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 The human brain's actions are reflected by the significant physiological data relying on the 

Electroencephalogram (EEG), which is utilized in the detection of epileptic seizures and 

the diagnosis of epilepsy. The visual inspection process of a vast quantity of EEG data by 

any human expert is time-consuming and the judgemental process may vary or be 

inconsistent among the physician. Hence, an automated process in detection and diagnosis 

is initiated by utilizing deep learning approaches. The Convolutional Neural Network 

(CNN) is incorporated to correctly recognize the irregular inter-ictal discharges as non-

seizures, but could not detect the ictal state and slower oscillations. To improve the 

performance of CNN for detecting seizures' ictal state and slower oscillations, Recurrent 

Neural Network (RNN) is combined with the CNN model. An RNN evokes every processed 

information via time and it assists in the prediction of time series data. The processed 

feature in RNN remembers the preceding input information which is Long Short Term 

Memory (LSTM). The investigational outcome of the proposed Time Aware CNN and 

Recurrent Neural Network (TA-CNN-RNN) attained effective classification accuracy. The 

experiments analysis exhibits that the TA-CNN-RNN achieves an accuracy of 89%, 88.6%, 

and 88.7% on CHB-MIT-EEG, Bonn-iEEG, and VIRGO-EEG databases, respectively 

compared to the Entropy+LSSVM, LBP+KNN and P-one-class SVM methods for epilepsy 

detection. 
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1. INTRODUCTION 

 

An epileptic seizure is a transitory incidence of symptoms 

or signs due to the extreme or irregular synchronous actions of 

neurons in the brain [1]. Generally, the occurrence of epilepsy 

in the brain is confirmed by the visual examination of long-

term recorded scalp electroencephalograms (EEGs) and spots 

the incidence of epileptic seizure that utilizes a huge time to 

process [2]. Thus, the process of automatic diagnosis to 

identify the epileptic seizure could be importantly minimized 

the diagnosis duration. Numerous features are included for the 

automatic identification of seizures in the brain [3, 4]. 

The values used in the automatic identification of seizure 

are the connectivity of functional network properties, 

autocorrelation, nearest neighbor and likelihood 

synchronization, and EEG morphology [5-9]. The early 

detection of seizures is necessary to cure the disease. The 

recurrent features in the domain are identified through 

rhythmic actions, which are observed frequently in seizures 

[10]. The incidence of seizure can be identified from the 

features that are easily detectable namely principal 

components, spectral, statistical, and nonlinear features [11-

14]. 

The above-mentioned features have shown excellence in the 

identification of certain kinds of seizures. The diverse nature 

of seizures made numerous complications progress a global 

feature for automation in seizure detection. Additionally, 

seizures are rarely occurring events and it is suitable in training 

complicated supervised learning processes of seizure with 

linear type classifiers, artificial neural networks, support 

vector machine, and other computational algorithms [15-17].  

The earlier approaches lack accuracy in detection and also 

it takes a long time to process the data [18-21]. Currently, the 

Kraskov entropy with Least Square Support Vector Machine 

(LSSVM) method [22] has been developed for classifying 

seizure and seizure-free EEG signals, which support an 

automated prognosis of epilepsy. Also, a mixture of entropy 

with a Logarithmic Band Power (LBP) and K-Nearest 

Neighbor (KNN) classifier [23] has been presented for 

classifying EEG features into either epilepsy or autism 

spectrum disorder. Meanwhile, a Pairwise one-class SVM [24] 

has been applied for epilepsy detection and diagnosis. Though 

these methods were robust to categorize normal and seizure 

EEGs, the labeled training with the manual preparation is 

taking longer time and is labor intensive whereas these issues 

increase the data quantity. CNN correctly recognized irregular 

inter-ictal discharges as non-seizures, but could not detect the 

ictal state and slower oscillations. To improve the performance 

of CNN for detecting seizures' ictal state and slower 

oscillations, Recurrent Neural Network (RNN) is combined 

with the CNN model. Seizure detection at the early stage is 

necessary and it is significant to detect with computational 

algorithms. 

