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Micromachining techniques are now being used more frequently as a result of 
miniaturization. This technique has been supported by the requirement for material 
processing at an affordable cost and microatomic resolution in numerous sectors. Laser 
micromachining is a precise, non-contact method of machining that is used to create tiny, 
up to 500 m, components. The small elemental areas are the focus of laser ablation, which 
helps absorb a high amount of energy. In this micro-machining, metal removal rate and 
surface finish are represented by the deepness of the groove and the height of the recast 
layer. While machining, a layer called a recast layer forms on the work piece surface as 
a result of the tremendous heat generated, and this layer is damaging to the component's 
surface quality. For accurate applications, the recast layer must be as tiny as possible. As 
a result, the objective functions are the height of the recast layer and the deepness of the 
groove. Experiments designed by the DOE are used to generate empirical models. For 
each experimental run present in the matrix, the specified input parameter combination 
is set and the work piece is machined accordingly. The response surface methodology 
based on mathematical modeling and analysis of the machining properties of a pulsed 
Nd: YAG laser during micro-grooving operation on a work piece of Magnesium Silicon 
Alloy metal matrix composite is the focus of this research study. Initially, magnesium 
alloy AS21-SiC metal matrix composites are manufactured with Ultrasonic pro assisted 
stir casting. For the machined samples, the deepness of the groove and the height of recast 
layer will be measured by an optical measuring microscope. Consequently, the measured 
data is used by the GP to develop the mathematical models. In this work, an efficient 
GA-based genetic algorithm (NSGA-II) is applied to obtain the optimal parameters. As 
the chosen objectives are conflicting in nature, the problem is formulated as a multi-
objective optimization problem. 
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1. INTRODUCTION

In this study, individual laser parameters are explored for
their influence on Laser Micro Grooving processes, and 
process optimization is discussed in this paper. During laser 
grooving a blind cut is developed on the material, the 
schematic is shown in Figure 1. The present investigation 
aimed to explore some of the performance characteristics with 
the variation of particle size and volume percentage in AS21-
SiC MMC along with some electrical machining parameters in 
Laser beam Micro-Machining 

Figure 1. Cross sectional drawing of the desired micro 
groove 

The experimentation is planned with the consideration of 
significant control variables as pulse power pulse frequency, 
assisted gas pressure and pulse width. The postulation of 
empirical models for deepness of machined micro groove and 
height of recast layer are also included. 

As well as this work formulates the Laser beam Micro-
Machining of AS21-SiC explicitly as a multi-objective 
optimization problem to find the best machining parameters 
for the minimal recast layer height and maximum groove depth. 
The mathematical models for the selected machining 
responses are developed using response surface methodology 
(RSM). Further, these mathematical models are used in 
optimization to find the set of Pareto-optimal solutions. One 
of the efficient and widely used methods for generating Pareto 
frontier, an algorithm (NSGA-II) is applied to obtain the 
optimal parameters. Observed all parameters and selected 
some parameters for considering and get them optimised. 
Based on some investigations over this topic huge literature 
may be done and finalised the process parameters and 
optimisation technique. The overall methodology of present 
work is summarized as shown in Figure 2 below. 
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Figure 2. ND: YAG laser machine outline diagram 
 
Utilizing the experimental test findings as produced from a 

predefined set of trials, the mathematical correlations between 
response, i.e., deviation half taper angle and deviation of depth 
with Nd: YAG laser micro-grooving process parameters have 
been established. The following steps have been taken to build 
a mathematical model based on RSM for correlating the 
groove depth and recast layer height as a function of the most 
popular laser machining process parameters as taken into 
account in the experimental design. 

The multi-objective problem that is being optimised aims to 
increase the depth of the groove and minimise the height of the 
recast layer. Equations represent, respectively, the depth of the 
recast layer and the groove. 
 
1.1 Literature survey 
 

The quality of the laser cut is crucial to the laser cutting 
process. On the final product's quality, all cutting parameters 
may have a considerable impact. Cutting parameters are often 
modified and altered to deliver the desired cut quality. But 
doing this takes a lot of time and effort. Influence of the 
manufacturing parameters in laser melting on properties of an 
alloy described by Mauduit et al. [1]. Particulate reinforced 
metal matrix composites are described and studied in many 
researches [2-7]. Optical and conductive properties of 
composites and laser processing of composites are described 
[8]. Several attempts have also been made to model the LBM 
process. Although there has been a lot of foundational study 
[9, 10] in the domain of laser machining technology, there has 
been very little in the LMM. So, further research is still needed 
in the point of micromachining for optimal control of 
machining parameters. LMM is one of the most flexible and 
easiest to utilize. As a non-contact process, laser micro 
machining has the ability to be used on challenging materials 
and components either as part of a series of manufacturing 
process steps or in situ on completed parts. Advances in laser 
micro machining allow for fast, high-resolution,  

accurate, reproducible processing. Windholz and Molian 
[11] described micro-machining of diamond by micro-second 
pulse Nd: YAG and nano-second pulse excimer lasers. 
Kovalenko et al. [12] reported micro drilling, micro cutting 
and micro milling of semiconductors with green laser. Elmes 
et al. [13] conclude that laser micromachining is the ideal 
technology for biomedical apparatus that requires improved 
speed and automation, such as a pin-based picolitre dispenser 
for taking thousands of genetic samples for huge parallel 

testing. Allen et al. [14] has fabricated inkjet nozzles of metal 
sheet by three different fabrication technique, i.e. micro-EDM, 
micro Drilling by using copper vapour laser machining and 
evaluated the characteristics of each technique while assessing 
the differences between. Drilling holes, however, is the key 
application in micro fabrication. Excimer laser removes only 
a thin layer of material and has small penetration depth, 
allowing precise control of the micro-drilling depth [15]. 
Although more number of research works are reported on laser 
drilling operation, research work on micro grooving operation 
using laser has not been reported so far. In several references, 
the applicability and superiority of the artificial neural network 
method of analysis has been reported [16, 17]. 

