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This paper proposed wavelet-based design using Discrete Wavelet Transform to compress 

smart grid electrical signals and to reduce noise. For the Smart Grid’s smooth functioning, 

the power signal must be monitored, and proper actions must be taken quickly for any 

abnormality. The compressed data takes less time to communicate the disturbances. The 

proposed design is tested for the phasor measurement unit, which monitors and records the 

status of the smart grid hence circulating extensive data to utilities, control centers, etc. It is 

also tested for load voltage data. Effective data compression can reduce the cost of data 

storage and transmission. Noise dramatically affects the effectiveness of the techniques 

detecting the disturbances. Hence data compression and denoising the data with minimum 

distortion is essential. The proposed design is simpler as it uses fewer filters and less number 

of decomposition level as compared to the existing design. Simulation results show that 

compression ratio and signal-to-noise ratios are increased as compared to existing design. 
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1. INTRODUCTION

Electrical supply is provided by conventional sources like 

thermal, hydroelectric, and nuclear power plants and recently 

using renewable energy sources like solar, wind, biomass, etc. 

More intelligent technology is needed to accommodate those 

renewable sources for the smooth functioning of the present 

grid. A smart grid is an electrical system that can intelligently 

combine the working of all users connecting generators to 

consumers for continuous, economical, and reliable electricity. 

It transmits energy effectively and restores quickly. It has 

extensive integration of renewable energy and informs 

operators to use it. It is digital, self-monitoring, and has 

sensors. It avoids blackouts. It has bilateral communication 

between smart meters, electrical utilities, and an intelligent 

protection system [1]. Power line Communications can 

provide bidirectional electrical energy and communication [2]. 

The Smart Grid data is vast as it is monitored and measured by 

smart meters and phasor measurement units [3]. There is a 

burden on the system due to data storage and needs large 

bandwidth for data exchange; hence data compression is 

essential [4]. It can restore effective reduction with low 

computational complexity after disturbance [5]. Data 

compression and encryption can improve the quality of service 

in smart grid [6].  

There are two data-compression methods viz lossy and 

lossless. The lossy method can obtain a high compression ratio. 

The lossy compression methods are (i) Parametric, (ii)Mixed 

Parametric, and Transform (iii)Transform based. The 

transform-based techniques compress the signal better and 

reduce the noise. The Discrete Fourier Transform and Discrete 

Cosine Transform analyze sinusoidal, stationary, and periodic 

signals due to sound localization in the frequency domain. 

Discrete Fourier Transform cannot represent non-periodic 

transients and variable frequency signals. Hence Wavelet 

transforms, and Wavelet Packet Transforms are widely used 

for compression as they have sound localization in the time 

and frequency domain. It can concentrate significant signals in 

a few coefficients in the transient and non-periodic pattern. It 

represents the signal better and preserves the features [7]. The 

lossy Singular value decomposition has complexity in 

computations [8-10]. The signal-processing methods have 

various applications in smart grids [11].  

It uses Wavelet transform at level 3 with Daubechies 

wavelet having four coefficient filters [12]. The Slantlet 

Transform, an orthogonal discrete wavelet transform, is used 

by Panda et al. [13]. Power quality transient data are 

compressed using B-splines up to scale three, and then S-

transform analyses reconstructed data [14]. The discrete 

Wavelet transform with multi-resolution analysis with 

threshold and vector Quantization coding is used with 

Daubechies 4 at level 3 [15]. It has introduced a wavelet 

transform-based enhanced data compression method with 

Daubechies 4 at level 6 [16]. Discrete Wavelet Transform 

based multi-resolution analysis is used with Db5 and scale 2 

[17]. The Embedded Zero-tree Wavelet Transform is used 

with biorthogonal wavelet(bior4.4) at level 3 [18]. Minimum 

Description Length with Discrete wavelet transform and 

Wavelet Packet Transform are used at the 4th level with 

symlet 7 wavelet [19]. Wavelet decomposition with spline 

interpolation is used by Gäşpäresc [20]. Wavelet packet 

transform with Minimum Description Length is applied with a 

modified form of Shannon Entropy [21]. A wavelet packet 

enhanced with arithmetic coding is used by Huang and Jou 

[22].  

