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Modulation format recognition is an essential part of intelligent receivers of wireless 

communication systems, especially for adaptive radio systems (ARS). This paper presents 

a detailed investigation of automatic modulation classification (AMC) using pattern 

recognition classifiers (PRC) under fading and AWGN conditions. A variety of classifiers 

with different kernel functions and Support Vector Machine (SVM) classifiers have been 

developed for the classification of higher-order digital modulation signals. In addition, an 

extensive investigation of the extraction of various higher-order statistical features from 

each of the modulated classes and the choice of appropriate features for training classifiers 

are presented. In addition, the performance of the SVM classifier is evaluated under a 

variety of training rates and suboptimal channel conditions. Further, the performance of 

SVM classifiers is compared to that of existing techniques to demonstrate the effectiveness 

of the SVM classifiers for modulation categorization. 
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1. INTRODUCTION

The need and development of sophisticated data exchange 

services and an efficient system for civilian and security 

applications is a tough task in a fully occupied spectrum. So, 

efficient algorithms are essential for signal processing in the 

above-mentioned systems. Wireless transmission with high 

data rates needs robust and spectrally efficient modulation 

schemes for non-ideal channels. Traditional data transmission 

techniques do not adapt to these channel conditions, so it 

requires a better coding technique to preserve satisfactory 

performance in deep fades. In the last two decades, a huge 

number of innovations have been made in the field of wireless 

communications, especially in enlarging the throughput. 

Adaptive Modulation and Coding (AM&C) is one such 

innovation to enable the highest transmission reliability and 

transmission rate through the alteration of modulation format 

according to channel characteristics [1]. Implementation of 

AM&C requires the receiver to be aware of the modulation 

technique to demodulate the signal for successful 

communication [2]. To achieve this, supplementary data on 

modulation type is included as a header file in every signal 

frame, therefore, the receivers are aware of any alteration in 

modulation technique and respond accordingly. But spectrum 

efficiency is greatly affected by the supplementary data. To 

avoid this problem, AMC is introduced to know the received 

signal modulation class without any overhead data. As a result, 

AMR becomes an essential component of wireless 

communication system receivers, particularly for future 

adaptive radio systems (ARSs) [3]. 

Early research on AMC focuses only on basic continuous 

modulations, thereafter, with the evaluation of wireless 

communication systems, attention is shifting to digital 

modulations. Broadly, the AMC techniques are categorised 

into decision-theoretic (DT) or maximum likelihood (ML) 

approaches and feature-based (FB) or pattern recognition (PR) 

approaches. The likelihood functions of an unknown signal are 

compared to those of the available set using the Generalized 

and Averaged Likelihood Ratio Tests (ALRT & GLRT) [4, 5]. 

In DT methods [6-10], the choice is made by calculating the 

likelihood ratio of the unknown signal against a threshold that 

is constructed with different algorithms. The threshold is 

formulated by extracting known signal features. The DT 

approaches are ineffective and computationally more complex 

when signal parameters are unknown, but these ML classifiers' 

performances are optimal when the signal parameters are 

known prior. However, prior knowledge of signal waveform 

characteristics is impractical in real-time applications. On the 

other side, the FB approaches [11-16] classify the signals 

based on signal statistical features. The classification process 

has two phases: the feature extraction phase and the 

classification phase. Even though DT approaches are optimal, 

their computational complexity is higher than that of the FB 

approaches. The FB approaches may be optimal if the proper 

feature set is chosen.  

From the detailed literature, it is also found that some of the 

other approaches have also been developed for AMC. They are 

statistical approaches [17-22], where different statistical 

features of the signal, such as correlations, moments, and 

cumulants in the complex envelope of the signal, are extracted 

and then a multilevel classification algorithm is applied for 

classifying the signals. The accuracy of the Back Propagation 

Neural Network (BPNN) is higher than that of the 

Kolmogorov Smirnov (KS) and higher-order statistics (HoS) 

approaches [23]. SVM classifiers are used in several 

applications, such as speech recognition, text classification, 

data classification, etc. [24, 25]. 

