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Continuous monitoring of the respiratory rate is necessary, particularly for patients 

stationed in the hospital’s wards, to assure their physical conditions are medically 

controlled. We tested the developed webcam-based contactless respiratory rate monitoring 

system on twenty healthy volunteer human subjects (age 20-25 years old) who provided 

informed consent to participate in the research. Subjects are asked to breathe with the 

breath rate following the guiding flash lamps emitted from mobile phones at specific rates. 

Results show that the developed system is capable of measuring respiratory rate with an 

average error of 0-2% and with an average coefficient of variance (COV) of 0-5% among 

all subjects tested and for all ranges of respiratory rates investigated. These results are 

quite promising for further use of this system as an accurate and precise continuous 

respiratory rate monitoring system in clinical settings.  
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1. INTRODUCTION

Respiration is a key process in the human lungs for gas 

exchange between oxygen and carbon dioxide, which is then 

distributed through a closed circulatory system to the body’s 

cells. At this cellular level, oxygen and carbon dioxide are 

further exchanged to maintain cellular metabolism. An 

adequate amount of oxygen is required to guarantee their 

normal metabolic needs. Complex contributing organs in the 

human respiratory system play a beautiful orchestra to manage 

dynamic changes in the interplay among respiration, 

circulation, and metabolism activities [1]. 

The respiratory rate, usually abbreviated as RR, is defined 

as the number of breaths per minute, and it is one of the 

important vital signs that are usually used by doctors to assess 

a patient’s vital functions [2]. They provide clues to possible 

diseases experienced by patients or for monitoring the 

progression of a patient’s recovery process during and after the 

treatment. Normal values of RR for an adult healthy person are 

between 12 and 20 breaths per minute (normally abbreviated 

as bpm) [3], and these values vary with age, gender, and health 

status. 

These varying rates of gas exchange are regulated by a 

network of nerve tissues that send regulatory stimulus signals 

to respiratory system organs such as the brain, brain stem, 

respiratory muscles, lungs, airways tubes, and blood vessels 

[1]. The exchange of gases in the respiratory system affects the 

body's homeostasis, which is the body's ability to keep things 

in balance [4]. Changes in pressure as blood flows through 

capillaries in the alveoli will stimulate changes in pressure 

gradient, which will in turn facilitate the diffusion process. It 

also maintains the acid-base balance of the body by changing 

the breathing rate to compensate for the CO2 concentration in 

the blood; meanwhile, in hypoxia or hypoxemia conditions, 

i.e., a lower O2 level in the blood, this will also trigger changes

in breathing pattern. These homeostatic actions will restore

any imbalance conditions to equilibrium in a short period of

time, whereas prolonged ones will indicate abnormalities in

the patient's health. In this context the monitoring of breath

rate is necessary to be done. Unfortunately, monitoring has

been somewhat neglected in many clinical settings [5, 6].

Accurately monitoring RR is beneficial in detecting any 

physiological changes that may cause deterioration in the 

patient's clinical signs in order to prevent cardiac arrest, which 

can result in unexpected deaths. Generally, techniques for 

measuring RR can be classified into two categories, i.e., in a 

contact or non-contact way. In the first category, sensing 

devices are needed to be attached to the body’s surface and 

connected by cables, or wirelessly transmitted, to the 

processing and visualization units. Massaroni et al. [7] 

provided a very good review of various measurement 

techniques classified as contact modes, which describe them 

according to transducing mechanisms, type of measurands 

involved, and how to retrieve RR from measured respiratory-

modulated signals (i.e., biopotential and light intensity 

modulation).  

Meanwhile, in the non-contact mode, changes in respiration 

can be probed remotely without any direct contact with the 

body. This technique offers many advantages, such as 

avoiding patient discomfort since the sensor is not attached to 

the patient’s body and being more preferable for long-term 

monitoring. Any discomfort in measurements may stimulate a 

patient’s distress, which can alter RR. It is also more suitable 

when attaching a sensor to a patient’s skin is not possible due 

to vulnerable skin, like in the case of neonates or patients with 

burned skin. Moreover, this measurement mode is also more 
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suitable for remote monitoring of COVID-19 patients, where 

frequent contacts between patients and nurses are better 

avoided. A more detailed review of contactless measurement 

techniques can be found in the study [8]. 