From the studies [12-22], only Santoso et al. [12] and 

Karthika and Rathika [17] have used Discrete wavelet 

transform, and Santoso et al. [12] could achieve the 

compression ratio of 16.67%, normalized mean square error 

10-5 to 10-6, and Signal to noise ratio 30dB with actual power
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disturbance data. It has achieved a 35% compression ratio, 

mean square error of 14.05, and signal-to-noise ratio of 

28.88dB for smart grid signal [17]. There is computational 

complexity as wavelet transform is used with some other 

technique or combined with coding to improve the results [13-

16, 18-22]. 

Three mother wavelet functions, db2 to db14, coif1 to coif5, 

and sym2 to sym13, i.e., 30 candidate wavelets, are tested [23]. 

Twenty random signals of the phasor measurement unit are 

generated with disturbances related to frequency, voltage, and 

current and decomposed by Wavelet packet decomposition for 

2 to 11 levels. The best wavelet retains the highest total energy 

for most ten levels. The best level of decomposition has the 

highest energy for most of the 30 wavelets. Daubechies order 

two wavelets at level 6 are used for compression and denoising. 

The set of bases is found using the algorithm by Coifman and 

Wickerhauser for representing the best sub-tree of a particular 

cost function based on a normalized Shannon entropy. The 

suitable threshold is decided by calculating level wise noise of 

the signal. Wavelet packet decomposition can give a 

compression ratio of up to 2%, signal to noise ratio of up to 

30dB, and NRMSE in the range of 10-5. This method has 

computational complexity, as in wavelet packet 

decomposition, the signal is passed through more filters than 

in wavelet decomposition.  

Wavelet packet transform is used for compression and 

denoising the smart grid signal. The best basis is obtained from 

weighted entropy [24]. 15 candidate wavelet functions sym2 

to sym10, coif1 to coif5, and db2 to db10 are used for 

decomposing disturbance data at 2 to 8 levels for 19 test 

signals. Here sym8 and level 4 of decomposition are selected. 

Several bases are obtained from the best basis algorithm with 

a cost function. The entropy function is proposed to calculate 

the cost of representing the data. The best basis depends on the 

minimum cost function. The thresholding is done for 

denoising based on the proposed modified minimum 

description length; hence not required to calculate noise. For 

the desired compression ratio, the detail coefficients are 

arranged in descending order of their absolute values, and the 

suitable percentages of the lower coefficients are thresholded 

to zero. For the practical phasor measurement unit data, the 

compression ratio is 20%, and NRMSE is 15.2x10-9. The 

method has computational complexity as more filters are used.  

Data is compressed at the 6th level using wavelet packet 

decomposition [23], and the 4th level using wavelet packet 

transform [24]. These methods have computational 

complexity, and still, there is a scope to improve compression 

ratio, signal-to-noise ratio, and reconstruction error.  

Hence the new design is proposed using Discrete Wavelet 

Transform with different wavelet filters at each level with 

appropriate thresholds. The presented algorithm will reduce 

the computational complexity by achieving a better 

compression ratio at the 4th level of decomposition with 

minimum degradation and better quality of the signal. 

 

 

2. METHODOLOGY 

 

This section presents a proposed design for the compression 

of smart grid signal using Discrete wavelet transform. Wavelet 

transform of discrete data a0=f of N numbers of samples of the 

time domain signal x(t) is represented as: 

 

𝛼 = 𝑊𝑓 (1) 

where, α holds N number of coefficients and W indicates NxN 

orthogonal matrix. The low-pass filter (LPF) is called the 

scaling filter, and the high-pass filter (HPF) is called the 

wavelet filter, where g and h are their respective filter matrices, 

and G and H are their conjugates. The one-dimensional 

discrete Wavelet transform (DWT) can be given by the 

following recursive formula (Pyramid Algorithm) as: 

 

𝑎𝑚 = 𝑔𝑎𝑚−1 and 𝑑𝑚 = ℎ𝑎𝑚−1 (2) 

 

where, m indicates the resolution level and m=1, 2, ….., log2N. 

 

 
 

Figure 1. Signal decomposition using Level 1 DWT [12] 

 

The compressed signal has wavelet transform coefficients 

with disturbance and discards coefficients free from 

disturbance. Some of the information is lost. The noise is 

suppressed before the signal is regenerated. Hence the detail 

coefficients dm below a predefined threshold ɳm are set to zero, 

where dmm is the detail coefficients after thresholding at the 

associated level m. The threshold is based on the absolute 

maximum value of the detail coefficients at the related level m. 

