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 Prevailing personal mobile network architectures make use of streamlined mobility control 

system, where the complete understanding is concentrated on single-end that results in 

scarce of dynamic mobility support when data volume is found to be large. The present-

day networks necessitate seamless connections regardless of node position and 

connectivity that has to be accomplished between personal are network (PAN). In this 

work, a novel method called, Markov Renewal Prediction and Radial Kronecker Neural 

Network (MRP-RKNN) based optimized handover for seamless mobility in PAN is 

proposed. By employing a Markov Renewal Prediction model for Seamless Mobility along 

with the two-hop network architecture, in this paper, we propose a transition probabilities 

(TP) function to mitigate the persistent handover issue in conventional wireless 

communication systems. The proposed Markov Renewal Prediction model for Seamless 

Mobility significantly reduces handover execution time and seamless mobility handover 

accuracy with efficient transition probabilities. In PANs, the unavoidable deployment of 

low power sink nodes permits the mobile nodes with many issues in terms of Quality of 

Service (QoS) due to complication of recurrent handovers due to high mobility. 

Addressing this issue of handover optimization in the deployment of PAN, this work 

proposes a model called to optimize the handovers in a cost-efficient manner. In this work, 

Radial Kronecker Delta Neural Network is utilized for handling frequent handovers based 

on received signal strength and cost metrics. Here, the resultant desired output is obtained 

using the Radial Kronecker function being a function of two variables with which 

optimized handover is performed. Simulation results presented in the study exhibits the 

performance and prediction rate of the proposed method in terms of handover execution 

time, seamless mobility prediction accuracy, mobility handover cost and packet loss rate. 
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1. INTRODUCTION 

 

The small cell technologies have been considered as the 

high speed wireless standard based on GSM network with the 

objective of adapting traffic requirements in the fifth-

generation (5G) era and beyond 5G. Handovers among various 

cell without interruption is the biggest challenge and it should 

be handled in an efficient way. The main idea of the work is to 

reduce the handover failures as a consequence of radio link 

failures (RLFs) and keeping back the number of ping-pongs as 

least as possible. A Machine learning based Mobility Robust 

Optimization (Machine learning-based MRO) was proposed in 

[1] with the purpose of optimizing handover factors towards 

seamless mobility under dynamic small-cell networks. Hence, 

the optimization of handover in dynamic environment is 

necessary in addition to user mobility. The algorithm involved 

in the work for the optimization are topology adaptation and 

mobility adaptation. As a first part of the work, topology 

adaptation was ensured by means of obtaining prior 

knowledge about the channel information and to resolve the 

congestion caused by the resources Second, fine tuning of the 

handovers was provided by means of reinforcement learning 

via information acquired from the first step. With these two 

factors model not only the adaptation time was reduced but 

also resulted in the improvement of user satisfaction rate. Even 

though, the proposed algorithm performs well, the handover 

execution time and seamless mobility prediction accuracy was 

not focused. To overcome these issues, the work introduces a 

Markov Renewal Prediction model for Seamless Mobility. 

With the renewal process, the Markov prediction handles 

handover in a computationally efficient manner.  

A mobility-aware seamless handover method called, Multi 

Path Transmission Control Protocol (MPTCP) was proposed 

by Tong et al. [2]. The proposed MPTCP handover method 

was executed in software-defined HetNets (SDHetNets) that 

consisted of three steps, called, prediction of location, 

selection of the network and finally the actual execution of 

handover mechanism. To be more specific, the user’s location 

was initially prediction. With the prediction location, Fuzzy 

Analytic Hierarchy Process (FAHP) was selected for obtaining 

the target network by taking into consideration the preferences 

of user, network attributes, and mobility patterns of the 

corresponding users. Finally, the seamless handover was 

modeled, therefore reducing the handover time. Though 

handover time was found to be reduced, there still remained 

room for improvement in terms of handling continuous state 

space owing to high mobility pattern. To address on this aspect, 

a Radial Kronecker Delta Neural Network-based Optimized 

Handover model is presented that with the aid of Kronecker 

Delta function not only improves the mobility handover cost 
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but also the packet loss rate to a greater extent. Technological 

influence based on the investment cost, invention and 

extensive objectives of 6G was focused by Karam et al. [3]. A 

seamless content delivery method for mobile Consumers via 

Information Centric Network (ICN) based communication 

frameworks was proposed by Hernandez et al. [4]. The method 

applied the extended formulations from ICNs for serving 

mobile consumer for content flow and caching. Here, location 

update was obtained via remote mobility manager entity with 

the objective of improving content delivery to Consumers. 

However, it was found to be only suitable for horizontal 

handover. A vertical handover decision algorithm employing 

Fuzzy Logic (FL) algorithm was presented by Azzali et al. [5] 

to improve QoS performance in heterogeneous vehicular ad-

hoc networks (VANET). However, mobility management one 

of the major issues faced by real time application was not 

focused. To concentrate on this issue, vision based localization 

was introduced by Pham et al. [6] via prediction algorithm. 

Artificial intelligence based framework was designed for 

mobile heterogeneous network [7].  

Heterogeneous wireless networks that are utilized for 

seamless mobility are anticipated to face distinguished issues 

in 5G cellular networks. On account of their genuine pliability 

and adjustable preparation, Unmanned Aerial Vehicles 

(UAVs) could be of service to heterogeneous wireless 

network. However, the major issues of the prevailing UAV-

assisted heterogeneous wireless networks comprise in having 

pertinent accessibility over wireless networks.  

Future generation communication also necessitates 

reliability, seamless operations, and management of 

reconfiguration as far as heterogeneous wireless networks are 

concerned. Object mobility support algorithm was designed 

based on RSSI to handle seamless mobility [8]. A hybrid deep 

learning that consisted of convolution neural network (CNN) 

and long short term memory (LSTM) was presented by Khan 

et al. [9]. The CNN here allocated the resource in an efficient 

manner while the load balancing and error rate were handled 

using LSTM, therefore ensuring overall accuracy. Yet another 

uniform handover protocol using blockchain was designed by 

Haddad et al. [10] with the objective of reducing computation 

overhead.  