It is evident from the critical review of the literature that 

good research has already been done by several researchers to 

improve the performance of AMC methods under different 
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noisy conditions. The techniques that are discussed in existing 

literature have the following limitations: The major limitations 

of decision-theoretic approaches are the formulation of the 

right hypothesis and the consideration of the optimum 

threshold value. Prior knowledge about signal and channel 

characteristics is necessary to get optimum performance, 

which is impractical [26, 27]. Also, these algorithms 

are computationally complex, and they are sensitive to 

phase, frequency offsets, and synchronisation errors. 

whereas the selection of the right feature set is the major 

limitation of statistical approaches and wavelet transform 

approaches. These feature sets have been significantly 

affecting the performance of the classifier. Further, most of 

the existing FB methods are developed at a constant SNR 

level. Very often, time-varying noise channels and 

multipath fading channels degrade the performance of AMC. 

No attempt has been made so far to achieve high 

classification accuracy along with a low-complexity solution 

by considering all classes of digital modulation schemes. 

In this paper, an efficient and robust SVM classifier for 

AMC in next-generation adaptive radio systems is 

implemented. Noise-insensitive features are identified 

using Principle Component Analysis (PCA) to ensure the 

classifier is robust with SNR variations as well as with 

multipath fading effects. The performance of SVM 

classifiers with linear, polynomial, and gaussian kernels for 

AMC is analysed with all possible combinations of training 

rates and SNR conditions. In this paper, a variety of SVM 

classifiers are developed and analysed for AMC. 

The rest of the paper is organised as follows: the 

framework of the proposed approach is discussed in Section 

2. Section 3 describes the SVM algorithm for AMC. The 

simulation results of an SVM based AMC algorithm in 

non-ideal channel conditions are discussed in Section 4. 

Finally, Section 5 depicts the important conjectures of the 

paper. 

2. SYSTEM MODEL

Figure 1 represents the outline of the proposed method. It 

consists of training and testing phases. To analyze the 

performance, a set of modulation classes (1,000 samples of 

each modulation class) is generated under different noisy 

conditions. Based on the training rate parameter, some 

portion of the data set is separated for training, and the rest is 

used for testing. 

Figure 1. Proposed system model 

2.1 Signal model 

The input signal for the CR receiver r(n) is given by 

𝑟(𝑛) = 𝑥(𝑛) + 𝑔(𝑛) (1) 

here, x(n) is the signal which is transmitted and g(n) is fading 

in the channel.  

For binary data input, the r(n) is [3]: 

𝑟(𝑛) = 𝐴𝑒𝑖(2𝜋𝑛𝑇𝑓𝑜+𝜃𝑛) ∑ 𝑥(𝑘)𝑦((𝑛 − 𝑘 + 𝜖)𝑇)

∞

𝑘=−∞

(2) 

here, A is the amplitude, x(k) is input binary stream, y(.) is 

channel effects, T is symbol time, θn is phase jitter, and 𝜖 is 

time shifts due to channel characteristics. 

2.2 Feature extraction 

To train the classifier, various statistical features are 

extracted for each set of modulated classes under non-ideal 

channel conditions. Moments are monotonically increasing 

functions for the "M" value in M-ary PSK and QAM 

modulated signals. Higher order modulated signals have 

higher values of moments, so these moments are suitable for 

the classification of digital signals. 

For a received signal r(n) the moments are extracted as [2]: 

𝑀𝑝𝑞 = 𝐸[𝑟(𝑛)𝑝−𝑞𝑟∗(𝑛)𝑞] (3) 

here, p, q are the integers, r(n) is the received signal, and r*(n) 

is the complex conjugate of the received signal. 

The cumulants of a signal are a set of statistical quantities 

that derived from moments. The HoC are derived from 

moments and further, these are used for deriving the ratios [3]. 

There are 39 features were identified from the literature which 

are popularly used, and they are shown in Table 1. 

2.3 Feature selection 

From the observations of the derived statistical features of 

all modulation classes in the feature extraction stage, it is 

found that some of the moments and higher-order cumulant 

ratios are undesirable to distinguish between modulation 

classes. For some of the modulation classes, moments and 

higher-order ratios have the same range of values. Due to all 

these moments and cumulant ratios, the classification time is 

increased without any progress in the accuracy. To reduce the 

complexity of the classifier, Principle Component Analysis 

(PCA) is carried out on all 39 features. Through the PCA, 

finally, a set of 11 best features is selected for the best 

classification accuracy. The 11 features are cumulants of the 

second, fourth, sixth, and eight orders, and they are further 

used for training the SVM classifier. 

2.4 Training the classifier & testing 

In the training phase, the proposed classifiers are trained 

with the selected feature set of all the reference modulated 

signals. In this phase, six different types of SVM classifiers are 

trained with the identified features discussed in 2.3. The 

detailed training process of SVM is presented in Section 3. 

