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In the present study, one-dimensional advection-dispersion equation with variable 

coefficients is solved numerically with help of PDEPE in a finite porous domain. The 

pollutant is entering from the left end of the domain along the direction of the flow. Two 

different types of groundwater velocities have been considered, one rapidly decreasing 

with position and time and the other one being of sinusoidal nature over position and time. 

The dispersion coefficient is taken proportional to the groundwater velocity. Transport is 

included the first order decay and zero-order production parameters being proportional to 

the exponentially decreasing function with position and time and also being of sinusoidal 

nature over position and time. The nature of pollutant and porous medium are considered 

chemically non-reactive. Initially, porous domain is considered not to be solute free. 

Numerical solutions are obtained for uniform and varying type point sources. In 

heterogeneous porous media, variations in the parameters of solute transport such as: 

seepage velocities, dispersion coefficients etc. can be easily deal through numerical 

models. The effects of various physical parameters on solute concentration profiles are 

illustrated graphically.  
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1. INTRODUCTION

Nowadays, the groundwater locations lying in urban and 

rural areas are under the threat of excessive toxic chemicals 

reaching to domains because of industrial wastes and 

agriculture fertilizers and because of these geological 

formations lying beneath the earth surface and having very low 

groundwater velocity, the scientific study of solute transport 

in aquifer systems remains a challenging problem for 

hydrologists, environmental scientists and mathematicians. 

Mathematical models, those deal with one, two and three 

dimensional solute mixing and traversing are developed by 

drafting the real world problem into mathematical equations 

considering the geometry of domain, site of external source of 

solute and other relevant boundary conditions like fresh water 

recharge sites. These models provide solutions to ascertain 

current and to predict future level of solute concentration with 

time and position. The solute transport process and estimation 

of pollution levels in aquifer system can be understood through 

reliable mathematical models, but this is a difficult task in 

many circumstances. The geometrical structure of the aquifer 

system, properties of solute and groundwater velocity, etc are 

the major factors affecting solute transport process in aquifers. 

Unlike many of available literatures, in present problem 

dispersion and groundwater velocities are more generalized 

form and can take any feasible relation and may represent all 

the possible situations. Moreover, finite domain structure 

represents the real world situations far better in comparison to 

the semi-infinite. Solute transport in porous media is governed 

by second order parabolic partial differential equation known 

as advection-dispersion equation (ADE) which is solved 

numerically and obtained results are demonstrated with help 

of graphs. Several important analytical solutions in finite and 

infinite domains with different approaches for simulating the 

solute transport phenomena have been appeared in the 

published literature. Mathematical models are potential and 

efficient tools for understanding the behavior of pollutants in 

subsurface environments. Logan and Zlotnik [1] proposed an 

analytical solution with the decay term for periodic input 

conditions in a semi-infinite domain to overcome the 

fluctuations of the groundwater table. Barry and Sposito [2] 

derived an analytical solution of advection-dispersion 

equation with time-dependent transport dispersion coefficients. 

Kangle et al. [3] developed an analytical solution with scale 

dependent dispersion for solute transport in heterogeneous 

porous media. Yadav et al. [4] presented an analytical solution 

of one-dimensional advection-dispersion equation with 

unsteady flow in an adsorbing porous medium. Srinivasan and 

Clement [5, 6] developed analytical solutions with spatially 

varying initial condition and exponentially decaying source 

condition. Analytical solutions for one-dimensional solute 

transport problem with different point of view have been 

presented by many researchers in a semi-infinite or finite 

porous medium [7-11]. The majority of the analytical solutions 

of advection-dispersion equation are generally based on some 

ideal conditions, for example, using the assumptions on 

homogeneous porous medium, steady/unsteady velocity and 

uniform dispersion coefficients etc. [12-16]. 