Seizure detection is attained through the diverse mechanism 

and the drawbacks in the mechanism are rectified in the 

proposed Time Aware Convolutional Neural Network with 

Recurrent Neural Network (TA-CNN-RNN). TA-CNN extract 

the EEG signals with time context. The time and the feature 

integration in TA-CNN helps to accurately find seizure. TA-

CNN not only capture dynamic changes of feature over time 

but also the seizer time context to detect. The time context is 

then effectively utlized in LSTM. For the investigation of the 
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approach, fifty non-focal and focal signals were randomly 

selected from the publicly accessible EEG database. The 

proposed TA-CNN-RNN is compared with the existing 

algorithms Entropy+LSSVM [22], LBP-KNN [23], and P-

one-class SVM [24]. The existing and proposed approaches 

are applied to the different variants of datasets namely CHB-

MIT-EG, Bonn-iEEG, and VIRGO-EEG. The numerical 

outcomes of the experiment are evaluated using the 

performance metrics namely accuracy, precision, f-measure, 

and recall. 

The remainder of the paper is emphasized as follows: 

previous works and literature is described in Section 2, the 

detection and diagnosis of epilepsy in the EEG signal are 

attained by the proposed deep learning approach is detailed in 

Section 3, the numerical outcome of the experiment is given 

in Section 4 and the proposed deep learning approach is 

concluded with a future suggestion. 

 

 

2. LITERATURE SURVEY 

 

The incidence of epilepsy in the nerve tracts of the brain is 

considered a chronic neurological brain disorder. 

Electroencephalogram (EEG) signals are utilized to accessing 

the brain status. Automated diagnosis of the occurrence of 

epilepsy is carried out by analyzing and measuring the non-

stationary and nonlinear signals of EEG. The features in the 

EEG signals attained by the tunable-Q wavelet transform 

(TQWT) and classified with the assistance of the Kraskov 

entropy based-LSSVM classifier [22]. It observed that the 

increased value of Kraskov entropy of seizure EEG signal 

might be because of the high variability of EEG signals for 

epileptic seizure subjects. It is analyzed by using the EEG data 

from the University of Bonn. Similarly, the LBP-based 

support vector machine (SVM) is used for seizure detection 

[23]. The mixture of LBP+SVM accomplished the highest 

accuracy for detecting epilepsy and autism spectrum disorder 

from the EEG signal datasets provided by Bonn University, 

Germany; MIT, USA; and King Abdulaziz University (KAU), 

Jeddah, Saudi Arabia.  

The incidence of seizures and identification by these 

approaches are complicated and it couldn’t identify all the 

seizures. The detection and diagnosis of seizures are attained 

by the p-one-class-SVM, which is accomplished proficiently 

[24]. It was analyzed by the Bern-Barcelona EEG database and 

CHB-MIT EEG database for epilepsy detection. It was highly 

stable and classified as normal, epilepsy, and other diseases 

that are not included in the training samples. But, it needs more 

characteristics for EEG signal representation to further 

increase the detection accuracy. The detection and diagnosis 

together in a single approach have made the limitations in the 

recognition of seizures. Seizure detection is attained by several 

approaches namely machine learning, deep learning, and 

temporal detection schemes [25-27]. 

The shortcomings in the existing systems are considered 

and rectified in this paper. The positional information retrieval 

complication is attained by the time-aware scheme that 

retrieves the position information effectively. The time-aware 

scheme is combined with CNN to retrieve the efficient features 

and the recurrent neural network is utilized as a classifier. It 

notices apprehensive segments of epilepsy segments in the 

identification of the seizure phase and then accomplishes the 

analysis of noticed segments to recognize the portions of 

epilepsy. It can deliver more reliable and accurate diagnosis 

outcomes with high computational effectiveness. This paper 

mainly focuses on epileptic seizure detection and epilepsy 

diagnosis with a TA-CNN-RNN approach. 

 

 

3. SEIZURE PREDICTION USING TIME AWARE 

RECURRENT NEURAL NETWORK 

 

In a deep learning-based system, EEG signal pre-processing 

commonly involves three steps: noise removal, normalization, 

and signal preparation for deep learning network applications. 

In the noise removal step, finite impulse response (FIR) or 

infinite impulse response (IIR) filters are usually used to 

eliminate extra signal noise. Normalization is then performed 

using various schemes such as the z-score technique. Finally, 

different time domain, frequency, and time-frequency 

methods are employed to prepare the signals for the 

deployment of deep networks. In this research work, Time-

aware CNN (TA-CNN) is proposed which incorporates 

position information into CNN through an attention 

mechanism.  