Process modeling and optimization are two important issues 
in LMM. The LBM process is characterized by a multiplicity 
of dynamically interacting process variables. Deepness of 
groove and height of recast layer are considered to be the 
important factors in predicting performance of Laser 
machining process. Dhara et al. [18] have adopted the artificial 
neural networks approach to optimize the machining 
parameter combination for the responses of deepness of 
groove and height of recast layer in laser micro-machining of 
die steel.  

However, it is difficult to establish the relationship between 
LBM process parameters and responses because the process is 
too complex in nature. Therefore, response surface 
methodology (RSM) can be adopted for modeling and analysis 
using experimental data and studying the influence of various 
process parameters on responses [19]. Yildiz [20] proven the 
hybrid optimization approach's superiority over other 
strategies in terms of convergence speed and efficiency. Yusup 
et al. [21] For both conventional and modern machining, 
evolutionary strategies for optimising machining process 
parameters were considered. They observed evolutionary 
techniques while optimizing machining process parameters 
positively gives good results. Samantha and Chakraborty [22] 
showed the applicability and usefulness of evolutionary 
algorithms in improving unconventional machining processes' 
performance measures. Jain et al. [23] GA was utilized to 
optimize process parameters in advanced machining processes 
of the mechanical kind. As a result of these comprehensive 
investigations, evolutionary multi-objective optimization 
(EMO) approaches have become widely used in a variety of 
problem-solving tasks and have gotten a lot of attention from 
the multi-criterion optimization and decision-making 
communities [24]. Non-dominating sorting GA (NSGA-II) is 
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one of the most widely used methods for generating the Pareto 
frontier. This algorithm ranks the individuals based on 
dominance. NSGA-II uses elitism and a phenotype crowd 
comparison operator that keeps diversity without specifying 
any additional parameters [25]. Deb et al. described a fast 
elitist non-dominated sorting genetic algorithm for multi-
objective optimization: NSGA-II A new baseline algorithm 
for pareto multiobjective optimization [26, 27]. Its main 
advantage in solving multi-objective problems is that it leads 
the search toward the global Pareto front while maintaining 
diversity of the solution set along that front. A 7075 aluminum 
alloy matrix reinforced with 15 volume percent of SiCp were 
prepared by using liquid metallurgy route by Mohane t al. [28]. 
Optimization parameters of machining are described [29]. The 
Effect of evaporative pattern casting process parameters on the 
surface roughness of an alloy stated [30]. 

 
1.2 Nd: YAG laser machining system details for micro-
grooving process 

 
To generate complex machining operations such as profile 

cutting, grooving, shape cutting, marking, etc., The CNC 
pulsed Nd: YAG laser machining system is made up of several 
subsystems that operate in transverse electromagnetic mode, 
including the laser source and beam delivery unit, power 
supply unit, radio frequency (RF) Q-switch driver unit, 
cooling unit, and CNC controller for X, Y, and Z axis 
movement. The beam delivery system consists of a laser head, 
an RF Q switch, a safety shutter, a beam expander, and front 
and back mirrors. An Nd: YAG rod and a krypton arc lamp are 
arranged at two distinct focal points of an elliptical cavity in a 
laser head. Nd: YAG lasers use neodymium atoms as the 
lasing medium. The laser output is controlled by the current 
supplied to the krypton arc lamp by the main power supply 
unit. The cooling unit keeps the laser cavity, lamp, and Nd: 
YAG rod cold to avoid thermal damage.  

 

 
 

Figure 3. Experimental setup of Nd: YAG laser beam 
machine 

 

The CNC Nd: YAG laser machine is schematically 
represented in Figure 3. The Z-axis movement of the lens is 
controlled by the CNC Z-axis controller unit. Charge coupled 
device (CCD) cameras together with close circuit television 
(CCTV) are used for viewing the location of the work piece 
and also for checking the proper focusing condition of the 
surface of the work piece before laser machining for effective 
utilization of the place that is provided for fixing of the work 
piece. The crystal is excited by a krypton arc lamp. For 
amplification of light, optical feedback is provided with a rear 
mirror of 100% reflectivity and a front mirror of 80% 
reflectivity. Q-switching is a great way to get a very short pulse 
width and a high peak power of laser light from a low-power 
continuous wave (CW) laser. The RF Q-switch driver unit 
supplies an RF signal to the Q-switch for its operation. The 
laser is focused on the work area using a beam delivery 
mechanism. The CNC controller is made up of three axes: X, 
Y, and Z, as well as a controlling unit called accupos. Stepper 
motors are attached to each axis and connected to the accupos. 
This accupos unit can control the axis movement of the Nd: 
YAG laser beam.  