In many real situations, the governing advection-diffusion 

equation is often non-linear, making it difficult to obtain 

analytical solutions. The numerical solution of advection-

dispersion equation (ADE) plays an important role in finding 
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approximate solution of the transport problem in aquifer 

systems. The numerical model becomes extremely useful 

especially when boundaries are complex or the coefficients are 

non-linear within the domain or both conditions occur 

simultaneously. The literature contains many numerical 

techniques for solving one-dimensional advection-dispersion 

equation problems. Tamora and Wadham [17] obtained a 

numerical solution of advection-dispersion equation for radial 

flow. Elfeki [18] developed a numerical model with the help 

of finite difference scheme to simulate the transient flow in the 

groundwater flow. Agusto and Bamingbola [19] studied 

numerical mathematical model for water pollution using 

implicit centered difference scheme for space and time. Pochai 

[20] obtained a hydrodynamic model and approximate

solutions to the solvent-diffusion-reaction equation in a

uniform reservoir. Gurarslan et al. [21] obtained numerical

solution of advection-diffusion equation to estimate the

pollutant in a river using finite difference schemes.

It is usually difficult to obtain an analytical solution of the 

advection-dispersion equation in which velocity and 

dispersion coefficient both vary with position and time hence 

the numerical solution is being obtained. Due to the 

complexity of traditional numerical methods, we present here 

the solution of advection-dispersion equation using PDEPE 

with different parameter values. The MATLAB PDE solver 

PDEPE solves initial-boundary value problems of parabolic 

and elliptic nature for systems of PDEs in one spatial variable 

x and time t. PDEPE uses an informal classification for the 1-

D equations. PDEPE also solves certain 2-D and 3-D problems 

that reduce to 1-D problems due to angular symmetry. The 

heterogeneity of the porous medium plays a significant role on 

the solute transport. It causes variations in groundwater 

velocity [22, 23]. Considering this fact the seepage velocity is 

assumed to be exponential decreasing and sinusoidal nature 

with position and time variables. First order decay and zero-

order production terms are also considered. Also dispersion 

coefficient is directly proportional to the groundwater velocity. 

The medium is supposed to be heterogeneous. The 

heterogeneity of the medium is because of slight variations in 

either distribution of porous or variation in pore size with 

position etc., in such a medium groundwater velocity, 

dispersion, etc. vary with position. This is a common feature 

of the aquifers and domain is considered of finite length in 

longitudinal direction that is along x-axis. Solutions are 

obtained for uniform and varying type input point sources. The 

input condition is assumed at a point other than the origin of 

the finite domain and second condition is considered at the end 

of the domain. Examples are included to illustrate the effect of 

time and spatial dependent dispersion coefficients on solute 

transport with the help of realistic input data taken from the 

published research literature. 

2. MATHEMATICAL FORMULATION OF THE 

PROBLEM

This study considers the solute transport problem for 

conservative solute in heterogeneous porous medium of finite 

length with a point source located at the point 𝑥 = 𝐿 of the 

domain of Figure 1. The one-dimensional mathematical 

expression of the advection-dispersion equation with first 

order decay and zero-order production may be written as [24, 

25]: 

𝜕𝐶

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐷(𝑥, 𝑡)

𝜕𝐶

𝜕𝑥
− 𝑢(𝑥, 𝑡)𝐶) − 𝛾𝐶 + 𝜇, (1) 

where, 𝐶[ML−3] is the solute concentration in the liquid phase. 

𝑥[𝐿] , 𝑡[𝑇]  are position and time variable, respectively. 

𝐷[𝐿2𝑇−1] and 𝑢[LT−1] are the solute dispersion coefficient 

and groundwater flow velocity, respectively. 𝛾[𝑇−1]  and 

𝜇[ML−3𝑇−1] are the first order decay rate coefficient and zero-

order production, respectively. 

Figure 1. Schematic view of the proposed problem 

2.1 Uniform continuous input point source condition 

Let the pollutant enter into a heterogeneous finite porous 

domain at a fixed location 𝑥 = 𝐿  uniformly continuously 

along the flow in longitudinal direction. Groundwater flow is 

considered along the x-axis i.e. towards 𝑥 = 𝐿 to 𝑥 = 𝐿1. The

medium is assumed to be not solute free at initial time. It 

means some concentrations already exist before solute 

injection into the domain. Solute is continuously being entered 

to the aquifer. In many real situations the concentration of 

pollutants is maximum it begins to decrease with position and 

time when entering the aquifer. 