 

1.1 Contributory remarks 
 

The main contribution of this paper is that we propose a 

novel seamless mobility method taking into consideration 

Quality of Service (QoS) and guarantee service continuity 

during a vertical handover. Our key contributions include the 

following: 

• To propose a method called Markov Renewal 

Prediction and Radial Kronecker Neural Network (MRP-

RKNN) based optimized handover for seamless mobility to 

ensure QoS and seamless handoffs in PAN.  

• To solve the problems of seamless mobility with 

minimum handover execution time and seamless mobility 

handover accuracy, we propose Markov Renewal Prediction-

based Seamless Mobility model to improve the seamless 

mobility prediction accuracy by means of Markov Renewal 

Prediction kernel. Using the Markov Renewal Prediction 

kernel state transitions, the model can ensure accuracy with 

minimum time during handoffs.  

• To design the Radial Kronecker Delta Neural 

Network-based Optimized Handover model with the objective 

of improving the mobility handover cost involved during 

handovers in PAN, that synthetically considers error 

evaluation, weight updates, handover data packet estimation 

and handover cost evaluation separately in four hidden layers. 

Then, we propose a seamless handover mechanism employing 

Kronecker Delta function, thus guaranteeing service 

continuity even during handover. 

• The fundamental analysis on the performance of the 

proposed method is also evaluated. Simulation results show 

that the MRP-RKNN method can ensure seamless mobility 

with minimum handover time and maximum accuracy. Then, 

the handover cost results show that the proposed MRP-RKNN 

method is comparatively better than the state-of-the-art 

methods. 

 

1.2 Organization of the paper 

 

The rest of the paper is organized as follows: Section 2 

provides a brief description of seamless mobility, addressing 

handover, personal area network, connectivity techniques, 

their pros and cons, finally, outlines some efforts to overcome 

them. Section 3 describes the method, Markov Renewal 

Prediction and Radial Kronecker Neural Network (MRP-

RKNN) in PAN. Section 4 describes the experimental setup 

with a detailed discussion in Section 5 comparing MRP-

RKNN method with the state-of-the-art methods. Finally, in 

Section 6 conclusions are drawn 

 

 

2. RELATED WORKS 
 

Radio access mechanisms are readily equipment with their 

own features, like, bandwidth, response time and coverage. 

These features are paramount owing to the deployment of 

applications that necessitate huge bandwidths, minimum 

latency. The main issues with the prevailing handover function 

are several unnecessary handovers occur due to low signal and 

large distance factor between device and Base Station.  

To this end, a novel method was designed by Goudarzi et al. 

[11] on the basis of cooperative game theory that in turn 

identified the best UAV during handover process by reducing 

the end-to-end delay, handover latency and signaling 

overheads. Yet another method was proposed by Shi et al. [12] 

based on protocol oblivious forwarding to ensure flawless 

transmission in real environments. A review of application of 

machine learning and deep learning for seamless mobility to 

handle vertical handover was investigated by Kornaros [13]. 

A survey of machine learning methods was investigated by 

Ahmed and Diaz [14].  

Mobile communication refers to the procedure of carrying 

out computations on a portable device and performing data 

transmission to single or several devices. Upon occurrences of 

geographical location changes of a mobile user, the network 

should be in a position to hand shift in data without loss in both 

signal quality and data. Handoff remains to be the only key for 

handling vigorous call transfer between access points. 

A significant neural network-based handover trigger 

method for vehicular networks was proposed with the 

objective of accurately predicting handover trigger time 

utilizing time-series quality measurements of network [15]. 

Also, a recurrent neural network technique was presented with 

the purpose of predicting upcoming sequence of RSSI to 

derive handover trigger estimation. Artificial Neural Network 

was employed by Sasikala et al. [16] on the basis of user 

behavior for handling vertical handoff.  
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A new dynamic scheduling algorithm for heterogeneous 

wireless network while maintaining performance was 

proposed by Mansouri et al. [17]. The scheduling algorithm 

was specifically designed on the basis of link conditions of 

transmission from two distinct types of techniques namely, 

Media Independent Handover (MIH) and Handoff Call 

Prioritization. With these two techniques, average packet 

delay was reduced considerably.  

A novel neural network named Driving Behavior Risk 

Prediction Neural Network (DBRPNN) was designed for 

performing prediction on the basis of the distracted driving 

behavior data [18]. Mobility prediction was performed in the 

studies of [19] by utilizing hidden Markov model. With this 

not only the network throughput was improved considerably 

but also resulted in the minimization of retransmission rate. 

Deep neural network and deep reinforcement learning were 

applied by Li and Li [20] in WSN for handling handover.  

Motivated by the above materials in this work, a novel 

method for seamless mobility called Markov Renewal 

Prediction and Radial Kronecker Neural Network (MRP-

RKNN) based optimized handover is proposed to ensure 

minimum handover time, cost and maximum accuracy 

between nodes in PAN. The elaborate description of the CK-

DRN method is provided in the following sections. 

 

 

3. METHODOLOGY 

 

Handover management process is a predominant and 

essential aspect as far as wireless access communication is 

concerned. An insightful handover operation is necessitated 

enormously to accelerate the seamless communication of 

Mobile Nodes (MNs) for the sake of ensuring the 

indispensable Quality of Service (QoS). A method called, 

Markov Renewal Prediction and Radial Kronecker Neural 

Network (MRP-RKNN) based optimized handover for 

seamless mobility in PAN is designed. In this work first, users’ 

or mobile nodes individual mobility is obtained by means of a 

Markov Renewal process. The Markov Renewal process being 

a stochastic process possesses discrete movements with 

arbitrary arrival time rather than the continuous time. Second, 

Radial Kronecker Delta Neural Network is applied for 

deciding upon optimized handover based on RSS and cost 

metrics. The elaborate description of MRP-RKNN method is 

provided followed by the system model. 