Finally, in the testing phase, from an unknown received 

signal, selected features are extracted for AMC after signal 

preprocessing. The extracted features are further passed 

through the trained classifier for modulation reorganization. 

Based on the model built by the classifier in the training phase, 

it classifies the unknown signal into a particular class using the 

extracted feature set. Here, the classification accuracy (A) is 

given by: 
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𝐴 =
1

𝑛
∑ 𝑃(𝐶𝑖|

𝑛

𝑖=0

𝐶𝑖) (4) 
here, P(Ci|Ci) is probability of classification of a class Ci into 

class Ci and n is the number of classes. 

 

Table 1. Statistical Features for AMC 

 
Moments Cumulants Higher order ratios 

𝑀20 = 𝐸[𝑟(𝑛)2] 
𝑀21 = 𝐸[𝑟(𝑛)𝑟 ∗ (𝑛)] 

𝑀22 = 𝐸[𝑟∗(𝑛)2] 
𝑀40 = 𝐸[𝑟(𝑛)4] 

𝑀41 = 𝐸[𝑟(𝑛)3𝑟∗(𝑛)1] 
𝑀42 = 𝐸[𝑟(𝑛)2𝑟∗(𝑛)2] 
𝑀43 = 𝐸[𝑟(𝑛)1𝑟∗(𝑛)3] 

𝑀60 = 𝐸[𝑟(𝑛)6] 
𝑀61 = 𝐸[𝑟(𝑛)5𝑟∗(𝑛)1] 
𝑀62 = 𝐸[𝑟(𝑛)4𝑟∗(𝑛)2] 
𝑀63 = 𝐸[𝑟(𝑛)3𝑟∗(𝑛)3] 

𝑀80 = 𝐸[𝑟(𝑛)8] 
𝑀84 = 𝐸[𝑟(𝑛)4𝑟∗(𝑛)4] 

𝐶20 = 𝐸[𝑟2(𝑛)] 
𝐶21 = 𝐸[|𝑟(𝑛)|2] 

𝐶40 = 𝑀40 − 3𝑀20
2 

𝐶41 = 𝑀40 − 3𝑀20𝑀21 

𝐶42 = 𝑀42 − 2𝑀21−|𝑀21|2 

𝐶60 = 𝑀60 + 30𝑀20
3 − 15𝑀20𝑀40 

𝐶61 = 𝑀61 + 30𝑀20
2 𝑀21 − 10𝑀20𝑀41 

𝐶62 = 𝑀62 − 6𝑀20𝑀42 + 24𝑀21
2𝑀22 − 8𝑀21𝑀41 + 6𝑀20

2𝑀22 − 𝑀22𝑀40 

𝐶63 = 𝑀63 + 18𝑀20𝑀21𝑀22 + 12𝑀21
3 −  9𝑀21𝑀42 − 3𝑀20𝑀43 − 3𝑀22𝑀41 

𝐶80 = 𝑀80 − 630𝑀20
4 + 420𝑀40𝑀20

2 − 28𝑀60𝑀20 − 35𝑀40
2
 

𝐶84 = 𝑀84 − 16𝐶63𝐶21 + |𝐶40|
2 − 18𝐶42

2 − 72𝐶42𝐶21
2 − 24𝐶21

4
 

𝑟1 = |𝐶40|/|𝐶42| 
𝑟2 = |𝐶41|/|𝐶42| 

𝑟3 = |𝐶42|/|𝐶21|2 

𝑟4 = |𝐶60|/|𝐶21|3 

𝑟5 = |𝐶63|/|𝐶21|3 

𝑟6 = |𝐶60|2/|𝐶42|3 

𝑟7 = |𝐶63|2/|𝐶42|3 

𝑟8 = |𝐶80|/|𝐶21|2 

𝑟9 = |𝐶84|/|𝐶21|2 

𝑟10 = |𝐶80|/|𝐶21|3 

𝑟11 = |𝐶84|/|𝐶21|3 

𝑟12 = |𝐶80|/|𝐶42|2 

𝑟13 = |𝐶84|/|𝐶42|2 

𝑟14 = |𝐶80|/|𝐶42|3 

𝑟15 = |𝐶84|/|𝐶42|3 

 

 

3. SVM CLASSIFIER FOR AMC 

 

The SVM classifier has the ability to classify high-

dimensional and noisy data. It is a supervised algorithm that 

classifies the data using a subset of training samples. It takes a 

known data set to build a model, which is then used to classify 

the unknown data. The SVM classifier creates a feature space 

with the help of the training data. Thereafter, it tries to identify 

a hyperplane that divides the plane into two parts, where each 

half contains only one class.  

