
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