Mathematically, initial and boundary conditions associated 

with Eq. (1) are as follows: 

𝐶(𝑥, 𝑡) = 𝐶𝑖 𝑒𝑥𝑝( − 𝑎𝑥); 𝑡 = 0, 𝐿 < 𝑥 ≤ 𝐿1, (2) 

𝐶(𝑥, 𝑡) = 𝐶0; 𝑡 > 0, 𝑥 = 𝐿, (3) 

𝜕𝐶(𝑥,𝑡)

𝜕𝑥
=

𝑢

𝐷
𝐶; 𝑡 ≥ 0 𝑥 = 𝐿1, (4) 

Dispersion coefficient and groundwater velocity are taken 

as: 

𝑢(𝑥, 𝑡) = 𝑢0𝑓(𝑥, 𝑡)
𝐷(𝑥, 𝑡) ∝ 𝑢(𝑥, 𝑡) ⇒ 𝐷(𝑥, 𝑡) = 𝐷0𝑓(𝑥, 𝑡)
𝛾(𝑥, 𝑡) = 𝛾0𝑓(𝑥, 𝑡)
𝜇(𝑥, 𝑡) = 𝜇0𝑓(𝑥, 𝑡)

} (5) 

where, 𝑢0,  𝐷0, 𝛾0 and 𝜇0  are initial values of groundwater

velocity, dispersion coefficient, first order decay and zero 

order production, respectively.  

Here 𝑓(𝑥, 𝑡) is considered as a non-dimensional expression 

such that at 𝑥 = 0 𝑜𝑟 𝑡 = 0  or both is zero then the value 

of 𝑓(𝑥, 𝑡) = 1. An implicit form of 𝑓(𝑥, 𝑡) is considered of 

two different forms as: 

(𝑖)𝑓(𝑥, 𝑡) = 𝑒𝑥𝑝( − 𝜆𝑥𝑡)

(𝑖𝑖)𝑓(𝑥, 𝑡) = |1 + 𝑠𝑖𝑛( 𝜆𝑥𝑡)|
} (6) 
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Here, 𝜆[𝐿−1𝑇−1] represents a parameter whose dimension 

inverse of both position and time.  

Substituting expressions from Eq. (5) in Eqns. (1-4), we 

have 

𝜕𝐶

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐷0𝑓(𝑥, 𝑡)

𝜕𝐶

𝜕𝑥
− 𝑢0𝑓(𝑥, 𝑡)𝐶)

− (𝛾0𝐶 − 𝜇0)𝑓(𝑥, 𝑡)
(7) 

The initial and boundary conditions are 

𝐶(𝑥, 𝑡) = 𝐶𝑖 𝑒𝑥𝑝( − 𝑎𝑥); 𝑡 = 0, 𝐿 < 𝑥 ≤ 𝐿1 (8) 

𝐶(𝑥, 𝑡) = 𝐶0; 𝑡 > 0, 𝑥 = 𝐿 (9) 

𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
=

𝑢0

𝐷0
𝐶; 𝑡 ≥ 0, 𝑥 = 𝐿1 (10) 

2.2 Varying input point source condition 

The source of input concentration may vary with time due 

to variety of reasons. This type of situation may also be 

described by a mixed type or third type condition and for all 

simulated scenarios, zero flux boundary condition is assumed 

along the longitudinal flow which is written as follows: 

−𝐷
𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
+ 𝑢𝐶(𝑥, 𝑡) = 𝑢0𝐶0{1 + 𝑠𝑖𝑛( 𝑚𝑡)};

𝑡 > 0, 𝑥 = 𝐿
(11) 

𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
= 0; 𝑡 ≥ 0 𝑥 = 𝐿1 (12) 

Using Eq. (5) in above boundary conditions Eqns. (11-12), 

we have 

−𝐷0𝑓(𝑥, 𝑡)
𝜕𝐶

𝜕𝑥
+ 𝑢0𝑓(𝑥, 𝑡)𝐶

= 𝑢0𝐶0{1 + 𝑠𝑖𝑛( 𝑚𝑡)}; 𝑡 > 0,
𝑥 = 𝐿 

(13) 

𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
= 0; 𝑡 ≥ 0, 𝑥 = 𝐿1 (14) 

The solutions of the proposed problem for both the cases are 

obtained numerically with help of PDEPE through MATLAB 

and results are demonstrated graphically. 