 
Specifications of laser machine 

 
Model JK300D 

Power at laser 300W 
Typical power and work piece 250w 

Maximum peak power 16KW 
Max pulse energy 35J 

Max frequency 1000Hz 
Pulse width range 0.2 – 5ms 

 
 

2. EXPERIMENTAL METHODOLOGY 
 
2.1 Conducting the experiments 

 
The current study's experimental setup is displayed in 

Figure 4. Figure 5 depicts the laser beam set up, the dielectric 
system, and the CNC system with the electronic circuits and 
controls for fixation of the work piece. Figure 4 displays the 
work piece setup and the LBM in a ready-to-start position. 
With offline CAD/CAM systems operating either three-axis 
flatbed systems for two-dimensional laser cutting or six-axis 
robots for three-dimensional laser cutting, the laser cutting 
process naturally leads to automation. The machine's running 
position is shown, as well as the spark and laser beam striking 
the work piece to create grooving. And no limitations on the 
cutting speed. Table 1 shows the possible ranges of process 
control variables offered by the machine tool manufacturer. 
These figures represent conditions in which there is no work 
piece breakage, no short circuits, and no cutting speed 
constraints. WEDM cuts manufactured materials to the jig's 
specifications, and finishing is done according to the nature of 
the job and the working environment. Wire a thin, single-
strand metal wire and de-ionized water, which are used to 
carry electricity, are utilized in the electro thermal production 
process known as "EDM machining," which uses heat from 
electrical sparks to cut through metal. The feasible ranges of 
the process control variables, provided by the machine tool 
manufacturer, are listed in Table 1. These values correspond 
to the conditions under which there is no work piece break up, 
no short circuits, no other failure of the work material.  
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Figure 4. Experimentation of laser micro grooving during 
machining 

 
 

Figure 5. Work pieces after machining (grooving) 

 
Table 1. Design of experimental matrix showing coded values 

 
Exp. 
No. 

Pulse power(W) 
(A) 

Pulse frequency (Hz) 
(B) 

Gas pressure (Kg/cm3) 
(C) 

Pulse width (µm) 
(D) 

1. -1 -1 -1 -1 
2. +1 -1 -1 -1 
3. -1 +1 -1 -1 
4. +1 +1 -1 -1 
5. -1 -1 +1 -1 
6. +1 -1 +1 -1 
7. -1 +1 +1 -1 
8. +1 +1 +1 -1 
9. -1 -1 -1 +1 

10. +1 -1 -1 +1 
11. -1 +1 -1 +1 
12. +1 +1 -1 +1 
13. -1 -1 +1 +1 
14. +1 -1 +1 +1 
15. -1 +1 +1 +1 
16. +1 +1 +1 +1 
17. -2 0 0 0 
18. +2 0 0 0 
19. 0 -2 0 0 
20. 0 +2 0 0 
21. 0 0 -2 0 
22. 0 0 +2 0 
23. 0 0 0 -2 
24. 0 0 0 +2 
25. 0 0 0 0 
26. 0 0 0 0 
27. 0 0 0 0 
28. 0 0 0 0 
29. 0 0 0 0 
30. 0 0 0 0 
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Figure 6. Microscopic images of machined work pieces that shows deepness of groove 
 

Table 2. Design matrix four variable five level list of actual and coded values of the machining process parameters 
 

S. No. Control factor Symbol Level Units -2 (Lowest) -1 (low) 0 (medium) 1 (High) 2 (highest) 
1. Pulse power A 210 220 230 240 250 W 
2. Pulse frequency B 210 220 230 240 250 Hz 
3. Asst gas pressure C 8 9 10 11 12 Kg/cm2 
4. Pulse width D 0.2 0.3 0.4 0.5 0.6 Ms 

 
2.1.1 Identify the process parameters 

After marking and fixing the work piece on machine table 
machine power would be switched ON. The work item will 
then be grooved after a single laser pass. Four input variables 
have been chosen as a result of preliminary inquiry, namely 

• Pulse power 
• Pulse Frequency  
• Assisted gas pressure 
• Pulse width 

 
2.1.2 Conducting the experiments as per the design matrix and 
recording the responses 

The machined work pieces are examined by an optical 
microscope by placing them on the table of the microscope, 
switching ON the light of the microscope, and connecting 
them to a computer that has microscope software installed. 
The lighting source emitted on the work piece would provide 
us with a microscopically clear view of the machined surfaces. 
The work piece's microscopically images are as shown in 
Figure 6. 
 
2.1.3 Finding the control variables' upper and lower limits 

The process variables' upper and lower bounds are 
determined. A factor's maximum and lower limits were coded 
as +2 and -2, respectively. Table 2 shows the selected process 
parameters together with their limit values. 

 
2.2 Using design expert 7.1.4 to create mathematical 
models  

 
In the present study, mathematical relationships between 

control variables and the output responses were developed 
using the RSM. For modeling the link between the process 
parameters and the output, RSM is a collection of advanced 

design experiments (DOE) approaches. Models with 
questionable response surface curvature are frequently 
improved using RSM. Two popular types of RSM used for 
experimenting are Box-Behnken Design (BBD) and 
Rotational Central Composite Design (RCCD). BBD is a 
capable and effective design. It is typically applied to 
nonsequential experiments. The RSM in a type BBD is carried 
out in this study with two objectives. Finding the ideal settings 
to reduce the dimensional inaccuracy is the first goal. The 
second is to look into how variables and responses interact in 
order to comprehend the system. The goal of constructing 
mathematical relationships is to link machining responses to 
cutting parameters, allowing for easier machining process 
optimization. The regression coefficients of the proposed 
models were calculated using Design Expert 7.1.4 statistical 
analysis software. Second order models were proposed due to 
the lower predictability of first order models for current 
models. The analysis of variance (ANOVA) was utilized to 
ensure that the proposed models were adequate. 
 