 

 
 

Figure 2. Margin and decision borders of SVM classifier 

 

Figure 2 represents the typical classification with SVM 

classifier. It consists of two classes with two different symbols 

circles and square boxes. The classifier finds a “maximum 

margin hyper-plane” as the best decision margins to separates 

the data. For every plane hi there exist a pair of supporting 

hyper-planes hi1 and hi2 which is parallel to hi. The distance 

between hi1 and hi2 is called as margin. To construct the hyper 

plane SVM follows two principles, and they are selecting the 

best Hyper-plane for classification, and it should be the 

maximum distance between two supporting planes.  

SVM classifiers classified as linear and nonlinear SVMs 

based on kernel functions used for classification. 

 

3.1 Linear SVM classifier 

 

To distinguish between the classes, a linear kernel is 

considered in linear SVM and it is given as: 

 

𝐹(𝑎, 𝑤) = 𝑎𝑇𝑤 (5) 

 

where, w is the weight vector and a is the input feature vector. 

The hyper plane with linear kernel and a constant w0 is given 

by: 

 

ℎ(𝑎) =  𝑎𝑇𝑤 + 𝑤0 (6) 

 

The binary classification is illustrated in Figure 3.  

The decision for the Figure 3 is defined as: 

 

𝑀 = {
𝑀(𝑃), 𝑖𝑓 ℎ(𝑎) ≥ 0

𝑀(𝑄), 𝑖𝑓 ℎ(𝑎) < 0
 (7) 

 

where, P and Q are two classes, the class is recognized as 

member (M) of P if aTw+w0≥0, else it is recognized as Q. 

Let w be a vector in ℜ𝑑  and ∆(𝑎, 𝑤0) =
{𝑆𝜖ℜ𝑑|𝑎𝑇𝑤 + 𝑤0 = 0}  is a hyperplane then the distance 

between vector w and the hyperplane ∆(a, w0) is 

𝑑𝑖𝑠𝑡(𝑤𝑖 , ∆(𝑎, 𝑤0)) =
|𝑎𝑇𝑤+𝑤0|

||𝑎||
. 

To get optimal accuracy the optimization of weight is: 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑆(𝑤, 𝑤0) =  
1

||𝑤||2
 (8) 

 

To maximize S the condition to be fallowed is: 

 

𝑥𝑗(ℎ(𝑎)) ≥ 1, 𝑗 = 1, 2, … . 𝑁 (9) 

 

here, for M(Q) xj is -1 and +1 for M(P). And xj indicates the 

modulation class for the feature vector j. 
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Figure 3. Classification using Linear SVM 

3.2 Nonlinear SVM classifiers 

In this work, non-linear kernel’s such as polynomial and 

Gaussian are used for classification of two modulation classes, 

and they are given as: 

𝐾(𝑃, 𝑄) = (𝛾. 𝑃𝑇Q + 𝑟)𝑑, 𝛾 >0 (10) 

The degree of polynomial is given by d and it represents the 

polynomial kernel. 

𝐾(𝑃, 𝑄) = 𝑒𝑥𝑝(‖𝑃 − 𝑄‖2/2𝜎2) (11) 

here, σ varies with the number of features and it represents the 

Gaussian kernel.  

Based on the degree SVM classifiers with polynomial 

kernel are classified as Cubic SVM and Quadratic SVM.  

The kernel function for Cubic SVM and Quadratic SVM are 

defined as: 

𝐾(𝑃, 𝑄) = (𝛾. 𝑃𝑇Q + 𝑟)3, 𝛾 >0 (12) 

𝐾(𝑃, 𝑄) = (𝛾. 𝑃𝑇Q + 𝑟)4, 𝛾 >0 (13) 

Figure 4. SVM binary classification with cubic and quadratic 

kernels 

Figure 4 represents the binary classification using cubic and 

quadratic kernels. Based on the 𝜎 value used in Gaussian 

kernel the SVM classifiers are classified as Fine, Medium and 

Coarse Gaussian SVMs. The 𝜎 values for Fine gaussian is 
√𝑃

4
 similarly for medium gaussian kernel 𝜎 is √𝑃  and for 

coarse gaussian is 4 √𝑃 . The kernel representation fine, 

medium and coarse Gaussian SVM are shown in Figure 5.  