This paper describes steps to test and evaluate thoroughly 

the measuring performance of the previously developed 

simple, low-cost, non-contact webcam-based respiratory rate 

monitoring system [9]. A Logitech C922 HD 1080 Webcam 

camera was used as a contactless measurement sensor for 

recording temporal changes in reflected light intensity 

captured from areas around the neck. These changes in 

reflected light are modulated by the regular action of 

respiratory muscles [10]. A graphical user interface with a 

dedicated program to calculate the respiratory rate from 

recorded video images captured by the webcam was developed 

to make the measurement process by the operator easier. 

Calculations were carried out from ROI points around the neck, 

i.e., on the collarbones, neck, and chest (in front of the jugular 

notch), which are usually uncovered by cloth. For comparison, 

measurements of sounds from air flows in during inhalation 

and out during exhalation were parallelly recorded using a 

head-mounted microphone. The developed system was tested 

on twenty healthy volunteer human subjects (age 20-25 years 

old) who provided informed consent to participate in the 

research. Detailed of the steps done will be described in the 

following sections. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Breathing mechanics during respiration 

 

Lungs, the primary respiratory organs, are a pair of air-filled 

organs located in the thoracic cavity and protected by the rib 

cage and bounded by the diaphragm. Anatomically, human 

lungs are similar in form but asymmetrical, i.e., the right lung 

consists of three lobes while the left lung consists of only two 

lobes. Each of these lobes is protected by a thin tissue layer 

called the pleura, which contains a thin layer of fluid that acts 

as a lubricant to allow smooth slips between the lungs and the 

thoracic wall during expansions and contractions [11]. 

Contraction of the muscles on the rib cage and diaphragm 

will expand the volume of the thoracic cavity, which will 

reduce the hydrostatic pressure of the pleural cavity to draw 

air during the inhalation via the nose [12, 13]. Then the inhaled 

air will flow through the trachea, bronchi, and bronchioles 

before being dispersed into alveoli (air sacs) through the 

alveolar ducts. Each alveolus is surrounded by networks of 

capillaries, which allow gases in the blood to move around in 

the alveoli [14]. 

Breathing is considered as complex rhythmical mechanics 

of human’s body activities, which circulates ventilation of rich 

oxygenated (O2) air into lungs and gets rid of carbon dioxide 

(CO2) out of the body. It is considered an unconscious, 

involuntary, as well as automatic, process. Signals from 

sensors (chemo- and mechanoreceptors) [15, 16], which are 

distributed over the body, will be received and processed by 

the respiratory neuronal networks in the brain, producing a 

well-coordinated action of inhalation and exhalation 

sequences. The chemoreceptors will sense the changes in O2, 

CO2, and pH levels in blood and body tissues, while the 

mechanoreceptors will monitor the mechanical changes in the 

lungs’ expansion, dilation, and constriction of air passage 

ways, as well as the contraction and extension of other related 

respiratory muscles. 

The rate and duration of breath during inhalations and 

exhalations (depth of respiration) are coordinated by the 

medulla and pons of the brainstem. Changes in either CO2 or 

O2 levels in blood will stimulate different changes in 

respiratory rate and pattern [17]. In a hypoxic condition, i.e., 

where inadequate O2 supply in the blood is present, it will 

stimulate rapid and shallow breaths in order to avoid excessive 

oxygen utilization by respiratory muscles to maintain the so-

called "economical breathing" [18]. Meanwhile, it will react 

differently to hypercapnia, which is when there is too much 

CO2 in the blood. This will cause it to breathe deeply and 

slowly to get rid of the extra CO2 quickly.  