The suggested model accurately represents the time series 

dynamics present in EEG data. The temporal patterns of the 

signal vary greatly between the two time intervals, and even 

among the several time steps that make up the same interval. 

Therefore, the associated patterns require modelling at various 

time scales. So that the model may prioritise different scales at 

different time steps, we devised an efficient mechanism called 

TA-CNN that makes use of temporal context information to 

adjust the features of different scales. The proposed TA-CNN 

can capture important features for relation extraction 

effectively.  To obtain more precise and fast detection of 

epileptic seizures TA-CNN is combined with RNN to 

correctly detect the ictal state and slower oscillations part of 

the EEG signal. RNN can learn temporal and context features, 

especially long-term dependency between features with a 

seizure while TA-CNN is capable of catching more capable 

features with positional information. Therefore, the 

combination of TA-CNN and RNN becomes necessary for a 

higher-quality epilepsy classification. 

 

3.1 Signal pre-processing 

 

In Figure 1, the overall illustration is the block diagram of 

the proposed TA-CNN-RNN. The signal pre-processing is 

intended to acquire the significant features with a greater 

probability of pre-ictal portion of correlation, the process of 

pre-processing is attained to the data before making the 

training and testing process with TA-CNN-RNN. The 

structure of TA-CNN-RNN is shown in Figure 2. 

 

 
 

Figure 1. Overall process of epilepsy classification 
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Figure 2. Structure of TA-CNN-RNN framework 

 

3.1.1 Noise removal 

The EEG’s high quality is greatly influenced by the noise 

which is a huge enemy of the EEG signal. The incidence of 

noise is decisive for the accurate investigation of EEG. The 

incidence of noise in the EEG signal is removed by the Least 

Mean Square Adaptive Noise Cancellation (ANC). The 

unwanted information in the power line of the EEG signal is 

removed successfully by the ANC scheme. 

 

3.1.2 Normalization 

Generally, normalization is utilized in carrying the two 

signals to a similar or predefined series. A distinctive example 

of a predefined series is the statistical discernment of the 

normalization that is converting the signal where the mean 

value is 0 and the standard deviation value is 1. In this 

proposed scheme, the z-score technique is utilized for the 

normalization and this technique unveils the performance by 

flattening the signal. The value of the z-score is equated in Eq. 

(1): 

 

𝑧 − 𝑠𝑐𝑜𝑟𝑒 =
𝑠𝑐𝑜𝑟𝑒 − 𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 (1) 

 

This normalization preserves the correlation between the 

normalized and original EEG signal whereas it considerably 

minimizes the selection bias. After completing the 

normalization process deep learning approaches are 

incorporated and the normalization makes the learning 

approach easier. 

 

3.2 Significant feature extraction and signal preparation 

for the categorization of signal 

 

The raw EEG signal is suspicious for redundancy and hence 

it is necessary to mine the explanatory parameters. The 

significant tool for investigating the non-stationary signal is 

accomplished by the Time Aware Convolutional Neural 

Network. Diverse time fields, frequencies, and time-frequency 

are incorporated to formulate the signals for the disposition of 

the deep neural network. The information about the location is 

taken into the CNN via an attention mechanism. The proposed 

TA-CNN can acquire the significant features in the extraction 

relation proficiently. The time intervals are deployed to 

acquire the short and long-term interest. The TA-CNN is 

utilized for the feature selection and suspected portions in the 

signal are acquired. Every attribute is a rate of discrete 

coincidence and utilizes the data among the measurement of 

similarity in the attributes S(a, b) as: 

 

𝑆(𝑎, 𝑏) = ∑ ∑(𝑎, 𝑏)𝑙𝑜𝑔 (
𝑝(𝑎, 𝑏)

𝑝1(𝑎)𝑝2(𝑏)
)

𝑎∈𝐴𝑏∈𝐵

 (2) 

 

In Eq. (2), p(a, b) is the probability of combined a and b 

attributes in the function distribution. The p1(a) and p2(b) 

illustrated the marginal probability. The combination of 

probability in the equation is acquired from the neural network. 

The proposed scheme identifies the significant features that 

signify the component's magnitude and every signal represents 

a diverse spectrum of components in original data that is 

adequate and informative for diverse EEG patterns. The 

acquired features are fed to the classification and diagnosing 

part. 