 

3.1 System model 

 

Personal Area Networks (PANs) are specifically split into 

mobile nodes, each mobile node served by at least one base 

station. Every mobile node in the network is identified by 

means of a unique ID that is utilized in tracking and identifying 

the mobile nodes. With this unique ID, the mobile node’s 

mobility history patterns are said to be recorded recurrently by 

utilizing the unique ID representations. In this situation, each 

grid that is constructing a mobility pattern, documents the 

number of handovers made to adjacent mobile nodes in the 

grid as well as the random arrival times. This permits in 

estimating the mobile node transition probabilities ‘𝑃𝑟𝑜𝑏𝑖,𝑗’ 

and random arrival times are given by ‘𝐾𝑖,𝑗(𝑡)’. The system 

model considered in the proposed methodology for the mobile 

nodes ‘𝑀𝑁𝑖’ and ‘𝑀𝑁𝑗’ is illustrated in Figure 1. 

As shown in Figure 1, let ‘𝑀𝑁𝑖’ be the source mobile node 

and ‘𝑀𝑁𝑗’ be the target or receiving mobile node and ‘𝛼𝐷𝑖𝑠’ 

represents the distance between them. Let the user equipment 

‘𝑈𝐸’ be positioned at coordinates ‘(𝑋𝑈𝐸 , 𝑌𝑈𝐸)’ and presumed 

to propagate in a straight line making an angle of ‘𝛽’ where 

‘𝛽 = 0°’ denotes the straight line movement of user equipment 

‘𝑈𝐸’ toward ‘𝑀𝑁𝑗’. Then, the user equipment ‘𝑈𝐸’ is said to 

traverse from the ‘𝑀𝑁𝑖’ and toward the ‘𝑀𝑁𝑗’ in straight lines 

at arbitrary velocity and angle. At any instant, the user 

equipment ‘𝑈𝐸’ is considered to be at distance ‘𝛼𝑋’ from ‘𝑀𝑁𝑖’ 

and ‘𝛼𝑌’ from ‘𝑀𝑁𝑗’. The values of ‘𝛼𝑋’ and ‘𝛼𝑌’ is then 

mathematically formulated as given below. 

 

𝛼𝑋 = √(𝑋𝑈𝐸 − 𝑋𝑖)
2 + (𝑌𝑈𝐸 − 𝑌𝑖)

2 (1) 

 

𝛼𝑌 = √(𝑋𝑈𝐸 − 𝑋𝑗)
2

+ (𝑌𝑈𝐸 − 𝑌𝑗)
2
 (2) 

 

From the above Eqns. (1) and (2), ‘(𝑋𝑖 , 𝑌𝑖)’ and ‘(𝑋𝑗 , 𝑌𝑗)’ 

denotes the position coordinates of mobiles nodes ‘𝑀𝑁𝑖’ and 

‘𝑀𝑁𝑗’ respectively. 

 

 
 

Figure 1. System model of Markov renewal prediction and 

radial Kronecker neural network 

 

3.2 Markov renewal prediction-based seamless mobility 

model 

 

Upcoming wireless networks will be designed by 

integrating heterogeneous networks over an IP-based 

infrastructure. This in turn has resulted in the deployment of 

handover to aid seamless mobility. These handover 

mechanisms hence have to be designed with the objective that 

the mobile nodes continue to receive communications without 

any disturbance during handover. In this work, user seamless 

mobility is modeled by a Markov Renewal Prediction process 

that permit for arbitrary distributed times and hence is said to 

be viewed as a process with random arrival times for each 

mobile nodes in PAN. Here, the random arrival times are the 

time instances when a user equipment or mobile attaches to a 

new grid. In a Markov Renewal Prediction process, the 

consecutive visited state of a mobile node represented by 

mobile node IDs are administered by the transition 

probabilities ‘𝑃𝑟𝑜𝑏𝑖,𝑗’. The random arrival times in any state 

depends on both the current position and the consecutive 

position where the user equipment of mobile node will move. 

Figure 2 shows the block diagram of Markov Renewal 

Prediction-based Seamless Mobility model. 

As shown in Figure 2, the Markov Renewal Prediction-

based Seamless Mobility model in PAN includes two 
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processes, namely, mobility prediction and handover. In 

mobility prediction process, two predictions are made. They 

are state transition prediction and arrival prediction. 

According to these two predictions, handover mechanism is 

performed.  

 

 
 

Figure 2. Block diagram of Markov renewal prediction-

based seamless mobility model 

 

The Markov Renewal Prediction kernel for a random arrival 

times is given by ‘𝐾𝑖,𝑗(𝑡)’ that represents the probability that 

instantly after characterizing the transition into state ‘𝑖’, the 

procedure makes a jump to state ‘𝑗’ within ‘𝑡’ time. Then, the 

Markov Renewal Prediction kernel within ‘ 𝑡 ’ time is 

mathematically stated as given below.  

 

𝐾𝑖,𝑗(𝑡) = 𝑃𝑟𝑜𝑏 {𝑃𝑛+1 = 𝑗, 𝑇𝑛+1 − 𝑇𝑛 ≤ 𝑡|𝑃𝑛 = 𝑖} (3) 

 

From the above Eq. (3), ‘𝑃𝑛’ and 𝑃𝑛+1 ‘𝑃𝑛+1’ denotes the 

system state after ‘𝑛’ and ‘𝑛 + 1’ transitions respectively. The 

Markov Renewal Prediction kernel state transitions are further 

manifested as given below.  