 

ɳ𝑚 = (1 − 𝑢)𝑥𝑚𝑎𝑥│𝑑𝑚│ (3) 

 

where, 0≤u≤1 [12]. If u=0.01, the threshold is 99% of the 

maximum value of the detail coefficients. Compression ratio 

and signal to noise ratio improve as many high-frequency 

detail coefficients are thresholder: 

 

𝑑𝑚𝑚 = {
𝑑𝑚        │𝑑𝑚│ ≥ ɳ𝑚

0            │𝑑𝑚│ < ɳ𝑚
 (4) 

 

The signal is reconstructed using the recursion algorithm in 

reverse, i.e., inverse discrete wavelet transform (IDWT), as 

below [19]. 

 

𝑎(𝑚−1)(𝑚−1) = 𝐺𝑎𝑚 + 𝐻𝑑𝑚𝑚 (5) 

 

 
 

Figure 2. Signal reconstruction using Level 1 IDWT [12] 

 

It aims to reduce the complexity; hence Daubechies filters 

Db1, Db2, and Db3, and decomposition level 4 are selected. 

In the proposed method, Daubechies filters Db1, Db2, and 

Db3 will be chosen as Db3, Db2, Db2, and Db1 at levels 1, 2, 

3, and 4, respectively, for decomposition and Db1, Db2, Db2, 

Db3 in reverse for reconstruction as shown in Figure 3. The 

original signal a0 is decomposed to level 4 using a discrete 

wavelet transform. The signal a44 is reconstructed using 

inverse discrete wavelet transform (IDWT) with inputs as 

approximation coefficients a4 and detail coefficients d44 after 
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thresholding at the fourth level. The reconstruction process is 

continued till the original signal a0 is regenerated. 

 

 
 

Figure 3. Proposed design for data compression and noise 

reduction using DWT and IDWT 

 

The DWT and IDWT functions indicated in Figure 3 are 

explained in Figures 1 and 2, respectively. The thresholding at 

each level is described by Eq. (3) and Eq. (4). The performance 

of the above design is given by the compression ratio (CR), 

signal to noise ratio (SNR) in dB, and reconstruction error by 

normalized root mean square error (NRMSE) as below: 

 

CR

=
No of non zero coefficients by threshold 

No. of samples in the original signal
x100% 

(6) 

 

The number of non-zero coefficients in the noisy signal after 

decomposition and thresholding at level 4 is the addition of 

approximation coefficients a4 at level 4, detail coefficients d44 

at level 4 after thresholding, detail coefficients d33 at the level 

3 after thresholding, detail coefficients d22 at the level 2 after 

thresholding and detail coefficients d11 at level 1 after 

thresholding. 

 

𝑁𝑅𝑀𝑆𝐸 =
√∑  [𝑥(𝑖) − 𝑥′ (𝑖)]2𝑁−1

𝑖=0

𝑁
�̅�

 
(7) 

 

�̅� = max(x(i)) − min(x(i)) (8) 

 

𝑆𝑁𝑅1 = (
∑  𝑥𝑛(𝑖)2𝑁−1

𝑖=0

∑  [𝑥𝑛(𝑖) − 𝑥(𝑖)]2𝑁−1
𝑖=0

) (9) 

 

𝑆𝑁𝑅2 = (
∑  𝑥′(𝑖)2𝑁−1

𝑖=0

∑  [𝑥′(𝑖) − 𝑥(𝑖)]2𝑁−1
𝑖=0

) (10) 

 

here, x(i) is noise free original signal, xn which is the noisy 

signal, x'(i) is the reconstructed signal at the ith sample, and N 

is the total number of the original signal samples. SNR1 and 

SNR2 are signal-to-noise ratios on the transmission and 

receiving sides, respectively. 

 

 

3. RESULTS AND DISCUSSION 

 

The MATLAB simulation results are presented for the 

wavelet-based proposed data compression and noise reduction 

design. The proposed design is applied to the simulated data 

of phase current signal from the Phasor measurement Unit 

(PMU) at the fault location. Run the event data file 30 seconds, 

8-12 seconds before the fault, and 18-22 seconds after a fault 

to differentiate between the faulty and standard signals. It can 

locate and detect the fault and helps in fault analysis. One 

thousand twenty-four samples of the sampled data are selected 

at the disturbance location. The proposed design results for 

1024 samples of noisy PMU data at different noise levels are 

shown in Figure 5 to Figure.8 and Table 1. The results are 

further compared [23, 24]. 