The Long Short Term Memory network is a special kind of 

recurrent neural network and it is an order sequence of data. 

The main intent of the proposed scheme is to classify the 

sequence of data among the pre-ictal and inter-ictal states that 

indicate the probability range of high or low in every class. 

This process is attained by the Recurrent Neural Network 

(RNN) to accept the sequence of temporal information and 

preserve the appropriate information. The network is 

formulated to estimate the data batches that create an output. 

It is elected to utilize the data with high-size processed data. 

This approach has three networks and one output layer. 

The acquired features are passed to the first two layers 

whereas the values are elected randomly that minimize the 

error. This process returns the output after processing the data 

in the preceding layers and probability is estimated by the 

softmax activation function. The RNN selects the data that is 

remembered or forgotten. In this study, the LSTM [28] is 

adopted as the RNN, which is made up of a cell and 3 gates 

(input, forget, and output). At time ti, the learning network is 

updated from Eqns. (3-8): 

 

𝑖𝑡𝑖 = 𝜎(𝑊𝑎𝑖𝑎𝑡𝑖 + 𝑊ℎ𝑖ℎ𝑡𝑖−1 + 𝑦𝑖) (3) 

 

𝑓𝑡𝑖 = 𝜎(𝑊𝑎𝑓𝑎𝑡𝑖 + 𝑊ℎ𝑓ℎ𝑡𝑖−1 + 𝑦𝑓) (4) 

 

𝑔𝑡𝑖 = 𝑡𝑎𝑛ℎ (𝑊𝑎𝑐𝑎𝑡𝑖 + 𝑊ℎ𝑐ℎ𝑡𝑖−1 + 𝑦𝑐) (5) 

 

𝑐𝑡𝑖 = 𝑖𝑡𝑖 ⊙ 𝑔𝑡𝑖 + 𝑓𝑡𝑖 ⊙ 𝑐𝑡𝑖−1 (6) 

 

𝑜𝑡𝑖 = 𝜎(𝑊𝑎𝑜𝑎𝑡𝑖 + 𝑊ℎ𝑖ℎ𝑡𝑜−1 + 𝑦𝑜) (7) 

 

ℎ𝑡𝑖 = 𝑜𝑡𝑖 ⊙ 𝑡𝑎𝑛ℎ (𝑐𝑡𝑖) (8) 

 

In Eqns. (3) – (8), iti is the input gate, fti is the forget gate, gti 

is the memory cell candidate, cti is the memory gate, oti is the 

output gate, hti is the hidden states in the LSTM, σ is the 

activation function, ⊙ is the element-wise multiplication, ati 

is the input vector value at the time ti, Wai, Waf, Wac, Wao are 

the weight matrix of ati’s input, forget, memory, and output 

gates, respectively. Also, Whi, Whf, Whc, Who are the weight 

matrix of hti’s input, forget, memory, and output gates, 

respectively. As well, yi, yf, yc, yo are the bias offset of every 

gate.  

In the RNN, the information is propagated from the front 

layer to the back layer and the drawback in the one-way 

approach in the learning scheme is rectified by this approach. 

The RNN has an inverted and positive LSTM that captures the 

significant feature and also combines the features in the 

forward and backward by utilizing the element-wise sum 

equated in Eq. (9): 

 

ℎ𝑖 = ℎ𝑖
⃗⃗  ⃗ ⊙ ℎ𝑖

⃖⃗⃗⃗  (9) 

 

The main intention of the attention strategy is identified and 

the input information is significant in the process of training 

where the attention is close to the data. From the RNN layer 

the hi and TI is assigned to the matrix M. 
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𝑀 = [𝑚1, 𝑚2, …… ,𝑚𝐿] (10) 

 

In Eq. (10), the length is signified as L of the input signal 

and the Mtr is acquired by the weighted alpha for every mi as 

shown in Eqns. (11) - (13): 

 

𝑀𝑡𝑟 = 𝑡𝑎𝑛ℎ(𝑀) (11) 

 

𝛼 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜔𝐿𝑀𝑡𝑟) (12) 

 

𝑀𝑡𝑟 = 𝑀 ⊙ 𝛼𝐿 (13) 

 

The dimension unit of hidden value in the learning unit is 

given as M belongs to d(h*L), the parameter of trained vector 

and transpose vector are  𝜔 and ωL respectively. The signals 

are acquired that is assigned as dh*L. The process of 

convolution is carried by the kernel W: 