2.2.1 Formulation of optimization problem 

The mathematical relationships between response, i.e., 
deviation half taper angle and deviation of depth with Nd: 
YAG laser micro-grooving process parameters have been 
established utilizing the experimental test results as listed in 
Table 3 obtained from a planned set of experiments. 
Mathematical model based on RSM for correlating the groove 
depth and recast layer height as a function of the most common 
laser machining process parameters as considered in the 
experimental design have been established through the 
following. 

In the process of optimization, the aim is to maximize the 
deepness of groove and minimize height of recast layer which 
forms the multi objective problem. Equations represent the 
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deepness of groove and recast layer respectively. The 
complexities of the models were reduced by applying the back 
elimination procedure. The final equations, after eliminating 
the insignificant terms, as: 

 
2.2.2 In terms of coded factors - Deepness of the groove  

 
Deepness of Groove=+0.058+0.020×A+6.567E-
003×B+3.383E-003×C-6.167E-004×D+5.800E-
003×A×B+5.200E-003×A×C-3.400E-003×A×D-

5.000E-005×B×C-5.850E 003×B×D+5.500E-
004×C×D+3.650E-003×A2-6.100E-

003×B2+8.500E-4×C2+7.500E-004× D2 

(2.1) 

 
2.2.3 In terms of coded factors-height of recast layer 

 
Height of Recast Layer 

=+0.045+0.011×A+0.022×B+2.906E-003×C-
3.639E-003×D+4.782E-0×A×B+1.818E-
003×A×C+4.583E-003×A×D+7.417E-

003B×C+2.282E-003×B×D-3.482E-003×C×D-
4.186E-003×A2+6.714E-003×B2+4.137E-004×C2-

9.863E-004× D2 

(2.2) 

 
In the above equations A, B, C, and D, represents 

logarithmic transformation of machining parameters that is 
pulse power, pulse frequency, gas pressure and pulse width. In 
the Eqns. (2.1) and (2.2), A, B, C, and D represent the 
logarithmic transformations of control factors is pulse power, 
pulse frequency, gas pressure and pulse width respectively and 
they are given below: 

 

𝑥𝑥1 =
ln(𝑋𝑋1) − ln(9)
ln(11) − ln(9) ; 𝑥𝑥2 =

ln(𝑋𝑋2) − ln(30)
ln(35) − ln(30) ; 

𝑥𝑥3 =
ln(𝑋𝑋3) − ln (5)
ln(7) − ln(5)

; 𝑥𝑥4 =
ln(𝑋𝑋4) − ln (5)
ln(6) − ln(5)

 
 
The above relations are obtained from the following 

transformation equation: 
 

𝑥𝑥 =
ln(𝑋𝑋𝑛𝑛) − ln(𝑋𝑋𝑛𝑛0)
ln(𝑋𝑋𝑛𝑛1) − ln(𝑋𝑋𝑛𝑛0) 

 
where, x is the coded value of any factor corresponding to its 
natural value Xn; Xn1 is the natural value of the factor. 
 
2.3 Analysis of variance (ANOVA) 
 

The Model F-value of 9.32 indicates that the model is 
statistically significant. Due to noise, there is only a 0.01 
percent chance that a "Model F-Value" this large will occur. 
Model terms are significant when "Prob > F" is less than 
0.0500. A and B are important model terms in this scenario. 
The model terms are not important if the value is bigger than 
0.1000. Tables 4 and 5 exhibit the ANOVA statistics for 
deepness of groove and height of recast layer, respectively. 

 
2.3.1 ANOVA for groove depth 

The Model F-value of 9.32 in Table 4 indicates that the 
model is significant. Due to noise, there is only a 0.01 percent 
chance that a "Model F-Value" this large will occur. Model 
terms are significant when "Prob > F" is less than 0.0500. A 
and B are important model terms in this scenario. The model 
terms are not important if the value is bigger than 0.1000. If 
there are a lot of minor model terms. The "Lack of Fit F-value" 
of 1.39 indicates that the lack of fit has no bearing on the pure 
error. A large "Lack of Fit F-value" has a 37.53 percent chance 
of occurring owing to noise. 

 
Table 3. Design of experimental matrix showing observed responses 

 

Ex.No. Pulse power  
(W) 

Pulse frequency  
(Hz) 

Gas pressure 
(Kg/Cm) 

Pulse width 
(Ms) 

Deepness of groove 
(mm) 

Height of recast layer 
(mm) 