 

𝐾𝑆𝑇𝑖,𝑗(𝑡) = 𝑃𝑆𝑇𝑖𝑗𝑄𝑆𝑇𝑖𝑗(𝑡) (4) 

 

𝑄𝑆𝑇𝑖𝑗(𝑡) = 𝑃𝑟𝑜𝑏 {𝑇𝑛+1 − 𝑇𝑛 ≤ 𝑡| 𝑃𝑆𝑇𝑛+1 = 𝑗, 𝑃𝑆𝑇𝑛

= 𝑖} 
(5) 

 

From the above Eqns. (4) and (5), ‘𝑄𝑆𝑇𝑖𝑗(𝑡)’ denotes the 

conditional probability that a transition (from one mobile node 

to another mobile node) will take place within ‘ 𝑡 ’ time 

instances where the positioning movements are made between 

state ‘𝑖’ state ‘𝑗’ (i.e., movement between two states). Then, a 

random arrival times is said to be followed.  

Let us further define the Markov Renewal Prediction kernel 

for a random arrival times ‘ 𝐾𝑅𝐴𝑖,𝑗(𝑡) = 𝑃𝑅𝐴𝑖𝑗𝑄𝑅𝐴𝑖𝑗(𝑡) ’, 

where ‘𝑄𝑅𝐴𝑖𝑗(𝑡)’ defines the corresponding random arrival 

times and ‘ 𝑃𝑀 = [𝑃𝑅𝐴𝑖𝑗], ∀𝑖, 𝑗 ∈ [1, 𝑛] ’ denotes the 

probability matrix mathematically stated as given below.  

 

𝑃𝑀 = [

𝑃𝑀11 𝑃𝑀12 … 𝑃𝑀1𝑛

𝑃𝑀21 𝑃𝑀22 … 𝑃𝑀2𝑛

… … … …
𝑃𝑀𝑚1 𝑃𝑀𝑚2 … 𝑃𝑀𝑚𝑛

] (6) 

 

𝐾𝑅𝐴𝑖𝑗(𝑡) = 𝑃𝑟𝑜𝑏 {𝑃𝑅𝐴𝑛+1 = 𝑗, 𝑇𝑛+1 − 𝑇𝑛

= 𝑡|𝑃𝑅𝐴𝑛 = 𝑖} 
(7) 

 

𝑄𝑅𝐴𝑖𝑗(𝑡) = 𝑃𝑟𝑜𝑏 {𝑇𝑛+1 − 𝑇𝑛 = 𝑡|𝑃𝑅𝐴𝑛+1

= 𝑗, 𝑃𝑅𝐴𝑛 = 𝑖} 
(8) 

By means of past handover transaction of a mobile node via 

mobile node ID and date from the Computer Network Traffic 

dataset, the state transition probability matrix ‘𝑃𝑀’ and the 

Kernel random arrival time ‘𝐾𝑅𝐴’, the dispersal matrix ‘𝐷𝑀’ 

are initialized as given below. 

 

𝑃𝑆𝑇𝑖𝑗 =
(𝐻𝑂𝑖𝑗)

𝐻𝑛

 (9) 

 

𝐷𝑀𝑖𝑗(𝛾) =
(𝐻𝑂𝑖𝑗𝛾)

𝐻𝑂𝑖𝑗

 (10) 

 
From the above Eqns. (9) and (10), ‘𝐻𝑂𝑖𝑗’ represents the 

number of handovers from mobile node ‘𝑖’ to mobile node ‘𝑗’, 

and ‘𝐻𝑛’ represents the total number of mobile node handovers. 

Next, ‘𝐻𝑂𝑖𝑗𝑡’ denotes the number of handovers from mobile 

node ‘𝑖’ to ‘𝑗’, with a random arrival time ‘𝛾’ respectively. 

Upon occurrence of a handover from mobile node ‘𝑖’ to ‘𝑗’, 

‘𝑃𝑆𝑇𝑖𝑗 ’, ‘𝑄𝑆𝑇𝑖𝑗(𝛾)’ and ‘𝐾𝑅𝐴𝑖,𝑗(𝑡)’ are updated. The grid 

with the highest ‘ 𝐾𝑅𝐴𝑖,𝑗(𝑡) ’ is selected as the predicted 

destination when the time spent in mobile node ‘𝑖’ falls within 

time interval ‘𝛾’. The pseudo code representation of Markov 

Renewal Prediction model for Seamless Mobility is given 

below.  

 
Algorithm 1 Markov Renewal Prediction-based Seamless 

Mobility 

Input: Dataset ‘ 𝐷𝑆 ’, Mobile Nodes ‘ 𝑀𝑁 =
𝑀𝑁1, 𝑀𝑁2, … , 𝑀𝑁𝑗’, user equipment ‘𝑈𝐸’, coordinates 

‘(𝑋𝑈𝐸 , 𝑌𝑈𝐸)’ 

Output: Computationally efficient prediction 

1: Initialize time ‘𝑡’, mobile nodes ‘𝑀𝑁𝑖’ and ‘𝑀𝑁𝑗’ 

2: Begin 

3: For each Mobile Nodes ‘𝑀𝑁’, with ‘𝑀𝑁𝑖’ and ‘𝑀𝑁𝑗’ 

4: For each user equipment ‘𝑈𝐸’ at a distance ‘𝛼𝑋’ from 

‘𝑀𝑁𝑖’ and ‘𝛼𝑌’ from ‘𝑀𝑁𝑗’ 

5: Estimate the distance as given in Eqns. (1) and (2) 

6: Formulate Markov Renewal Prediction kernel as given 

in Eq. (3) 

7: Evaluate conditional probability between state ‘𝑖’ state 

‘𝑗’ as given in Eqns. (4) and (5) 

8: For each Mobile Nodes ‘𝑀𝑁 ’ with corresponding 

random arrival times 

9: Estimate probability matrix as given in Eq. (6) 

10: Evaluate Kernel random arrival time as given in 

Eqns. (7) and (8) 

11: Return dispersal matrix as given in Eq. (9) 

12: End for  

13: End for  

14: End  

 
As given in the above algorithm, Markov Renewal 

Prediction-based Seamless Mobility is designed that with the 

aid of distance estimation first, obtains the grid for mobility. 