3. RESULTS AND DISCUSSION

In order to demonstrate the concentration profiles with 

position and time, the advection-dispersion equation for finite 

domain 0 ≤ 𝑥(𝑚) ≤ 5  i.e. 𝐿 = 0 and 𝐿1 = 5  is solved

numerically using PDEPE through MATLAB and results are 

shown in Figures 2 - 9 for various physical parameters used in 

model. The values of common input parameters such as 

ground water velocity, dispersion coefficient, first order decay 

etc. are taken from published literature [26-29]. The 

concentration values are evaluated assuming reference 

concentration as 𝐶0 = 1.0, 𝐶𝑖 = 0.01 in a finite domain along

longitudinal direction. The medium is supposed to be 

heterogeneous. The units of position and time are considered 

in meter and day, respectively. The common input value are 

taken as: initial seepage velocity 𝑢0 = 0.12(meter/day) ,

initial dispersion coefficient 𝐷0 = 0.20(meter2/day) ,

heterogeneous parameter 𝑚 = 0.01(day−1), initial first order 

decay 𝛾0 = 0.0020(day−1)  , initial zero order production

𝜇0 = 0.0025(kg/meter3day) , time 𝑡 = 4(day) , 𝑎 =
0.015(meter−1) , 𝜆 = 0.1(meter−1day−1) . The 

concentration profiles have been demonstrated in the finite 

domain and the values of the physical parameters are given in 

each respective figure. 

Case-I: Figures (2 & 3) are line graphs and (4 & 5) are 

surface graphs for the uniform input point source. 

Figure 2. Concentration distribution from Eq. (7) for 

exponential decreasing and sinusoidal forms of velocity in 

uniform input at two different time 

Figure 2 illustrates the concentration profiles for uniform 

continuous input point source at two different time for the 

solution in Eq. (7). Other effective parameters affecting the 

transport process within aquifer domain are common in each 

graph. The concentration level at a particular position in the 

domain decreases over time for both (sinusoidal and 

exponential) forms of velocity. The distribution of solute 

concentrations is nearly the same for both types of velocities, 

but the rehabilitation process in exponential form is occurring 

slightly faster than in sinusoidal. The concentration pattern 

increases with respect to time, whereas it decreases with 

respect to the position and after certain distance it becomes 

constant for all time. The solute concentration decreases 

gradually until it reaches to its steady state. 

Figure 3. Concentration distribution from Eq. (7) for 

exponential decreasing and sinusoidal forms of velocity in 

uniform input at two different dispersion coefficient 
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Figure 3 demonstrates the dimensionless concentration 

distribution obtained by the solution of Eq. (7) at two different 

dispersion coefficients with other common input parameters in 

the uniform continuous input point source. At a particular 

position the concentration level is lower for a lower dispersion 

coefficient and higher for the higher dispersion coefficient in 

both forms of the velocity for exponential decreasing and the 

sinusoidal nature. The decreasing tendency of the 

concentration distribution with the position and the time is 

slightly faster in exponential decreasing nature than that in the 

sinusoidal nature. The contaminant concentration increases 

with respect to dispersion coefficient, whereas decreases with 

respect to the position and after certain distance it becomes 

steady. The patterns of solute concentrations are nearly the 

same for both forms of velocities. 