1 240 220 11 0.5 0.0705 0.0359 
2 220 220 9 0.5 0.0525 0.0298 
3 230 230 10 0.4 0.0651 0.0397 
4 220 240 11 0.5 0.0503 0.0492 
5 220 220 11 0.3 0.0492 0.0321 
6 230 230 10 0.4 0.0552 0.0405 
7 240 220 9 0.3 0.0657 0.0427 
8 240 240 11 0.3 0.0798 0.0699 
9 220 240 9 0.3 0.0532 0.0527 
10 240 240 9 0.5 0.0687 0.06523 
11 220 240 11 0.3 0.0502 0.0578 
12 220 240 9 0.5 0.0442 0.0469 
13 220 220 9 0.3 0.0421 0.0321 
14 230 230 10 0.4 0.0553 0.0416 
15 240 240 11 0.5 0.0695 0.0689 
16 240 220 9 0.5 0.0557 0.0378 
17 230 230 10 0.4 0.0553 0.0497 
18 240 240 9 0.3 0.0696 0.0547 
19 220 220 11 0.5 0.0461 0.0302 
20 240 220 11 0.3 0.0645 0.0408 
21 230 230 10 0.4 0.0552 0.0501 
22 250 230 10 0.4 0.0799 0.0529 
23 230 250 10 0.4 0.0602 0.0695 
24 230 230 10 0.2 0.0548 0.0493 
25 230 230 12 0.4 0.0603 0.0475 
26 230 230 8 0.4 0.0542 0.0415 
27 230 230 10 0.4 0.0605 0.0513 
28 210 230 10 0.4 0.0402 0.0269 
29 230 230 10 0.6 0.0595 0.0369 
30 230 210 10 0.4 0.0404 0.0321 
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Table 4. Analysis of variance table for response surface quadratic model 
 

Source Sum of squares Degrees of freedom Mean square F-value P-value 
A-pulse power 2.313E-003 1 2.313E-003 105.80 <0.0001 
B-frequency 2.587E-004 1 2.587E-004 11.84 0.0036 
C-pressure 6.868E-005 1 6.868E-005 3.14 0.0966 

D-width 2.282E-006 1 2.282E-006 0.10 0.7511 
AB 3.364E-005 1 3.364E-005 1.54 0.2338 
AC 2.704E-005 1 2.704E-005 1.24 0.2836 
AD 1.156E-005 1 1.156E-005 0.53 0.4783 
BC 2.500E-009 1 2.500E-009 1.144 0.9916 
BD 3.422E-005 1 3.422E-005 1.57 0.2300 
CD 3.025E-007 1 3.025E-007 0.014 0.9079 
A2 2.284E-005 1 2.284E-005 1.04 0.3229 
B2 6.379E-005 1 6.379E-005 2.92 0.1082 
C2 1.239E-006 1 1.239E-006 0.057 0.8151 
D2 9.643E-007 1 9.643E-007 0.044 0.8365 

Residual 3.279E-004 15 2.186E-005   
Lack of Fit 2.413E-004 10 2.413E-005 1.39 0.3753 
Pure Error 8.659E-005 5 1.732E-005   
Cor Total 3.181E-003 29    

 

 
 

Figure 7. Normal plots of residuals 
 
From the notation the "Pred R-Squared" of 0.5238 is not as 

close to the "Adj R-Squared" of 0.8007 as one might normally 
expect. This may indicate a large block effect or a possible 
problem with the model and/or data.  

Model reduction, response transformation, outliers, and 
other factors should all be considered. The signal-to-noise 
ratio is measured using "Adeq Precision." It is preferable to 
have a ratio of more than four. Your signal-to-noise ratio of 
11.877 suggests a good signal.  

The design space can be navigated using this concept. 
 

Std. Dev. 4.675E-003 
R-Squared 0.8969 

Mean 0.058 
Adj R-Squared 0.8007 

C.V. % 8.12 
PredR-Squared 0.5238 

PRESS 1.515E-003 
Adeq Precision 11.877 

 
After all models is significant normal% of probability plots 

are represented in graphical as shown in Figure 7. As well as 
a graph was drawn in between actual values and predicted 
values to check the fitness of the given values as shown in 
Figure 8. 

The individual influence of pulse power on groove depth is 

seen in Figure 9. It shows that as the pulse power grows, so 
does the depth of the groove. The depth of the groove deepens 
as the pulse power increases, according to the results of the 
experiments. Figure 10 shows that pulse frequency increases 
the deepness of the groove also increases on the other hand 
upto certain range then decreases. 

 

 
 

Figure 8. Actual values Vs predicted values 
 

 
 

Figure 9. Effect of pulse power on deepness of groove 
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Figure 10. Effect of frequency on deepness of groove 
 

 
 

Figure 11. Effect of pulse frequency and pulse power on 
deepness of groove 

 

 
 

Figure 12. Effect of gas pressure and pulse frequency on 
deepness of groove 

 
The interaction effect of pulse power and pulse frequency 

on deepness of groove is as shown in Figure 11. At a constant 
pulse frequency pulse power is directly proportional to 
deepness of the groove.  

Comparatively at low value of pulse power, pulse frequency 
has parabolic effect on deepness of the groove. Even if the 
pulse frequency is increased or decreased, the groove depth is 
not impacted. On the other hand, when the pulse power is high, 

the depth of the groove deepens as the pulse frequency rises. 
Figure 12 depicts the interaction effect of gas pressure and 

pulse frequency on groove depth. When the effect of assist gas 
pressure increases, the depth of the groove reduces as the pulse 
frequency increases. However, when the frequency of the 
pulse increases, the depth of the groove deepens and 
subsequently declines. We can see that increasing the pulse 
frequency has a considerably greater influence on groove 
depth. 
 
2.3.2 ANOVA for recast layer 

In the Table 5 the F-value of 13.46 for the model indicates 
that it is significant. Due to noise, there is only a 0.01 percent 
chance that a "Model F-Value" this large will occur. 

The "Lack of Fit F-value" of 0.57 indicates that the lack of 
fit has no bearing on the pure error. There's a 78.70 percent 
likelihood that a significant "Lack of Fit F-value" is caused by 
noise.  