Next, Markov Renewal Prediction kernel is applied that first 

obtains state transitions, followed by which random arrival 

times are evaluated are results are stored in probability matrix. 

Finally, upon occurrence of a handover shifts between nodes, 

therefore ensuring prediction with minimum time and 

maximum accuracy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑀𝑁𝑖

→ 𝑀𝑁𝑗  

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

State 

Transition 

prediction  

Arrival 

time 

prediction  

Handover  

Computationally efficient 

prediction 
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3.3 Radial Kronecker delta neural network-based 

optimized handover 

 

In this section, we apply the Radial Kronecker Delta-based 

Neural Network as shown in figure. The advantage of this 

model is the application of Radial Basis Function (RBF) that 

depends on the distance between the input vector and centroid 

and has a simple structure. The basic structure comprises of 

three layers. They are input layer, hidden layer and output 

layer. The input nodes consist of number of handovers, 

received signal strength (RSS) and Flows (connection counts 

for that day) (i.e., six nodes). Four hidden layers are present 

that utilize a nonnegative function to connect them to all of the 

input mobile nodes.  

The output layer comprises of one mobile node that is 

acquired by a weighted sum of outputs of hidden units. The 

output of the network in this work is to decide upon the factor 

whether handover is required or not. If the resultant value of 

Kronecker Delta ‘𝛿’ is ‘0’, there is no handover. On the other 

hand, if the resultant value of Kronecker Delta ‘𝛿’ is ‘1’, then 

the model handovers the mobile to the selected sink node. 

Figure 3 shows the structure of Radial Kronecker Delta Neural 

Network-based Optimized Handover model. 

 

 
 

Figure 3. Structure of radial Kronecker delta neural network-

based optimized handover 

 

As shown in the above figure, there are one input layer, four 

hidden layers and one output layer. Six nodes (i.e., mobile 

nodes, data packets, Local IP, Remote ASN, RSS and flows) 

are provided as input in the input layer. The first hidden layer 

performs the actual tasks of evaluating the error, the second 

hidden layer updates the weight, the third hidden layer 

evaluates the handover data packets and the final fourth layer 

evaluates the handover cost. Finally, in the output layer, 

optimized handover is performed as output. Let us assume the 

initial value of center be ‘𝐶𝑖𝑗’ in the hidden layer for the ‘𝑖 −

𝑡ℎ’ input mobile node and ‘𝑗 − 𝑡ℎ’ hidden mobile node. Next, 

initialize the value of distance ‘𝐷𝑖𝑠𝑗’ for the ‘𝑗 − 𝑡ℎ’ hidden 

mobile node. Then, the output is formulated as given below.  

 

𝑂𝑢𝑡 = 𝐸𝑥𝑝 [−
(𝑀𝑁 − 𝐶𝑖𝑗)

2

2𝐷𝑖𝑠𝑗
2 ] (11) 

 

From the above Eq. (11), the output unit is formulated ‘𝑂𝑢𝑡’ 

based on the exponential value of the input vector ‘𝑀𝑁’ with 

respect to the center vector for the ‘𝑖 − 𝑡ℎ’ input mobile node 

and ‘𝑗 − 𝑡ℎ’ hidden mobile node ‘𝐶𝑖𝑗 ’ and distance ‘𝐷𝑖𝑠𝑗
2 ’ 

respectively.  

 

𝑂𝑢𝑡𝑘𝑗 = ∑ 𝑊𝑘𝑗𝑂𝑢𝑡𝑗 , 𝑤ℎ𝑒𝑟𝑒 𝑘 = 1 𝑎𝑛𝑑 𝑀 = 6

𝑀

𝑗=0

 (12) 

 

With the obtained initialized weight and output, the error is 

mathematically stated as given below. 

 

𝐸𝑟𝑟𝑘 = 𝐷𝑂𝑢𝑡𝑘 − 𝑂𝑢𝑡𝑘𝑗 (13) 

 

From the above Eq. (13), the error is estimated ‘𝐸𝑟𝑟𝑘’ on 

the basis of the desired output ‘𝐷𝑂𝑢𝑡𝑘’ and the actual output 

‘𝑂𝑢𝑡𝑘𝑗’ respectively. On the basis of the error rate, the updated 

weight is mathematically stated with the aid of learning rate ‘𝜖’ 

as given below.  

 

𝑊𝑘𝑗(𝑛 + 1) = 𝑊𝑘𝑗(𝑛) + 𝜖 (𝐸𝑟𝑟𝑘)𝑂𝑢𝑡𝑘𝑗 (14) 

 

Along with the updated weight as given in the above Eq. 

(14), transmitting handover data packets ‘𝐷𝑃’ results in an 

unavoidable delay in organizing the link. The total handover 

data packets ‘𝐷𝑃’ required to perform a handover is as follow. 

 

𝐷𝑃 = 𝑑𝑝𝑐𝑜𝑛𝑠 + 𝑑𝑝𝑖𝑚𝑝 + 𝑑𝑝𝑡𝑒𝑟𝑚 (15) 

 

From the above Eq. (15), ‘𝑑𝑝𝑐𝑜𝑛𝑠’, ‘𝑑𝑝𝑖𝑚𝑝’ and ‘𝑑𝑝𝑡𝑒𝑟𝑚’ 

denotes the data packets that are required to be exchanged 

during the handover construction, implementation and 

termination respectively. Then, the handover cost ‘𝐻𝑂𝑐𝑜𝑠𝑡’ is 

formulated as given below. 