Figure 4. Concentration distribution from Eq. (7) for 

exponential decreasing form of velocity in the uniform type 

input 

Figure 5. Concentration distribution from Eq. (7) for 

sinusoidal form of velocity in the uniform type input 

Two surface graphs Figures 4 and 5 are drawn for the same 

set of data taking the exponential decreasing and sinusoidal 

form of velocity for the solution of Eq. (7) in the presence of 

uniform type input source. Concentration pattern decreases 

with respect to position and after certain distance it becomes 

steady. The decreasing tendency of contaminant concentration 

distribution with position and time is slightly faster in 

exponential nature than that in case of sinusoidal nature of 

velocity. The trends of concentration distribution are nearly 

similar in both forms (sinusoidal and exponential) of velocity. 

Case-II: Figures 6 and 7 are line graphs and Figures 8 and 

9 are surface graphs for the varying type input point source. 

Figure 6 demonstrates the contaminant concentration 

profiles for varying nature input point source at two different 

time for the solution in Eq. (7) for exponential decreasing and 

sinusoidal nature of velocity. Contaminant concentration 

decreases with the increase of the position in both the case and 

finally tended to the stable value. The decreasing trend of 

concentration distribution with position and time is slightly 

faster in exponential nature than that in sinusoidal nature. At 

particular position the concentration level is lower for lower 

time and higher for higher time in both form of velocity for 

exponential decreasing and sinusoidal nature. The graph is the 

same for both types of input sources and a slight deviation can 

be seen between these two. 

Figure 6. Concentration distribution from Eq. (7) for 

exponential decreasing and sinusoidal nature of velocity in 

varying type input at two different time 

Figure 7. Concentration distribution from Eq. (7) for 

exponential decreasing and sinusoidal nature in varying type 

input at two different dispersion coefficient 

Figure 7 represents the dimensionless concentration 

distribution predicted by the solution of Eq. (7) at two different 

dispersion coefficient assuming other parameters same as in 

previous figure. Concentration distribution attenuates with 

position and time. Near the boundary the contaminant 

concentration level is lower for higher dispersion coefficient 

and higher for lower dispersion coefficient in both form of 

velocity (exponential decreasing and sinusoidal nature). This 

view is reversing as moves away from the source boundary. 

The concentration distribution of solute concentrations is 

nearly the same for both forms of velocities, but the 

rehabilitation process in exponential form is occurring slightly 

faster than that in sinusoidal nature velocity. 

Figures 8 and 9 demonstrate the dimensionless 

concentration distribution through surface graphs given by 

solution of Eq. (7) for varying input point source for 
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exponential decreasing and sinusoidal nature of velocity, 

respectively. Contaminant concentration distribution 

attenuates with position and time in both the forms of 

velocities. The concentration distribution pattern decreases 

with respect to position and after a certain distance it becomes 

steady. The decreasing tendency of contaminant concentration 

distribution with position and time is slightly faster in 

exponential decreasing form of velocity than that in sinusoidal 

nature velocity. Initially at particular time concentration level 

is lower in sinusoidal nature than that in exponential nature. In 

both form of velocities, it is observed that at the other end of 

the porous domain the solute concentration values attain 

minimum and harmless concentration values. 

Figure 8. Concentration distribution from Eq. (7) for 

exponential decreasing nature velocity in varying type input 

Figure 9. Concentration distributions from Eq. (7) for 

sinusoidal nature velocity in varying type input 

4. CONCLUSION

A numerical solution is developed for one-dimensional 

advection-dispersion equation in a one-dimensional finite 

heterogeneous porous domain with time and position varying 

dispersion coefficient and groundwater velocity by using 

PDEPE through MATLAB. Uniform continuous and varying 

nature input point source are the key feature of the study. 

Solute dispersion coefficient is taken directly proportional to 

groundwater velocity. This numerical result may be useful tool 

for identifying the level of solute concentration at any position 

and time. First order decay and zero order production terms 

are also taken as function of position and time. All parameters 

in the proposed model are taken dimensional here, and the 

contaminant concentration is obtained as a function of 

dimensional time and position. All position and time-

dependent effective parameters affecting the concentrations 

distribution are shown with the help of graphs. Numerical 

solutions are considered more flexible than any analytical 

solution because they can handle complexities related to ideal 

situations such as heterogeneity of the medium: space, time 

varying dispersion parameters etc. 
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