 
Std. Dev. 4.578E-003 

R-Squared 0.9263 
Mean 0.046 

Adj R-Squared 0.8575 
C.V. % 9.98 

Pred R-Squared 0.7236 
PRESS 1. 179E-003 

Adeq Precision 14.936 
 
Table 5. Analysis of variance table for response surface 

quadratic model 
 

Source Sum of 
squares 

Degrees of 
freedom 

Mean 
square 

F-
value P-value 

A-pulse 
power 7.835E-004 1 7.835E-

004 37.39 <0.0001 

B-frequency 2.789E-003 1 2.789E-
003 133.10 <0.0001 

C-pressure 5.066E-005 1 5.066E-
005 2.42 0.1408 

D-width 7.946E-005 1 7.946E-
005 3.79 0.0705 

AB 2.287E-005 1 2.287E-
005 1.09 0.3127 

AC 3.303E-006 1 3.303E-
006 0.16 0.6969 

AD 2.100E-005 1 2.100E-
005 1.00 0.3327 

BC 5.502E-005 1 5.502E-
005 2.63 0.1260 

BD 5.210E-006 1 5.210E-
006 0.25 0.6253 

CD 1.213E-005 1 1.213E-
005 0.58 0.4586 

A2 3.004E-005 1 3.004E-
005 1.43 0.2498 

B2 7.727E-005 1 7.727E-
005 3.69 0.0740 

C2 2.935E-007 1 2.935E-
007 0.014 0.9074 

D2 1.667E-006 1 1.667E-
006 0.080 0.7817 

Residual 3.143E-004 15 2.096E-
005   

Lack of Fit 1.680E-004 10 1.680E-
005 0.57 0.7870 

Pure Error 1.463E-004 5 2.926E-
005   

Cor Total 4.263E-003 29    
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Figure 13. Normal plot of residuals of recast layer 
 

 
 

Figure 14. Graph in terms of actual values vs. predicted 
 

 
 

Figure 15. Effect of pulse frequency and pulse power on 
recast layer 

 
The "Pred R-Squared" of 0.7236 is in reasonable agreement 

with the "Adj R-Squared" of 0.8575, as seen in the above 
notation. The signal-to-noise ratio is measured using "Adeq 
Precision." It is preferable to have a ratio of more than four. 
Your signal-to-noise ratio of 14.936 suggests a good signal. 
This model can be used to find your way through the design 
world. 

Figure 13 shows normal percent of probability graphs once 
all models are significant. In contrast, in Figure 14, a graph 
was formed between actual and anticipated values. 

Figure 15 depicts the effect of pulse power and pulse 
frequency on the height of the recast layer. At varying inputs 
of pulse power, the height of the recast layer grows as the pulse 

frequency increases; at the same time, the height of the recast 
layer increases as the pulse power increases. This phenomenon 
demonstrates that the pulse frequency has a greater impact on 
the recast layer than the pulse power. 

Figure 16 depicts the effect of pulse width and pulse power 
on the height of the recast layer. We can see that when pulse 
width rises, the height of the recast layer likewise increases, 
and as pulse power increases, the height of the recast layer also 
increases. On the recast layer, we can see that pulse power is 
more effective than pulse width. 

 

 
 

Figure 16. Effect of pulse width and pulse power on recast 
layer 

 
Figure 17 depicts the effect of gas pressure and pulse 

frequency on the recast layer. When the pulse frequency is 
increased, the height of the recast layer increases with a 
decrease in gas pressure, but there is no adverse effect on the 
recast layer when the air pressure is increased.  

 
 

Figure 17. Effect of air pressure and pulse frequency on 
recast layer 

 
In quadratic model the F-value of deepness of groove is 1.39 

and for the height of recast layer 0.57, shows the quadratic 
model is significant. The F-value and P-values for linear and 
cubic models is as shown in Table 6. 

 
Table 6. Result of analysis of variance of developed model 

 
Source Deepness of groove Height of recast layer 

F-value P-value F-value P-value 
Linear 1.30 0.415 0.71 0.7375 
Model 9.32 0.0001 13.46 0.0001 

Quadratic 1.39 0.3753 0.57 0.7870 
Cubic 4.80 0.0685 0.47 0.6477 

Lack of fit 1.39 0.3753 0.57 0.7870 
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3. RESULTS AND DISCUSSIONS 
 
The data are plotted and also presented in the format of table 

and graphical methods. The experimental data are examined 
and analyzed in great details. With NSGA-II, optimal 
parameter sets are computed using response surface approach. 

The contribution of parameters is determined using analysis of 
variance. The validity of the ideal outcomes is demonstrated 
by a confirmation result. The choice of a solution has to be 
made based on production requirements. The optimal values 
of the input variables and their corresponding objective 
function values are listed in Table 7. 