To verify the performance of SVM classifier, the 

modulation classification is carried with the linear, cubic, 

quadratic, fine, medium and coarse Gaussian kernels. 

Figure 5. SVM binary classification with fine, medium and 

coarse Gaussian kernels 

4. SIMULATION RESULTS AND DISCUSSIONS

To analyze the performance of proposed SVM classifiers, a 

set of six different modulated signals, each with 1000 copies, 

is considered under varying noise conditions such as fading 

and AWGN with an SNR of 0 to 20 dB. The modulation 

classes considered for experimental simulations are M-ary 

QAM (with M = 4, 16, and 64) and M-ary PSK (M=2, 4, and 

8). To classify the modulation classes, a set of 11 features that 

are discussed in feature selection are extracted for each 

modulated signal. Thereafter, the feature set of size 6000*12 

(11 features and one label) was divided into a training set and 

a testing set. 

Initially, the performance analysis was carried out with 90% 

of the feature set as a training set, and the remaining 10% as 

testing data. Further, the analysis is extended to a training set 

of 80%, 70%, 60%, and 50%. To verify the superiority of the 

proposed classifier, the performance is compared with the 

standard benchmark functions such as ML, AMPT, GLRT, 

HoC, KS, and BPNN. 

Table 2 and Table 3 represent the confusion matrix for 

different SVM classifiers using multi-order cumulants at 

different SNRs. Diagonal elements in the confusion matrix 

denote the true classification rates, and off-diagonal elements 

represent misclassification rates. 
The average performance accuracy of Linear SVM (LSVM) 

and Quadratic SVM (QSVM) classifiers for different 

modulation is shown in Figure 6. The average modulation 

classification accuracy of Linear SVM and Quadratic SVM at 

SNR 0 dB are 82.8% and 83.1% respectively. 

The performance accuracy of proposed Cubic SVM and 

Fine Gaussian SVM (FGSVM) classifiers for different 

modulation classes and at different SNR values is shown in 

Figure 7. The average modulation classification accuracy of 

Cubic SVM and FGSVM classifiers are at SNR 0 dB is 81.7% 

and 82.5% respectively. 

The average performance accuracy of proposed Medium 

Gaussian SVM (MGSVM) and Coarse Gaussian SVM 

(CGSVM) classifiers for different modulation classes and at 

different SNR values is shown in Figure 8. The average 

modulation classification accuracy of MGSVM and CGSVM 

classifiers is at SNR 0 dB is 82.8% and 80.6% respectively. 

Figure 9 depicts the performance comparison of proposed 

SVM classifiers. QSVM and CSVM classifiers attains better 

classification performance i.e., polynomial kernel provides 

better classification than that of linear and gaussian kernels. 
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Table 2. Confusion matrix for proposed SVM classifiers with 90% training (0dB and 5 dB and 10dB) 

 

Classifier 
True 

Class 

SNR 

0 dB  5 dB  10 dB 

Linear 

SVM 

BPSK 100 0 0 0 0 0  100 0 0 0 0 0  100 0 0 0 0 0 

QPSK 0 90 0 0 3 7  0 100 0 0 0 0  0 100 0 0 0 0 

8PSK 0 0 83 0 10 7  0 0 93 0 7 0  0 0 100 0 0 0 

4QAM 0 0 0 100 0 0  0 0 0 100 0 0  0 0 0 100 0 0 

16QAM 0 0 13 0 51 37  0 0 3 0 90 7  0 0 0 0 97 3 

64QAM 0 0 0 0 27 73  0 3 0 0 4 93  0 0 0 0 0 100 

                      

Quadratic 

SVM 

BPSK 100 0 0 0 0 0  100 0 0 0 0 0  100 0 0 0 0 0 

QPSK 4 90 0 0 3 3  0 100 0 0 0 0  0 100 0 0 0 0 

8PSK 0 0 80 0 7 13  0 0 100 0 0 0  0 0 100 0 0 0 

4QAM 0 0 0 100 0 0  0 0 0 100 0 0  0 0 0 100 0 0 

16QAM 0 0 17 0 46 37  0 0 3 0 87 10  0 0 0 0 97 3 

64QAM 0 0 0 0 17 83  0 0 0 0 3 97  0 0 0 0 0 100 

                      