 

𝐻𝑂𝑐𝑜𝑠𝑡 = 𝐷𝑃 + 𝑆 ∗ 𝐷𝑒𝑙 [𝑀𝑁𝑖, 𝑀𝑁𝑗] (16) 

 

From the above Eq. (16), the handover cost ‘𝐻𝑂𝑐𝑜𝑠𝑡 ’ is 

estimated based on the total handover data packets ‘ 𝐷𝑃 ’ 

required to perform a handover, link delay between two 

mobile nodes ‘𝐷𝑒𝑙 [𝑀𝑁𝑖, 𝑀𝑁𝑗]’ and number of signals ‘𝑆’ 

respectively. Finally, utilizing the Kronecker Delta function, 

the model either handovers the mobile node to the selected 

sink node and vice versa as given below.  

 

𝑂𝑢𝑡𝑘𝑗 = 𝛿𝑘𝑗 = {
0, 𝑖𝑓 𝑘 ≠ 𝑗
1, 𝑖𝑓 𝑘 = 𝑗

 (17) 

 

From the above Eq. (17), results, with handover cost taken 

into consideration, optimized handover is said to be ensured. 

The pseudo code representation of Radial Kronecker Delta 

Neural Network-based Optimized Handover is given below.  

 

Algorithm 2 Radial Kronecker Delta Neural Network-based 

Optimized Handover 

Input: Dataset ‘ 𝐷𝑆 ’, Mobile Nodes ‘ 𝑀𝑁 =
𝑀𝑁1, 𝑀𝑁2, … , 𝑀𝑁𝑗’, user equipment ‘𝑈𝐸’, coordinates 

‘(𝑋𝑈𝐸 , 𝑌𝑈𝐸)’, Data Packets ‘𝐷𝑃 = 𝐷𝑃1, 𝐷𝑃2, … , 𝐷𝑃𝑛’ 

Output: Cost-efficient and optimized handovers  

1: Initialize value of center ‘𝐶𝑖𝑗’, initialize ‘𝐷𝑖𝑠𝑗’, weight 

vector ‘[0,1]’, learning rate ‘𝜖 = 0.05 𝑡𝑜 0.1’ 

2: Begin 

3: For each mobile nodes ‘𝑀𝑁’ 

4: Formulate the output as given in Eq. (11) 

5: Formulate the output with the initialized weight as 

given in Eq. (12) 

6: Evaluate error with the initialized weight and output 

as given in Eq. (13) 
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7: Update weight as given in Eq. (14) 

8: Evaluate total handover data packets as given in Eq. 

(15) 

9: Evaluate handover cost as given in Eq. (16) 

10: Evaluate Kronecker Delta function as given in Eq. 

(17) 

11: If ‘𝛿𝑖𝑗 = 0’  

12: No handover is performed 

13: End if 

14: If ‘𝛿𝑖𝑗 = 1’  

15: Handover is performed and the selected mobile node 

is sent to sink node for further processing 

16: End if 

17: End for  

18: End 

 

As given in the above Radial Kronecker Delta Neural 

Network-based Optimized Handover algorithm, the objective 

remains in improving both the mobility handover cost and 

packet loss rate. With this objective, a Kronecker Delta 

function is introduced in the Radial Basis Neural Network 

model. With the mobile nodes, data packets, Local IP, Remote 

ASN, RSS and flows provided as input in the input layer, the 

hidden layer (i.e., four hidden layers) performs the actual tasks 

of evaluating the error, updating the weight, estimating total 

handover data packets and handover cost. Finally, the output 

is evaluated using the Kronecker Delta function that in turn 

returns either ‘0’ or ‘1’, therefore resulting in cost efficient 

optimized handover. 

 

 

4. EXPERIMENTAL SETTINGS 

 

In this section, comprehensive experiments are operated to 

prove the efficiency of the Markov Renewal Prediction and 

Radial Kronecker Neural Network (MRP-RKNN) based 

optimized handover for seamless mobility in PAN using 

NS2.34 simulator. The experiment data called Computer 

Network Traffic Dataset are available online from 

https://www.kaggle.com/datasets/crawford/computer-

network-traffic. The Computer Network Traffic Dataset 

[https://www.kaggle.com/datasets/crawford/computer-

network-traffic] comprises of certain real network traffic data 

obtained from the past. The dataset consists of 21 rows, and 

covers a span of 10 local workstations, IPs collected over a 

period of three months. Table 1 lists the details of Computer 

Network Traffic Data with each row consisting of four 

columns as given below. 

 

Table 1. Description of computer network traffic dataset 

 
S. No Feature Description 

1 Date (yyyy-mm-dd) 

2 I_ipn Local IP 

3 r_asn Remote ASN 

4 f Flows) 

 

First, we evaluate the handover execution time and seamless 

mobility prediction accuracy of the proposed MRP-RKNN 

method. Then, compared with the existing Machine learning 

based Mobility Robust Optimization (Machine learning-based 

MRO) [1] and Multi Path Transmission Control Protocol 

(MPTCP) [2], our method outperforms it a lot in time and 

accuracy. From the experiments, the significant enhancement 

is due to the less complicated mathematical operations in each 

stage of prediction. Second, we estimated the mobility 

handover cost and packet loss rate to ensure the efficiency of 

the method. In the experiments, the data are stored on a 

computer with an Intel(R) Core(TM) i5-7200 CPU @2.50GHz 

and 8.00GB of RAM. 

 

 

5. DISCUSSIONS 

 

In this section, the quantitative performance evaluation of 

the proposed MRP-RKNN method and the existing Machine 

learning-based MRO [1] and MPTCP [2] are compared with 

certain parameters such as handover execution time, seamless 

mobility prediction accuracy, mobility handover cost and 

packet loss rate with respect to distinct numbers of data 

packets and speed. The performance of proposed and existing 

methods is discussed with aid of table and graphical 

representation. 

 

5.1 Comparative analysis of handover execution time 

 

A considerable amount of time is said to consume during 

the process of handover. This time is said to be handover 

execution time. This is mathematically stated as given below. 