 

2.2 Imaging of vibrating surface 

 

The movements of the thoracic cage during the breathing 

process can be regarded as a continuously vibrating body at 

low frequencies. It will modulate the scattered intensity of 

ambient light, and by capturing these temporal changes in 

modulated intensity, one can extract vibration properties of the 

surface being imaged. Using the high dynamic range cameras, 

one can determine which local regions of the vibrating object 

are being analyzed, thus providing good observational 

flexibility [19]. Many extraction algorithms had been 

developed to analyze the vibration characteristics of the 

vibrating body, i.e., based on the Digital Image Correlation 

Technique (DIC) with the Fast Fourier Transform (FFT) 

algorithm, as described in the studies [20-22]. 

 

2.3 Image acquisition and extraction of measured data 

from acquired images  

 

The dynamic movements during the breathing process were 

imaged using the C922 HD Webcam from Logitech in video 

mode for a one-minute duration. For each of the set breathing 

frequencies, the measurements were repeated three times. The 

acquired video images were then processed using a developed 

algorithm, which was written in Phyton. Temporal changes in 

intensity signals from pixels of the three chosen ROIs on the 

images will be extracted and filtered out of the contributing 

noise by using a band-pass filter in the range of 0.15 to 0.7 Hz. 

These frequency ranges correspond to the typical human 

respiratory rate, i.e., values between 12 and 40 breaths per 

minute. This filtered signal was then transformed using the 

FFT algorithm to convert it into a correlated frequency-

domain signal. Figure 1 shows the typical acquired raw signal 

that is taken from the acquired images, the corresponding 

filtered signal, and the correlated FFT-transformed signal. The 

predicted respiratory rate (in breaths per minute) is the value 

of the frequency, which shows the maximum normalised 

power spectrum after being multiplied by 60 seconds per 

minute. 
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Figure 1. Typical measurement signal acquired from the 

recorded images: a) Raw signals b) Filtered signals and c) 

FFT transformed signal 

 

2.4 Camera’s response time measurement 

 

For all the measurements with the volunteer human subjects, 

a guiding flash that was generated by the strobe LED feature 

from a smartphone was used to guide the subjects to breathe. 

It will generate flashes of light according to the set frequency 

values (flashes per minute), and the C922 HD Webcam camera 

from Logitech will then record the temporal changes of the 

generated flashes that are scattered from a diffuse surface. The 

camera was capable of acquiring 30 fps 1080p images, and 

temporal changes in intensity from the recorded video images 

will be compared to the values set on the smart phone in 

generating the flashes. The difference between these two 

numbers can be thought of as the bias of the measurements.  

The frequencies of flashes are set from 12 to 20 flashes per 

minute (fpm), as used for normal breathing speed. To check 

the accuracy and precision levels of the camera in capturing 

these flashes, preliminary measurements were made with the 

measurement configuration depicted in Figure 2. Images from 

a surface that diffusely reflected light were taken for one 

minute and saved for further study. 

 

 
 

Figure 2. Sketch of measurement configuration to check the 

accuracy and precision levels of the camera 

 

2.5 Design of experiments and recording the respiration of 

volunteer human subjects 

 

After examining the accuracy and precision levels of the 

camera in capturing the guiding flashes, the developed RR 

monitoring system was then applied to measure respiratory 

rate from the subjects. Figure 3 shows how the respiratory rate 

data from the subjects were measured. The subjects were 

between the ages of 20 and 25 years, and they were all male 

senior undergraduate students at the department. Since our 

research goal was to test the performance of the previously 

developed system, which was simultaneously measured using 

a microphone attached near their exhalation passage, the goal 

was not specifically intended to compare the breathing rate 

behaviour among age- and gender-wise human subjects. All 

volunteer human subjects were asked to sit in a relaxed 

position on a chair and then to breathe in response to the 

flashes emitted by the smartphone, which were set at a 

repetition rate of 12-20 fpm and continued at a higher 

repetition rate of 25-40 fpm. The moving areas around the 

neck due to inhalations and exhalations were then recorded by 

webcam for a duration of 1 minute for each fpm with 5-time 

measurement repetitions. Parallelly, subjects also used a head-

mounted microphone to record their breathing sounds, which 

will be used as comparisons with the ones using the camera. 