The proposed design is also applied to the simulated data of 

load voltage signal during earthing fault. Run the event data 

file 30 seconds, 8-12 seconds before the fault, and 18-22 

seconds after a fault to differentiate between the faulty and 

standard signals. It can locate and detect the fault and helps in 

fault analysis. One thousand twenty-four samples of the 

sampled data are selected at the disturbance location. The 

results of the proposed design for 1024 samples of noisy load 

voltage data at different noise levels are shown in Figure 10 to 

Figure 13 and presented in Table 2. The results are further 

compared with the studies [23, 24]. 

 

 
 

Figure 4. Original PMU current signal for 1024 samples 

 

 
Figure 5. Reconstructed Signal of SNR 62.59 dB from noisy 

PMU signal of SNR 15.89 dB by proposed design 

 

Figure 4 shows the original PMU phase current signal for 

1024 samples at the fault location. The noise levels are added 

to the original signal to get the noisy signal at the transmission 

end. The noisy signal is compressed while transmitting and 

then reconstructed at the receiving end by the proposed design 

for 1024 samples. The reconstructed signals for different noisy 

levels are shown in Figure 5 to Figure 8. When the noisy signal 
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is denoised, the compression ratio is the by-product of this 

denoising process. The compressed signal can be transferred 

quickly. The denoised reconstructed signal has power quality 

and can communicate the fault in the signal very well. 

 

 
 

Figure 6. Reconstructed Signal of SNR 60.02 dB from noisy 

PMU signal of SNR 24.541 dB by proposed design 

 

 
 

Figure 7. Reconstructed Signal of SNR 60.46 dB from noisy 

PMU signal of SNR 30.316 dB by proposed design 

 
 

Figure 8. Reconstructed Signal of SNR 61.22 dB from noisy 

PMU signal of SNR 35.349 dB by proposed design 

Table 1. Results of noisy PMU signal of 1024 samples 

 

 

Original 

signal 

SNR (dB) 

% 

CR 

SNR2 

(dB) 
NRMSE 

Proposed design 15.89 6.93 62.59 0.0524 

[23] 15.89 15.2 52.393 0.436x10-5 

[24] 15.89  - 37.764 12.65x10-5 

Proposed design  18.927 6.93 55.22 0.0434 

[23] 18.931 15.5 54.92803 0.243x10-5 

[24] 18.927  - 40.842 6.229x10-5 

Proposed design  24.541 7.32 60.02 0.0357 

[23] 24.547 15.3 58.07 0.118x10-5 

[24] 24.541 - 46.394 1.734x10-5 

Proposed design 27.82 6.93 68.54 0.034 

[23] 27.826 15.4 59.151 0.092x10-5 

[24] 27.82 - 49.526 0.843x10-5 

Proposed design 30.316 7.13 60.46 0.033 

[23] 30.321 15.4 59.653 0.082x10-5 

[24] 30.316 - 51.807 0.499x10-5 

Proposed design  35.349 7.03 61.22 0.0324 

[23] 35.778 15.5 60.029 0.075x10-5 

[24] 35.349 - 54.882 0.246x10-5 

 

 
 

Figure 9. Original load voltage signal for 1024 samples 

 

From Table 1, it is observed that the proposed design has 

improved compression ratio (CR) and signal to noise ratio 

(SNR) for noisy PMU phase current signal at different noise 

levels [23, 24], and the results are satisfactory. The proposed 

design has obtained the best compression ratio of 6.93% and 

signal to noise ratio of 68.54 dB. In the lossy compression 

method, the lost data is the distortion between the original and 

the reconstructed signals. The proposed design calculates it by 

normalized root mean square error NRMSE. From Table 1, for 

the noisy signal with SNR 24.541dB, the signal is 

reconstructed with NRMSE 0.0357; hence the loss rate of the 

data signal is 3.57%. 

 

 
 

Figure 10. Reconstructed signal of SNR 41.07 dB from noisy 

load voltage signal of SNR 4.861 dB by proposed design 
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Figure 9 shows original load voltage signal for 1024 

samples. The noise levels are added to the original signal to 

get the noisy load voltage signal. The noisy load signal is 

compressed while transmitting and then reconstructed at the 

receiving end by the proposed design for 1024 samples. The 

reconstructed signals for different noisy levels are shown in 

Figure 10 to Figure 13. 