 

𝐻𝑂𝐸𝑇 = ∑ 𝑀𝑁𝑖 → 𝑀𝑁𝑗 ∗ 𝑇𝑖𝑚𝑒 [𝐻𝑂𝑖𝑗] (18) 

 

From the above Eq. (18), handover execution time ‘𝐻𝑂𝐸𝑇’ 

is measured based on the mobile nodes and the time consumed 

in performing handovers between mobile nodes ‘𝑀𝑁𝑖 → 𝑀𝑁𝑗’. 

It is measured in terms of milliseconds (ms). Table 2 presents 

the result comparison of our method MRP-RKNN with other 

previous seamless connectivity-based data transmission 

methods, Machine learning-based MRO [1] and MPTCP [2] 

in terms of handover execution time.  

 

Table 2. Tabulation of handover execution time 

 

Mobile 

nodes 

Handover execution time (ms) 

MRPRKNN 
Machine learning-

based MRO 
MPTCP 

50 23.25 31.45 48.35 

100 35.15 48.35 60.45 

150 45.35 62.15 85.35 

200 51.25 78.35 105.45 

250 68.35 90.45 120.25 

300 75.45 115.15 135.15 

350 82.15 135.25 155.35 

400 105.35 148.25 175.35 

450 125.45 160.45 210.25 

500 135.35 185.35 225.25 

 

Figure 4 given above illustrates the handover execution time 

towards seamless mobility between mobile nodes in PAN. 

From the above figure, the handover execution time is found 

to be directly proportional to the number of mobile nodes. In 

other words, increasing the number of nodes causes an 

increase in the handover processes and this results an increase 

in the handover execution time and vice versa. But simulations 

conducted with 5o mobile nodes saw 23.25ms of handover 

execution time using MRP-RKNN, 31.45ms using MRO [1] 

and 48.35ms using MPTCP [2] respectively. The handover 

execution time during the seamless mobility process using 
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MRP-RKNN method was found to be comparatively lesser 

than MRO [1] and MPTCP [2]. The reason behind the 

improvement was due to the application of Markov Renewal 

Prediction kernel state transition. By applying this transition 

mechanism, conditional probability that a transition will take 

place within ‘𝑡’ time instances between two states were made. 

Only after this measurement predictions were made. This 

Markov Renewal Prediction kernel state transition in turn 

managed in reducing the number of handoffs performed, 

therefore not only ensuring seamless mobility but also 

minimizing the handover execution time using MRP-RKNN 

by 29% compared to MRO [1] and 58% compared to MPTCP 

[2] respectively.  

 

 
 

Figure 4. Graphical representation of handover execution 

time 

 

5.2 Comparative analysis of seamless mobility prediction 

accuracy 

 

The efficiency of the method can be learnt from the 

accuracy rate. The seamless mobility prediction accuracy is 

mathematically stated as given below. 

 

𝑆𝑀𝑃𝐴 =  
𝐷𝑃𝑟𝑒𝑐

𝐷𝑃𝑠𝑒𝑛𝑡

∗ 100 (19) 

 

From the above Eq. (19), the seamless mobility prediction 

accuracy ‘𝑆𝑀𝑃𝐴’ is measured based on the data packets sent 

‘𝐷𝑃𝑠𝑒𝑛𝑡’ and the data packets received ‘𝐷𝑃𝑟𝑒𝑐’. It is measured 

in terms of percentage (%). Table 3 presents the result 

comparison of our method MRP-RKNN with other previous 

seamless connectivity-based data transmission methods, 

Machine learning-based MRO [1] and MPTCP [2] in terms of 

seamless mobility prediction accuracy. 

 

Table 3. Tabulation of seamless mobility prediction accuracy 

 

Mobile 

nodes 

Seamless mobility prediction accuracy (%) 

MRPRKNN 
Machine learning-

based MRO 
MPTCP 

50 93.25 90.45 88.15 

100 91.15 88.15 84.35 

150 90.35 86.35 82.15 

200 89.25 85.15 82.00 

250 88.15 85.00 81.35 

300 86.25 81.25 81.00 

350 86.00 81.00 78.25 

400 84.15 79.55 75.00 

450 83.00 78.00 73.15 

500 82.55 76.25 72.00 

 

Figure 5 shows the graphical portrayal of seamless mobility 

prediction accuracy in the y axis with 500 distinct numbers of 

mobile nodes simulated for 10 different simulation runs to 

obtain the results. With high speed transmitting all-round the 

continuous network makes wireless communications 

exceedingly demanding owing to the purpose that the rate of 

handover grows with the equivalent speed. As a result there 

result in a high call of data packet dropping probability. In our 

work by employing a Markov Renewal Prediction-based 

Seamless Mobility, distance between the nodes is first 

evaluated. Followed by which, Markov Renewal Prediction 

kernel is applied to the obtained distance to measure state 

transitions. Next, the random arrival times are taken into 

consideration and stored in probability matrix. Finally, upon 

occurrence of a handover shifts between nodes, prediction is 

made. This in turn results in the improvement of seamless 

mobility prediction accuracy using MRP-RKNN by 5% 

compared to MRO [1] and 10% compared to MPTCP [2] 

respectively.  

 

 
 

Figure 5. Graphical representation of seamless mobility 

prediction accuracy 

 

5.3 Comparative analysis of mobility handover cost 

 

The mobility handover cost in our work is evaluated on the 

basis of the bandwidth being utilized. Hence, the amount of 

data that are said to be transmitted in a given amount of time 

instance is measured to obtain mobility handover cost. The 

mobility handover cost is mathematically stated as given 

below.  