 

 
 

Figure 3. Left and right images illustrate how the 

configuration for recording of respiration data from subjects  

 

2.6 Measurement data analysis  

 

In physical measurements, the measurements can be 

statistically analyzed using two quantities, i.e., the mean and 

the standard deviation. The first reflects the average of 

repeated N measurements, while the last provides the spread 

of repeated measurements around the average. Mathematically, 

both of these quantities can be written using Eqns. (1) and (2), 

respectively. 

 

𝑀𝑒𝑎𝑛 𝒙 =
1

𝑁
 ∑ 𝑥𝑖

𝑁

𝑖=1

 (1) 

 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑺 =  ∑
(𝑥𝑖 − �̅�)2

(𝑁 − 1)

𝑁

𝑖=1

 (2) 

 

The goodness of a measuring instrument can be 

characterized based on two important parameters, i.e., the 

reliability and validity. The first, i.e., reliability, refers to the 

ability of a measurement system to produce repeatable 

measurements, a.k.a. the precision level of the measurement 

system. In statistics, it can be shown as the relative standard 

deviation or as the measurements' coefficient of variation. 

 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 (%) =  (
𝑠

�̅�
) . 100 (3) 
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where, S and �̅� represent, respectively, standard deviation and 

mean. The smaller the coefficient of variance, the greater the 

precision of the measurements taken.  

The average mean and average standard deviation among k-

volunteer subjects, each with its measurement’s standard 

deviation 𝑠𝑖 , can be calculated using the Eq. (4) and (5), 

respectively, i.e.:  

 

�̅�𝑎𝑣𝑔 =  
∑ �̅�𝑖

𝑘
𝑖=1

𝑘
 (4) 

 

𝑆𝑎𝑣𝑔 =  √∑
(𝑠𝑖

2)

𝑘

𝑘

𝑖=1

 (5) 

 

where:  �̅�𝑖  and 𝑠𝑖  are the measurement’s mean and standard 

deviation of the i-th volunteer subject, respectively, and 𝑘 is 

the number of volunteer subjects involved in the study. 

Meanwhile, the second important parameter is the validity 

of the measurements, which refers to how accurately a 

measurement system measures what it is intended to measure. 

It is also known as the measurement's accuracy, and it is used 

to measure how close a measured value is to the true or 

expected value. Sometimes it is also expressed as a percentage 

of error, which measures the bias of the indicated 

measurement to the expected true value of the measurement, 

which can be written as in Eq. (6) 

 

𝐸𝑟𝑟𝑜𝑟 𝑜𝑓 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 (%)

= (
𝑥𝑖 − 𝑥𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

𝑥𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

) . 100 
(6) 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Camera’s response time measurement 

 

Graphics in Figure 4 show how the measurement response 

of the camera is affected by capturing flashes of light 

generated from the smartphone's LED. Measurements showed 

excellent results in terms of linearity, as well as validity (bias 

or error) and reliability (repeatability). Both the coefficient of 

variation (relative standard deviation), which measures how 

good the repeatability of the measurements, and the bias (% 

error), which measures the deviation from the true value, were 

below 1%. This can be a good sign that the imaging system 

used has a good chance of giving good measurement results in 

the future. 

 

 

 

 
 

Figure 4. a) Results of camera’s response measurements b) 

error of measurement (%) and c) respective coefficient of 

variation (%) of the camera’s response measurements 

 

We utilized the flashes from smartphone to guide the 

subjects to start breathing with a breath rate following the 

frequency of the flash light. A webcam camera was directed to 

acquire region around the subject’s neck, and the dedicated 

program were developed to extract the frequency from the 

recorded video images. At the same time a head mounted 

microphone was also used to record the breath sound during 

inhalations and exhalations. Results of the measurements can 

be depicted in Figure 5. 

 

Table 1. Linear fitting results of respiratory measurements 

 
Location of Measurement Slope Std. Error COD 

Collarbone 0.976 0.008 1.000 

Neck 0.974 0.014 0.999 

Chest 0.972 0.012 1.000 
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Figure 5. a) Measured respiratory rate using webcam vs 

using microphone b) and c) are the related error and 

coefficient of variation for all modes of measurement, 

respectively 

 

It can be seen from Figure 5 that all of the three 

measurement points, show good linearity to the measurement 

using microphone, i.e. with slopes of linear fit close to one. 