Cubic 

SVM 

BPSK 100 0 0 0 0 0  100 0 0 0 0 0  100 0 0 0 0 0 

QPSK 3 90 0 0 0 7  0 100 0 0 0 0  0 100 0 0 0 0 

8PSK 0 0 87 3 0 10  0 0 100 0 0 0  0 0 100 0 0 0 

4QAM 0 0 0 100 0 0  0 0 0 100 0 0  0 0 0 100 0 0 

16QAM 0 0 30 0 20 50  0 0 3 0 83 14  0 0 0 0 97 3 

64QAM 0 0 3 0 4 93  0 0 0 0 3 97  0 0 0 0 0 100 

                      

Fine 

Gaussian 

SVM 

BPSK 100 0 0 0 0 0  100 0 0 0 0 0  100 0 0 0 0 0 

QPSK 7 87 0 0 0 6  0 100 0 0 0 0  0 100 0 0 0 0 

8PSK 3 0 77 0 7 13  3 0 90 0 0 7  3 0 97 0 0 0 

4QAM 0 0 0 100 0 0  0 0 0 100 0 0  0 3 0 97 0 0 

16QAM 0 3 13 0 51 33  0 0 3 0 87 10  0 0 3 0 90 7 

64QAM 0 3 0 0 17 80  0 3 0 0 10 87  0 0 0 0 0 100 

                      

Medium 

Gaussian 

SVM 

BPSK 100 0 0 0 0 0  100 0 0 0 0 0  100 0 0 0 0 0 

QPSK 3 90 0 0 0 7  0 100 0 0 0 0  0 100 0 0 0 0 

8PSK 0 0 77 0 10 13  0 0 93 0 7 0  0 0 100 0 0 0 

4QAM 0 0 0 100 0 0  0 0 0 100 0 0  0 0 0 100 0 0 

16QAM 0 3 10 0 50 37  0 0 3 0 87 10  0 0 3 0 87 10 

64QAM 0 3 0 0 13 80  0 3 0 0 10 87  0 0 0 0 0 100 

                      

Gaussian 

SVM 

BPSK 97 3 0 0 0 0  100 0 0 0 0 0  100 0 0 0 0 0 

QPSK 3 87 0 0 3 7  0 100 0 0 0 0  0 100 0 0 0 0 

8PSK 0 0 80 0 17 3  0 0 90 0 10 0  0 0 100 0 0 0 

4QAM 0 0 0 100 0 0  0 0 0 100 0 0  0 0 0 100 0 0 

16QAM 0 3 10 0 53 34  0 0 3 0 83 14  0 0 3 0 83 14 

64QAM 0 10 0 0 23 67  0 3 0 0 10 87  0 0 0 0 0 100 

 

Table 3. Confusion matrix for proposed SVM classifiers with 90% training (15 dB and 20 dB) 

 

Classifier 
True 

Class 

SNR 

15 dB  20 dB 

Linear SVM 

BPSK 100 0 0 0 0 0  100 0 0 0 0 0 

QPSK 0 100 0 0 0 0  0 100 0 0 0 0 

8PSK 0 0 97 0 3 0  0 0 100 0 0 0 

4QAM 0 0 0 100 0 0  0 0 0 100 0 0 

16QAM 0 0 0 0 100 0  0 0 0 0 100 0 

64QAM 0 0 0 0 0 100  0 0 0 0 0 100 

               

Quadratic SVM 

BPSK 100 0 0 0 0 0  100 0 0 0 0 0 

QPSK 0 100 0 0 0 0  0 100 0 0 0 0 

8PSK 0 0 100 0 0 0  0 0 100 0 0 0 

4QAM 0 0 0 100 0 0  0 0 0 100 0 0 

16QAM 0 0 0 0 100 0  0 0 0 0 100 0 

64QAM 0 0 0 0 0 100  0 0 0 0 0 100 

               

Cubic SVM 

BPSK 100 0 0 0 0 0  100 0 0 0 0 0 

QPSK 0 100 0 0 0 0  0 100 0 0 0 0 

8PSK 0 0 97 0 3 0  0 0 100 0 0 0 

4QAM 0 0 0 100 0 0  0 0 0 100 0 0 

16QAM 0 0 0 0 100 0  0 0 0 0 100 0 

64QAM 0 0 0 0 0 100  0 0 0 0 0 100 
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Fine Gaussian SVM 