 

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝐷𝑝𝑖  (𝑏𝑖𝑡𝑠)/𝑡 (20) 

 

From the Eq. (20), the mobility handover cost is measured 

based the data or data packets being transmitted ‘𝐷𝑃𝑖’ and the 

time taken to transmit ‘ 𝑡 ’. It is measured in terms of 

milliseconds (ms). Table 4 presents the result comparison of 

our method MRP-RKNN with other previous seamless 

connectivity-based data transmission methods, Machine 

learning-based MRO [1] and MPTCP [2] in terms of seamless 

mobility handover cost. 

Figure 6 given below illustrates the graphical representation 

of mobility handover cost analysis with respect to speed 

ranging between 2m/s and 20m/s from mobile nodes involved 

in the simulation process for 10 different simulation runs 

performed under diversified environments. From the above 

figure, a linear increase is found in the seamless mobility 

handover cost by applying all the three methods. In other 

words increasing the mobile nodes speed causes an increase in 

the network traffic in PAN, therefore resulting in the increase 
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in the seamless mobility handover cost also. However, 

simulations performed with speed 2m/s using the proposed 

MRP-RKNN method was observed to be 145bps, 190bps 

using MRO [1] and 235bps using MPTCP [2] respectively. 

From this, the seamless mobility handover cost with the 

proposed MRP-RKNN method was found to be comparatively 

lesser than MRO [1] and MPTCP [2]. The reason behind the 

minimization of seamless mobility handover cost using MRP-

RKNN method was due to the application of Kronecker Delta 

function in the Radial Basis Function (RBF) that depends on 

the distance between the input vector and centroid. With this 

measurement only further processing was carried out in the 

hidden layers. As a result, the seamless mobility handover cost 

was said to be reduced considerably by 26% compared to 

MRO [1] and 39% compared to MPTCP [2] respectively.  

 

Table 4. Tabulation of mobility handover cost 

 

Mobile 

nodes 

Mobility Handover Cost (bps) 

MRPRKNN 
Machine learning-

based MRO 
MPTCP 

2 145 190 235 

4 170 215 270 

6 195 235 315 

8 215 280 365 

10 235 345 390 

12 240 355 425 

14 275 390 445 

16 300 415 485 

18 325 435 515 

2 145 190 235 

 

 
 

Figure 6. Graphical representation of seamless mobility 

handover cost 

 

5.4 Comparative analysis of packet loss rate  
 

Packet loss rate is defined as the percentage ratio of number 

of data packets dropped to the total number of data packets 

send. The packet loss rate is mathematically formulated as 

given below.  
 

𝑃𝐿𝑅 =  
𝐷𝑃𝑑𝑟𝑜𝑝

𝐷𝑃𝑠𝑒𝑛𝑡

∗ 100 (21) 

 

From the Eq. (21), packet loss rate ‘𝑃𝐿𝑅’ is measured by 

means of data packets dropped ‘𝐷𝑃𝑑𝑟𝑜𝑝 ’ and the total data 

packets send ‘𝐷𝑃𝑠𝑒𝑛𝑡’. It is measured in terms of percentage 

(%). Finally, Table 5 provides result comparison of our 

method MRP-RKNN with other previous seamless 

connectivity-based data transmission methods, Machine 

learning-based MRO [1] and MPTCP [2] in terms of packet 

loss rate.  

Finally, Figure 7 given below shows the packet loss rate 

with respect to distinct numbers of packets ranging between 

10 and 100. From the figure it is inferred that the packet loss 

rate is neither increasingly proportionate nor decreasingly 

proportionate to the data packets concerned. However, from 

the above illustrations the packet loss rate using MRP-RKNN 

method is found to be comparatively lesser than MRO [1] and 

MPTCP [2]. The reason behind the minimization of packet 

loss rate using MRP-RKNN method was owing to the 

application of Radial Kronecker Delta Neural Network-based 

Optimized Handover algorithm. By applying this algorithm, 

four distinct hidden layers were utilized, error evaluation in 

first hidden layer, weight update in second hidden layer, 

evaluating total handover data packets in third hidden layer 

and finally, estimating handover cost in the fourth layer. Only 

upon successful evaluation of each distinct process the 

procedure is continued and forwarded to the next stage. As a 

result, the packet loss rate using MRP-RKNN method is said 

to be reduced by 21% compared to MRO [1] and 37% 

compared to MPTCP [2]. 

 

Table 5. Tabulation of packet loss rate 

 

Mobile 

nodes 

Packet loss rate (%) 

MRPRKNN 
Machine learning-

based MRO 
MPTCP 

10 7 9 12 

20 9 12 14 

30 11 14 16 

40 12 15 18 

50 10 13 17 

60 10 13 16 

70 11 14 18 

80 11 14 18 

90 10 12 16 

100 9 11 13 

 

 
 

Figure 7. Graphical representation of packet loss rate 

 

 

6. CONCLUSIONS 

 

Seamless mobility has the capability in replacing the nodes 

position of association to a network designed on the basis of 

an Internet Protocol (IP) without any interruption in the 

persuading connections and disturbance throughout the 

communication process. With the high rate of network traffic, 

one of the most challenging tasks as far as PAN is provisioning 

of continuous network access. In this work, a novel method 

called, Markov Renewal Prediction and Radial Kronecker 

Neural Network (MRP-RKNN) for seamless mobility in 
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presence of handover in PAN is proposed. The MRP-RKNN 

method ensures seamless mobility even in case of handover by 

means of two different phases, Markov Renewal Prediction-

based Seamless Mobility model and Radial Kronecker Delta 

Neural Network-based Optimized Handover. Extensive 

simulation results were provided to demonstrate that the 

proposal can boost the performance of seamless mobility even 

during handover in PAN. The performance of the proposed 

method was analyzed in terms of mobility handover cost, 

packet loss rate, handover execution time and seamless 

mobility prediction accuracy and it was compared to the state-

of-the-art methods. Numerical results validated that the 

proposed method outperforms the state-of-the-art methods and 

obtains lower mobility handover cost, packet loss rate, 

handover execution time and ensuring better prediction 

accuracy for seamless mobility in PAN. 
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