The Fitting parameters are given in Table 1. 

Meanwhile the error of the average measurements using 

camera at three points, as well as using microphone, were also 

fall below 2% (with the ones for microphone tends to be 

higher). Additionally, the measurements also show a very 

good repeatability as can be indicated by the coefficient of 

variation below 5%. Among the three measurement points, 

extraction of respiratory rate from location of collarbone 

showed the best accuracy as well as the coefficient of variation. 

 

 

 
 

Figure 6. Variability of measured respiratory rate among 

volunteer subjects measured a) using webcam vs b) using 

microphone 

 

 

 
 

Figure 7. a) Plot of the population’s average and standard 

deviation for all volunteer subjects, and b) comparison of 

measurement accuracy using microphone and webcam (right) 

 

If we look deeper into how each subject responded to the 

guiding flashes, it shows that spread of variabilities among 

subjects as can be seen in Figure 6. This figure describes 

variability of the average bias of the measured breath-per-

minute between each volunteer human subjects for different 

values of guiding bpm set rate. These variations could be due 

to the different reaction times of each human subject in 

responding to the observed guiding flashes as a signal to begin 

breathing. Some subjects reacted almost timely to the set 
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guiding flash, e.g., subjects with low values of standard 

deviation, while some others show varied delayed reaction 

times. 

The average and standard deviation of the measured 

respiratory rate among all volunteer human subjects for all of 

the set values of respiratory rate can be given in Figure 7 a). 

The measurements show high linearity to the set respiratory 

rate values, i.e. with the slope (coefficient of determination R2) 

close to 1. The respective comparison of the measurement 

accuracy between microphone and webcam is depicted in the 

graph in Figure 7 b). 

Meanwhile, to get a better insight into the plots of standard 

deviation (Figure 8 a) and coefficient of variation (Figure 8 b) 

between microphone and webcam measurements, one can see 

that the measurements using the webcam camera show better 

precision in comparison to the ones using a microphone. 

 

 

 
 

Figure 8. Insight into the changes in a) standard deviation 

and b) coefficient of variation for each breath-per-minute set 

values as measured in Figure 7 

 

Overall, average measurements using a camera show better 

accuracy as they are closer to the set bpm values, while 

measurements using a microphone tend to be a bit lower. It is 

due to the camera tracking the signal changes in reflected 

intensities around the subject’s neck due to the movement of 

the thoracic cage during respiratory cycles. These areas are the 

most accessible from the subjects' normal clothing and are 

closer to the chest region where the mechanics of respiration 

were performed. Meanwhile, the measurement with the 

microphone may be influenced in some way by the condition 

of obstruction in the nasal flow passage among volunteers. 

 

4. CONCLUSIONS 

 

In conclusion, the performance of the previously developed 

simple and low-cost, non-contact, webcam-based respiratory 

rate monitoring system has been evaluated. Results were 

indicated by the respective parameters of accuracy and 

reliability (a.k.a. repeatability), which were calculated from 

the measurements done using volunteer subjects. The accuracy 

of the system, expressed as the bias between the average of the 

measurements and the "true" set values, falls above 98% for 

all set values of breathing rates, i.e., 12 to 40 bpm. Meanwhile, 

the measurement repeatability falls between 1% and 5% for all 

measurement ranges, which means that the precision level of 

the measurements is high. These results show very good 

measuring performance and are promising to be further 

implemented in clinical settings. Using a HD webcam (priced 

ca. USD 70) and an Intel Core i3 laptop (the total cost was 

lower than USD 400), a simple respiratory rate monitoring 

system with excellent measuring performance can be 

developed. This simple and low-cost system would be 

beneficial for fulfilling the shortage of accurate and reliable 

physiological monitoring faced by hospitals in many remote 

and rural areas of Indonesia. The future incorporation of 

Internet of Things (IoT) technologies may be advantageous in 

increasing its capability with early warning capabilities as well 

as parallelly monitoring several patients in infectious disease 

wards or from their homes in order to minimise human 

involvement during its monitoring operation, as demanded 

during the last pandemic COVID-19 [23, 24]. 
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