 
Table 7. Optimal values obtained through NSGA-II of the input variables and their objective function values 

 

S.No. Pulse power 
(W) 

Pulse frequency 
(Hz) 

Assisted gas 
pressure 
(Kg/cm2) 

Pulse width 
(ms) 

Deepness of 
groove 
(mm) 

Height of recast layer 
(mm) 

1 210.7657 222.211 11.92756 0.200092 2.310746 0.050708 
2 210.009 249.664 10.34353 0.200723 1.670608 0.040839 
3 210.0025 249.8956 10.08455 0.200348 1.620358 0.039515 
4 210.0134 241.1871 11.99243 0.200075 2.006495 0.048514 
5 249.9972 218.8558 8.002752 0.59681 0.859658 0.021433 
6 210.0199 249.8648 9.564685 0.200129 1.510591 0.036566 
7 210.0181 236.4169 11.98223 0.200131 2.068817 0.048882 
8 210.0014 249.5055 9.785729 0.200194 1.559961 0.03783 
9 210.0344 249.9703 8.625887 0.200134 1.27043 0.030373 

10 210.0528 249.723 9.787448 0.212467 1.553616 0.037107 
11 210.0627 212.2491 11.99163 0.200197 2.591133 0.053919 
12 249.9954 214.0244 8.710488 0.599913 1.142144 0.027227 
13 210.2102 249.8255 9.100176 0.200108 1.399756 0.033622 
14 210.0485 249.871 9.426269 0.200095 1.478824 0.035724 
15 210.0648 249.9518 10.95623 0.200021 1.77451 0.04386 
16 249.9954 210.7741 8.713378 0.599982 1.202755 0.028692 
17 249.9981 215.1966 8.688335 0.599993 1.115994 0.026618 
18 249.9891 237.0346 8.004148 0.599948 0.738663 0.016951 
19 249.9663 210.2643 8.750101 0.598289 1.224507 0.029116 
20 210.009 249.922 10.8878 0.204209 1.761492 0.04326 
21 210.018 249.9264 8.730183 0.200309 1.299882 0.031109 
22 249.9943 242.141 8.000059 0.599889 0.733183 0.016157 
23 210.0013 248.3517 8.372686 0.200014 1.191695 0.028234 
24 249.9895 210.6772 8.251802 0.599998 1.059454 0.026083 
25 249.966 222.4058 8.000406 0.599543 0.820953 0.020331 
26 210.7674 236.3836 11.98204 0.200131 2.062748 0.048684 
27 210.0048 249.8245 9.058958 0.200122 1.388371 0.03337 
28 249.7002 214.9657 8.016298 0.599991 0.916903 0.022947 
29 210.0123 210.1892 11.99314 0.596043 3.071835 0.057376 
30 210.7092 249.6414 8.172987 0.200131 1.13535 0.026821 
31 210.7878 249.9111 11.92756 0.200196 1.907289 0.047718 
32 249.9873 214.0653 8.035525 0.599975 0.93204 0.023371 
33 249.9839 210.8045 8.139911 0.599976 1.019442 0.025338 
34 210.0013 249.7235 9.875699 0.200057 1.578539 0.038369 
35 210.001 233.5723 11.99773 0.200005 2.115064 0.049292 
36 210.0027 214.2002 11.99896 0.20014 2.53785 0.053371 
37 210.582 210.7828 11.96816 0.579998 3.010161 0.056339 
38 249.5073 212.9607 8.713378 0.599916 1.170274 0.027782 
39 210.0096 212.6306 11.98562 0.599268 2.961924 0.055746 
40 249.9839 214.4303 8.145487 0.599975 0.963394 0.023901 
41 210.094 213.1367 11.96816 0.57951 2.922053 0.055025 
42 249.9895 236.2968 8.251802 0.596663 0.803108 0.01822 
43 210.0062 218.7938 11.99672 0.200242 2.416165 0.052077 
44 210.0014 249.1198 8.808909 0.200192 1.321282 0.031565 
45 210.1036 211.0404 11.99927 0.59982 3.033379 0.05683 
46 210.0528 249.7688 9.787448 0.214816 1.552304 0.036978 
47 210.0013 249.7235 9.913887 0.200062 1.586484 0.038583 
48 210.8063 221.3721 11.99581 0.200226 2.342294 0.051217 
49 249.9687 216.6826 8.011403 0.599918 0.888277 0.022261 
50 249.9895 210.6772 8.251802 0.599998 1.059454 0.026083 
51 249.9839 210.8045 8.16757 0.599976 1.028906 0.025511 
52 210.0012 249.9151 9.16406 0.200094 1.415078 0.034075 
53 210.0218 221.7296 11.59395 0.200018 2.264957 0.04931 
54 210.0126 247.214 11.99902 0.200005 1.942509 0.048252 
55 210.732 249.9322 10.63538 0.219361 1.710256 0.040962 
56 249.9687 234.8126 8.014626 0.599918 0.747281 0.017404 
57 210.205 212.7821 11.98218 0.202428 2.574921 0.053602 
58 210.0065 249.8966 10.24855 0.201414 1.651524 0.040315 
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59 249.4754 210.6624 8.002235 0.599559 0.981969 0.02458 
60 210.0012 249.9151 9.185439 0.200059 1.420441 0.034215 
61 210.0014 249.5055 9.783211 0.200063 1.559487 0.037823 
62 210.0121 249.9329 8.906801 0.200029 1.348454 0.032361 
63 210.0653 249.5856 9.303127 0.20003 1.449859 0.034926 
64 210.0023 210.0022 11.99164 0.20021 2.659919 0.054685 
65 210.0025 249.8959 10.22068 0.20538 1.644092 0.03991 
66 210.0036 249.1216 8.885356 0.200038 1.342381 0.032108 
67 249.8794 221.3033 8.034429 0.599999 0.843263 0.020873 
68 210.0112 249.9329 11.4259 0.218886 1.833854 0.044613 
69 210.0008 249.9816 11.73381 0.200475 1.885147 0.047143 
70 210.8507 210.7828 11.96816 0.579998 3.001211 0.056206 
71 249.4754 210.6871 8.015484 0.599559 0.98629 0.024655 
72 210.0311 249.9111 11.92756 0.200108 1.910111 0.047916 
73 210.7629 218.8851 11.99338 0.200473 2.401768 0.051812 
74 210.0123 210.1892 11.99314 0.596043 3.071835 0.057376 
75 210.1445 234.7456 11.99243 0.200075 2.094342 0.049081 
76 249.8266 241.2541 8.014626 0.599918 0.73754 0.016359 
77 210.1557 216.8298 11.99709 0.2 2.463572 0.052564 
78 210.1036 211.0404 11.99948 0.59982 3.033423 0.056831 
79 210.0034 249.9993 10.69499 0.200013 1.731724 0.042652 
80 210.0077 249.8239 8.702315 0.201364 1.291353 0.030838 
81 210.0485 249.9225 8.972773 0.200108 1.366101 0.032801 
82 210.205 213.3747 11.96806 0.570347 2.902937 0.054693 
83 210.0112 249.9329 11.4259 0.215233 1.835842 0.04485 
84 210.0112 249.9322 10.63538 0.21647 1.712976 0.041285 
85 210.0054 214.2252 11.91599 0.200208 2.519464 0.052919 
86 210.0077 221.1555 11.99782 0.200005 2.359081 0.051512 
87 210.0485 249.871 9.426269 0.200095 1.478824 0.035724 
88 210.0134 241.2864 11.93546 0.200081 1.99718 0.048271 
89 210.0091 249.9531 9.538919 0.204219 1.502444 0.03617 
90 249.9873 213.1771 8.035525 0.599995 0.945255 0.023716 
91 210.651 221.387 11.70816 0.200226 2.287587 0.049804 
92 249.9895 236.2968 8.251802 0.596663 0.803108 0.01822 
93 210.0025 249.8956 10.05825 0.200348 1.61514 0.039373 
94 210.0648 249.9518 10.95623 0.200021 1.77451 0.04386 
95 210.0124 211.051 11.97076 0.200038 2.622739 0.054216 
96 210.0032 249.9993 10.6916 0.200128 1.731087 0.042628 
97 210.7657 222.211 11.92756 0.200092 2.310746 0.050708 
98 210.0371 216.8298 11.99709 0.200029 2.465562 0.052598 
99 210.0045 249.8043 8.535565 0.200958 1.24323 0.029642 