BPSK 100 0 0 0 0 0  100 0 0 0 0 0 

QPSK 0 100 0 0 0 0  0 100 0 0 0 0 

8PSK 0 0 100 0 0 0  0 0 100 0 0 0 

4QAM 0 0 0 100 0 0  0 0 0 100 0 0 

16QAM 0 0 3 0 94 3  0 0 0 0 100 0 

64QAM 0 0 0 0 0 100  0 0 0 0 0 100 

               

Medium Gaussian SVM 

BPSK 100 0 0 0 0 0  100 0 0 0 0 0 

QPSK 0 100 0 0 0 0  0 100 0 0 0 0 

8PSK 0 0 97 0 3 0  0 0 100 0 0 0 

4QAM 0 0 0 100 0 0  0 0 0 100 0 0 

16QAM 0 0 0 0 97 3  0 0 0 0 100 0 

64QAM 0 0 0 0 0 100  0 0 0 0 0 100 

               

Gaussian SVM 

BPSK 100 0 0 0 0 0  100 0 0 0 0 0 

QPSK 0 97 0 0 0 3  0 100 0 0 0 0 

8PSK 0 0 97 0 3 0  0 0 100 0 0 0 

4QAM 0 0 0 100 0 0  0 0 0 100 0 0 

16QAM 0 0 0 0 93 7  0 0 0 0 100 0 

64QAM 0 0 0 0 0 100  0 0 0 0 0 100 

 
(a) 

 
(b) 

 

Figure 6. Classification Accuracy of (a) LSVM and  

(b) QSVM Classifiers 

 

 
(a) 

 
(b) 

 

Figure 7. Classification Accuracy of (a) Cubic and (b) 

FGSVM Classifiers 
 

 
(a) 

 
(b) 

 

Figure 8. Classification Accuracy of MGSVM and CGSVM 

Classifiers 
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Figure 9. Performance Comparison of all SVM Classifiers 

 

 
 

Figure 10. Performance Comparison of SVM with Existing 

Classifiers 

 

 
 

Figure 11. Performance of LSVM 

 

 
 

Figure 12. Performance of QSVM 

 
 

Figure 13. Performance of CSVM 
 

 
 

Figure 14. Performance of FGSVM 
 

 
 

Figure 15. Performance of MGSVM 
 

 
 

Figure 16. Performance of CGSVM 

 

Figure 10 depicts the performance comparison of proposed 

classifiers with that of the current techniques in the literature. 
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From the comparison it is cleared that even at lower SNR 

values the SVM classifiers gives more recognition accuracy. 

The performance of the proposed SVM classifiers with 

different training rates are shown in Figure 11 to Figure 16. 

For each type of SVM, the performance is plotted training rate 

versus performance accuracy for different SNR values. Figure 

11 shows that the performance of linear SVM is consistent for 

less training rates and for SNR 0 dB. 

The performance of Quadratic SVM is as shown in Figure 

12. It is evident that even with 50 percent training the 

classification accuracy is higher. 

From Figure 13 to Figure 16 represent the performance 

analysis of Cubic SVM, FGSVM, MGSVM, and CGSVM. 

From the analysis, it is evident that the performance of 

proposed SVM classifiers is consistent for all training rates 

and for all SNR values. CSVM and QSVM achieved higher 

accuracy i.e. polynomial kernel provides best classification 

with SVM classifier. The performance of proposed classifiers 

is better than the superior approaches in the existing methods 

such as HoC, ML, and BPNN. 

 

 

5. CONCLUSIONS 

 

In this work, a wide variety of SVM classifiers with 

different characteristics are developed for the classification of 

MQAM and MPSK signals. The extraction of statistical 

features for each modulation class and the selection of 

appropriate futures for training are presented. The 

performance of proposed SVM classifiers is analyzed under 

non-ideal channel conditions with various values of SNR and 

training rates. From the results, it is evident that the proposed 

SVM classifiers attain higher recognition accuracy even with 

less training and lower SNRs than existing approaches such as 

HoC, ML, and BPNN. From the performance analysis, it is 

evident that SVM with a polynomial kernel has superior 

performance to that of other kernels. 

Further, this work can be extended by integrating SVM 

classifiers with optimization algorithms to get optimal 

accuracy. By establishing a complete communication link with 

Universal Software Radio Peripherals (USRPs), realistic 

signals are traced, and the proposed classifiers are applied for 

the analysis of the performance of proposed algorithms in real 

time applications. 
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