 

𝐴𝑗 = 𝑓(𝑋𝑗 ⊙ W + b) (14) 

 

In Eq. (14), the convolution operator is signified as ⊙, the 

effect of bias is signified as b, the activation function for non-

linear data is signified as f and the ReLU activation is equated 

in Eq. (15): 

 

𝑓(𝑎) = max (0.1𝑎, 𝑎) (15) 

 

The dropout layer in the learning process is equated as: 

 

ℎ𝑛 = 𝜔𝑛
𝐿(𝑟 ⊙ 𝑏) + 𝑏𝑛 (16) 

 

In Eq. (16) the same signal shared among the values is 

signified as r and each element of r has the probability value 0 

for p and 1 for 1-p. The dropout layer is assigned with the 

subsequent layers and the rates of probability are 0.3, 0.3, 0.3 

and 0.5. 

The overfitting issue in the signal processing is rectified by 

the enhanced generalization capability and the cost function 

for the regulation is added as: 

 

𝐽(𝜃) = ∑𝑡𝑖𝑖 log(𝑏𝑖) + 𝛌‖𝜽‖𝑭
𝟐

𝑚

𝑖=1

 (17) 

 

In Eq. (17), the hyperparameter utilized for regularization is 

given as λ. 

The RNN attains the classification that relies on the 

sequence of signals that are analyzed and the categorical cross-

entropy is utilized as a loss function. The overlay performance 

in the RNN in the input segment of the initial layer is altered 

to acquire the batches of signals whereas the length of the 

signal is longer in the process of training and simple in the 

testing. Additionally, the internal values are estimated in the 

preceding batch that is no longer to pass every substantial 

batch of data due to alterations in the architecture of the 

network to acquire the efficient signal batches count. The 

utilized training epoch in the RNN considerably minimizes the 

incidence of error during the process of training which 

eventually increases the rate of accuracy. 

 

 

4. EXPERIMENTAL RESULTS 

 

In this section, the outcome of the epilepsy classification by 

the proposed and existing approach is discussed. The data in 

the Bern-Barcelona EEG database is collected from patients 

with the incidence of epilepsy that comprises non-focal and 

focal channels with 1024Hz. The database holds 3750 pairs of 

signals recorded from the channels of EEG and the recorded 

samples are divided into slots of windows with an interval of 

ten seconds, which results in a sample of 10240. For this 

experiment, the publicly accessible EEG databases which are 

already used in many published articles are used. CHB-MIT 

Scalp EEG Database [29], Bonn iEEG dataset [30], and 

VIRGO EEG dataset [31] are used in this paper. CHB-MIT 

Scalp EEG Database is collected at the Children’s Hospital 

Boston, and consists of EEG recordings from pediatric 

subjects with intractable seizures. The bonniEEG dataset is 

collected at the Department of Epileptology, University of 

Bonn, Germany. VIRGO EEG dataset consists of EEG data 

for 40 epileptic seizure patients (both male and female) in the 

age group ranging from 4 to 80 years. The raw data was 

collected from the Allengers VIRGO EEG machine at 

Medisys Hospitals, Hyderabad, India. 

The experiment is accomplished in Matlab with the 

computation atmosphere’s RAM of 8.00 GB and CPU2.30 

GHz. The proposed TA-CNN-RNN is compared with the 

existing algorithms Entropy+LSSVM [22], LBP-KNN [23], 

and P-one-class SVM [24]. The numerical outcomes of the 

experiment are evaluated using the performance metrics 

namely accuracy, precision, f-measure, and recall. The EEG 

signal and the EEG with the incidence of epilepsy are 

displayed in Figure 3 and Figure 4 respectively. 