100 210.0095 212.6306 11.9724 0.598787 2.958856 0.055685 
 
 

 
 

Figure 18. Graphical representations of optimal pareto front 
values 

 
3.1 Pareto optimal values obtained from NSGA-II 

 
The deepness of the groove and the height of the recast layer 

were optimised using the non-dominating sorting genetic 
algorithm-II, a multi-objective optimization method. Table 7 
illustrates the Pareto-optimal set of 100 solutions that was 
obtained. 

The proposed algorithm was implemented using VC++ and 
run on a Core 2 Duo system. The algorithm was run for ten 
times to get more number of points in the Pareto-optimal front. 
The pareto-solution set is obtained and the final set of 

solutions is the non-dominated solution set obtained for the 
optimization problem. The objective function values of The 
Pareto-optimal front obtained is shown in Figure 18. As it can 
be observed from the graph, no solution in the front is better 
than any other as they are non-dominated solutions. 
 
 
4. CONCLUSIONS 

 
The Nd: YAG laser machining system has the capability to 

perform successful precision micro-grooving operations on 
magnesium composite. The process parameters can be 
optimally controlled to minimize the height of the recast layer 
and maximize the deepness of laser micro-grooves. From the 
investigation during the machining of AS21-SiC by the Nd: 
YAG laser, the following outcomes can be obtained on the 
basis of mathematical relationship models based on various 
tests. During laser micro-grooving operation on magnesium 
metal matrix composite (AS21-SiC), the deepness of the 
microgroove initially decreases and then increases with the 
pulse power. At a medium value of pulse power, the recast 
layer decreases with the decrease in pulse width. 

Through optimization analysis based on the developed 
models, the individual optimal combination of laser micro 

0.050708

0.040839

0.039515

0.048514

0.021433
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grooving process parameters for an increase in the deepness of 
groove and the height of the recast layer is obtained through 
optimization analysis. From the multi-objective optimization, 
the optimal combination of parameter settings is air pressure 
of 11.92756 kg/cm2, pulse power of 210.7657 W, pulse 
frequency of 222.211 Hz, and pulse width of 0.200092 ms. 

The following conclusions are drawn from this research 
work: 
• GA provides a cost-effective soft computing technique for 

optimizing machining operations. 
• The proposed integrated approach based on Response 

Surface Methodology and Non-Dominated Sorting 
Genetic Algorithm-II is a practical method of 
optimization of machining parameters for manufacturing 
processes. 

• Empirical models for the chosen performance measures 
were developed using RSM. The models developed have 
proper interaction terms and higher order terms. The 
outcomes obtained from the empirical formulations were 
truly reliable and showed very good generalization 
capability. 

• Subsequently, the developed mathematical relations by 
RSM were used for optimization of the manufacturing 
process. Because of conflict between chosen performance 
measures, there is a need to find trade-offs between them. 
Therefore, the problem is formulated as a multi-objective 
optimization problem. NSGA-II was applied for multi-
objective optimization of the conflicting performance 
measures to find multiple sets of optimal solutions. 
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