 

 
 

Figure 11. Reconstructed signal of SNR 37.49 dB from noisy 

load voltage signal of SNR 9.661 dB by proposed design 

 

 
 

Figure 12. Reconstructed signal of SNR 36.07 dB from noisy 

load voltage signal of SNR 16.591 dB by proposed design 

 

 
 

Figure 13. Reconstructed signal of SNR 41.22 dB from noisy 

load voltage signal of SNR 19.668 dB by proposed design 

 

From Table 2, it is observed that the proposed design has 

improved compression ratio (CR) and signal-to-noise ratio 

(SNR) for noisy load voltage signals at different noise levels 

[23, 24]. The proposed design has obtained the best 

compression ratio of 7.13%, and signal-to-noise ratio of 43.16 

dB. From Table 2, for the noisy signal with SNR 22.742 dB, 

the signal is reconstructed with NRMSE 0.0486; hence the loss 

rate of the data signal is 4.86%. 

Table 3 shows that the proposed design has used Db3, Db2, 

Db2, and Db1 wavelets from the first to fourth decomposition 

levels, whereas [23] has used six levels of decomposition with 

Db2 wavelet and [24] has used four levels of decomposition 

with higher order sym8 wavelet. The proposed design has used 

fewer filters as it decomposes only approximation coefficients 

further, whereas, in the studies [23, 24], they use more filters 

to further decompose both approximation and detail 

coefficients. Hence the proposed method has less complexity 

than the studies [23, 24]. 

 

Table 2. Results of noisy load voltage signal of 1024 samples 

 

 

Original 

signal 

SNR (dB) 

% 

CR 

SNR2 

(dB) 
NRMSE 

Proposed design 4.861 7.13 41.07 0.068 

[23] 4.914 12.5 22.219 12.338x10-5 

[24] 4.861 - 24.419 1.497x10-4 

Proposed design 9.661 7.13 37.49 0.058 

[23] 9.409 13 24.969 6.543x10-5 

[24] 9.661 - 28.542 0.578x10-4 

Proposed design 12.169 7.32 38.87 0.0542 

[23] 12.423 13.2 26.049 5.100x10-5 

[24] 12.169 - 29.775 0.435x10-4 

Proposed design 16.591 7.13 36.07 0.0538 

[23] 16.698 13.4 26.654 4.437x10-5 

[24] 16.591 - 30.996 0.328x10-4 

Proposed design 19.668 7.23 41.22 0.0534 

[23] 19.749 13.6 27.160 3.949x10-5 

[24] 19.668 - 31.398 0.299x10-4 

Proposed design 22.742 7.13 43.16 0.0486 

[23] 22.649 14.5 28.019 3.242x10-5 

[24] 22.742 - 31.607 0.285x10-4 

 

Table 3. Comparison of complexity of proposed design 

 

Details 
Proposed 

design 
[23] [24] 

Technique 

Discrete 

Wavelet 

Transform 

Wavelet 

Packet 

Decomposition 

Wavelet packet 

Transform with 

Weighted 

entropy and 

modified MDL 

Level of 

Decomposition 
4 6 4 

Wavelets 
Db3, Db2, 

Db2, Db1 
Db2 Sym8 

Complexity 
Less 

complex 
More complex More complex 

 

 

4. CONCLUSIONS 

 

The proposed wavelet-based design using Discrete Wavelet 

Transform is developed to reduce the smart grid data and 

improve the signal's quality by noise reduction. The proposed 

design has reduced the computational complexity in the 

studies [23, 24] by achieving a better compression ratio and 

signal-to- noise ratio at the 4th level of decomposition using 

Daubechies filters db3, db2, db2, and db1 for 1024 samples. 

The proposed design is the best after different combinations of 

the above four wavelets at four levels. The results are 

improved for compression ratio up to 6.93% for PMU signal 

and 7.13% for load voltage signal. The results are improved 
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for the signal-to- noise ratio of 68.54dB for the PMU signal 

and 43.16 dB for the load voltage signal. The reconstruction 

error is NRMSE 0.0324 for the PMU signal and NRMSE 

0.0486 for the load voltage signal. It has reduced the cost of 

data compression and data storage and increased the data 

transfer by using a smaller number of filters [23, 24]. However, 

the proposed method has limitation in terms of NRMSE. It can 

be further improved by using higher number of decomposition 

level. 
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