 

 
(a) 

 

 
(b) 

 

Figure 3. Representation of Normal EEG 

 

720



 

 
(a) 

 

 
(b) 

 

Figure 4. Representation of EEG with epilepsy 

 

4.1 Accuracy 

 

Accuracy indicates the closeness of the value determined 

from the classified EEG signals and it is the illustration of 

systematic errors or statistical bias. Accuracy is the near value 

of calculated true positive and true negative values from the 

investigated signal classes. The incidence of minimal accuracy 

arises from differences among the investigational outcome of 

true values. It is the ratio of incidence of epilepsy in the EEG 

signal is the total count of signal investigated. The value of 

accuracy is equated in Eq. (18) as: 

 

𝐴𝑐𝑐 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 +
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

 
(18) 

 

In Figure 5 and Table 1, the accuracy acquired from the 

proposed TA-CNN-RNN is compared with the existing 

algorithms Entropy+LSSVM, LBP-KNN and P-one-class 

SVM algorithm. The rate of accuracy is {8.6%, 10.5%, 

13.1%} higher than the Entropy+LSSVM for {CHB-MIT-EG, 

Bonn-iEEG, VIRGO-EEG} respectively, {6.3%, 3.3%, 7.5%} 

higher than the LBP-KNN for {CHB-MIT-EG, Bonn-iEEG, 

VIRGO-EEG} respectively and {2.7%, 3.4%, 2.5%} higher 

than the P-one-class SVM for {CHB-MIT-EG, Bonn-iEEG, 

VIRGO-EEG} respectively. The acquired high accuracy 

illustrates the effectiveness of the proposed TA-CNN-RNN. 

 

 
 

Figure 5. Comparison of accuracy (%) 

 

4.2 Precision 

 

The analytical rate with positive values or precision 

indicates the closeness of the measurement and the 

significance of the signals identified. The occurrence of 

random errors is indicated as precision that is stated with the 

statistical variables. The acquired signal values of accuracy 

and precision are identical terms. Typically, binary or decimal 

digits are utilized in denoting the signal's value of precision. It 

is estimated based on True Positive (TP) and False Positive 

(FP) rates. The value of precision directly relies on the percent 

of positive values in the total EEG signal. In the process of 

classification, the precision value for a definite issue is the 

count of the true positive values (i.e. the count of the item 

appropriately labeled as positive classes of EEG signals). The 

algorithm acquired high precision indicates a resultant value 

that accomplishes more desired data than inappropriate 

information. It is equated in Eq. (19) as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (19) 

 

In Figure 6 and Table 2, the precision acquired from the 

proposed TA-CNN-RNN is compared with the existing 

algorithms Entropy+LSSVM, LBP-KNN, and P-one-class 

SVM algorithm. The rate of precision is {9.62%, 11.6%, 

11.9%} higher than the Entropy+LSSVM for {CHB-MIT-EG, 

Bonn-iEEG, VIRGO-EEG} respectively, {7.2%, 5.3%, 7.2%} 

higher than the LBP-KNN for {CHB-MIT-EG, Bonn-iEEG, 

VIRGO-EEG} respectively and {11.9%, 7.1%, 3%} higher 

than the P-one-class SVM for {CHB-MIT-EG, Bonn-iEEG, 

VIRGO-EEG} respectively. The acquired high precision 

illustrates the effectiveness of the proposed TA-CNN-RNN. 

 

Table 1. Comparison of accuracy 

 

Dataset 
Existing Algorithm Proposed Algorithm 

Entropy+ LSSVM LBP+KNN P-one-class SVM TA-CNN-RNN 

CHB-MIT-EEG 80.4 82.7 86.3 89.0 

Bonn-iEEG 78.1 83.3 85.2 88.6 

VIRGO-EEG 75.6 81.2 86.2 88.7 
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Figure 6. Comparison of precision (%) 

 

 
 

Figure 7. Comparison of recall (%) 

 

4.3 Recall 

 

The rate of recall is the correlated EEG signals between the 

essentially reclaimed instances. The successful forecasting 

rate is the estimation measure of recall and the count of 

correlated outcomes is stated as recall. A recall is determined 

as a count of appropriately spotted values over the count of TP 

and FP values in the EEG signals. Precision is estimated based 

on epilepsy in the EEG signal identification at TP and False 

Negative (FN) rates. It is calculated in Eq. (20) as: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (20) 

 

In Figure 7 and Table 3, the recall acquired from the 

proposed TA-CNN-RNN is compared with the existing 

algorithms Entropy+LSSVM, LBP-KNN, and P-one-class 

SVM algorithm. The rate of recall is {7%, 5.8%, 2.1%} higher 

than the Entropy+LSSVM for {CHB-MIT-EG, Bonn-iEEG, 

VIRGO-EEG} respectively, {7.7%, 3.7%, 2.1%} higher than 

the LBP-KNN for {CHB-MIT-EG, Bonn-iEEG, VIRGO-EEG} 

respectively and {11.6%, 5.2%, 1%} higher than the P-one-

class SVM for {CHB-MIT-EG, Bonn-iEEG, VIRGO-EEG} 

respectively. The acquired high recall illustrates the 

effectiveness of the proposed TA-CNN-RNN. 

 

4.4 F-measure 

 

F-measure or F-score is determined as an accuracy of 

investigation of the classification problem. The algorithm 

attains the highest precision and recall value, which gives the 

best f-measure value. The F-measure value results in a better 

retrieval of needed information from the EEG and offers a 

realistic portion of the performance of the algorithm. It is 

computed in Eq. (21) as: 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (21) 

 

In Figure 8 and Table 4, the F-Measure acquired from the 

proposed TA-CNN-RNN is compared with the existing 

algorithms Entropy+LSSVM, LBP-KNN and P-one-class 

SVM algorithm. The rate of F-Measure e is {8.3%, 8.9%, 

11.6%} higher than the Entropy+LSSVM for {CHB-MIT-EG, 

Bonn-iEEG, VIRGO-EEG} respectively, {6.5%, 4.6%, 6.2%} 

higher than the LBP-KNN for {CHB-MIT-EG, Bonn-iEEG, 

VIRGO-EEG} respectively and {11.6%, 6.2%, 2.1%} higher 

than the P-one-class SVM for {CHB-MIT-EG, Bonn-iEEG, 

VIRGO-EEG} respectively. The acquired high F-Measure 

illustrates the effectiveness of the proposed TA-CNN-RNN. 

 

Table 2. Comparison of precision 

 

Dataset 
Existing Algorithm Proposed Algorithm 

Entropy+LSSVM LBP+KNN P-one-class SVM TA-CNN-RNN 

CHB-MIT-EEG 79.1 81.1 84.7 88.3 

Bonn-iEEG 77.1 82.4 84.2 87.7 

VIRGO-EEG 77.5 82.3 86.4 89.4 

 

Table 3. Comparison of recall 

 

Dataset 
Existing Algorithm Proposed Algorithm 

Entropy+LSSVM LBP+KNN P-one-class SVM TA-CNN-RNN 

CHB-MIT-EEG 84.3 85.5 89.2 91.3 

Bonn-iEEG 83.2 87.2 88.8 90.9 

VIRGO-EEG 80.8 87.2 91.4 92.4 

 

Table 4. Comparison of F-measure 

 

Dataset 
Existing Algorithm  Proposed Algorithm 

Entropy+LSSVM LBP+KNN P-one-class SVM TA-CNN-RNN 

CHB-MIT-EEG 81.5 83.3 86.9 89.8 

Bonn-iEEG 80.3 84.6 86.4 89.2 

VIRGO-EEG 79.1 84.5 88.6 90.7 
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Figure 8. Comparison of F-measure 

 

The major goal of this study is to train the TA-CNN-RNN 

using the EEG signals having seizures. The trained TA-CNN-

RNN is later applied to test the newly observed EEG signals 

and identify patients having epilepsy in the early stage for 

proper diagnosis. Thus, these experimental analyses indicate 

that the TA-CNN-RNN can efficiently detect patients with 

epileptic seizures from their EEG signals compared to the 

other methods. Also, it supports physicians to early identify 

epileptic patients and diagnosing them properly. 

 

 

5. CONCLUSIONS 

 

In this study, a new deep-learning method was designed for 

seizure detection from EEG signals. Initially, the raw EEG 

signals were collected and pre-processed by the noise removal 

and Z-score normalization methods. Then, those pre-

processed EEG signals were fed to the TA-CNN-RNN, which 

extracts spatial and temporal characteristics from the EEG 

signals for detecting the pre-ictal durations of the EEG signals. 

Thus, the patients having epilepsy were identified and 

diagnosed timely. Finally, the experimental results proved that 

the TA-CNN-RNN method on CHB-MIT-EEG, Bonn-iEEG, 

and VIRGO-EEG databases has 89%, 88.6%, and 88.7% 

accuracy, respectively compared to the Entropy+LSSVM, 

LBP+KNN and P-one-class SVM methods. But, the creation 

and annotation of large-scale databases were time-consuming. 

So, future work will focus on reducing the complexity of 

generating large-scale databases using adversarial networks. 
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