
Simulator for Scheduling Real-Time Systems with Reduced Power Consumption

Hakeem Al-Fareed1, Omar Alghamdi1, Abdulaziz Alshuraya1, Majed Alqahtani1, Saud Alwasfer1, Ahmed Aljomea1,

Atta-ur Rahman1*, Sumayh Aljameel1, Gomathi Krishnasamy2

1 Department of Computer Science (CS), College of Computer Science and Information Technology (CCSIT), Imam

Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
2 Department of Computer Information Systems (CIS), College of Computer Science and Information Technology (CCSIT),

Imam Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia

Corresponding Author Email: aaurrahman@iau.edu.sa

https://doi.org/10.18280/mmep.090509 ABSTRACT

Received: 25 May 2022

Accepted: 2 August 2022

Optimum resources utilization in computing devices especially power is among the

prime areas of research from the very beginning of computer systems. However, its

importance in the current era has been significantly increased due to the diverse nature

of devices and their real time applications. On the other hand, paradigm is shifting

towards sustainable resources that are green/environment friendly (low emission) in

nature and produce relatively low energy/power. Real time systems (RTS) are relatively

power-hungry due to their time constrained nature. So, there is room to investigate the

scheduling algorithms (schedulers) with minimum (low) power consumption. On the

other hand simulators are the software that mimic the real time environment for various

parameter testing without actual implementation that could be costly as well as complex

to build in the beginning. In this study, we are intended to develop a simulator for

scheduling Real-Time Systems (RTS) with Reduced Power Consumptions (RPC). That

is potentially an environment where various algorithms can be tested over different case

studies to examine their performance pertaining RPC for RTS.

Keywords:

EDF, LJF, RPC, RTS, SRT, slack time, CPU

scheduling

1. INTRODUCTION

One of the most important aspects in solving a problem in

the right way is the algorithm. The algorithm is used in

everything including our real life to solve different kinds of

problems we face each day. Also, the algorithms are used in

computer purposes to organize and execute the tasks in the

right way to get the optimal performance of the system and to

prevent the errors to occur while executing the tasks. The

algorithm is a set of steps to solve the problem in a proper way

to get the optimal desired solution.

Real-time systems are defined as those systems in which the

accuracy of the system depends not only on the logical result

of the computation but also on the production of results in the

specified time. Real-time systems are used in a variety of

applications such as critical safety systems, control units in

power plants, satellite controllers, command systems, and

flight control systems. Real-time systems can be categorized

into hard real-time systems and soft real-time systems. In hard

real-time systems, the responses must occur within the

required deadline. Otherwise, missing the deadline may result

in huge losses and dangerous consequences. For example,

missile control systems. Soft real-time are those systems

where deadlines are important but will still function properly

if deadlines are not met because the task can be rescheduled or

can be completed after the specified time. For example,

multimedia and gaming systems [1]. This paper discusses the

most used algorithms in Real-Time systems, which are Rate

Monotonic and Earliest Deadline First algorithms as well as

an explanation of different scheduling algorithms with their

respective pros and cons and suitability towards the nature of

real time system like whether it is soft real time, hard real time.

The goal of this paper is to analyze and investigate different

RTS algorithms [2] and compare their performance including

the temperature of the algorithm to find out which one of the

algorithms generates less heat. This journal will include 12

RTS algorithms such as Least Slack Time scheduling (LST)

[3], Longest Job First scheduling (LJF) [4], Shortest

Remaining Time scheduling (SRT) [5], etc. each algorithm

focuses on different parameters such as deadline time for least

Slack Time and some of the algorithms are focusing on same

parameters as arrival time for Earliest Deadline First

scheduling (EDF).

Moreover, the significance and purpose of the present study

is to determine the right algorithm for real time system which

requires minimum/reduced power consumption. So far, in the

literature, no experimental work has been conducted to the

comprehend the issue at hand. It is mainly because in the real

time systems, after the time constraint, the power/energy

constraint is critical. It is always desired to come up with the

scheduling algorithms/schedulers with minimum power

consumption.

The rest of this paper is divided as follows: Section 2 will

provide the used algorithm in this study. Section 3 will talk

about the methodology of testing these scheduling algorithms.

Section 4 will provide the experiment results. Section 5 will

provide the discussion on the results. Lastly, section 6 provides

conclusion and future work.

Mathematical Modelling of Engineering Problems
Vol. 9, No. 5, October, 2022, pp. 1225-1232

Journal homepage: http://iieta.org/journals/mmep

1225

mailto:aaurrahman@iau.edu.sa
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.090509&domain=pdf

2. RELATED WORK

Many research works have been done on scheduling

algorithms in real-time systems. The researchers aim to find the

optimal algorithm for such systems. This section represents

some of these works.

A study [6] discusses the scheduling algorithm in the real-

time system in terms of the effect of the quality of the real-time

scheduling algorithm on the real-time system throughput

capacity, response time, and this paper also discusses the

features and performance of the real-time system according to

the system environment, splitting the real-time system into

single processor scheduling, multiprocessor scheduling,

distributed scheduling, real-time scheduling algorithms RMS,

EDF, and LLF in a single processor.

A study [7] presents a real-time domain summary in

scheduling and operating systems Where four scheduling

models are discussed: static scheduling, pre-emptive

scheduling with fixed priority, dynamic scheduling, and

dynamic scheduling for best effort. operating systems in real-

time. The authors [8] focus on making some improvements to

Earliest First Deadline (EDF) Algorithms in order to reduce the

number of relay tasks in addition to the ability to predict their

behavior. The earliest first deadline (EFDF) is known. Displays

algorithms at the very least complexity by Performance

analysis. Based on the results of the experiment, it was found

that the earliest deadline first (EFDF) algorithm reduced the

complexity time in older tasks, deadline first (EDF) scheduling

algorithm in a real-time system. In a multiprocessor system.

They concluded [9] that the EDF scheduling algorithm is an

optimal scheduling algorithm for single processors, but it has

received little attention from the industry. Fixed Priority, on the

other hand, is relatively popular with many commercial real-

time operating systems despite offering lower theoretical

schedulable processor utilization.

They [10] presented an optimal real-time scheduling

algorithm for multiprocessors, which is not based on time

quanta called LLREF designed based on a technique of using

the T-L plane abstraction for reasoning about multiprocessor

scheduling. It showed that scheduling for multiprocessors can

be viewed as repeatedly occurring T-L planes, and correct

scheduling on a single T-L plane leads to the optimal solution

for all times.

Authors [11] talked about that EDF algorithm schedules

real-time tasks are based on their deadlines plus that EDF is

widely studied as a dynamic priority-driven scheduling scheme

because of its optimality for periodic, aperiodic, and sporadic

preemptive tasks, optimality for sporadic non-preemptive tasks,

and acceptable performance for periodic and aperiodic non-

preemptive tasks.

EDF can achieve the highest possible processor utilization

for preemptive tasks. Although finding an optimal schedule for

periodic and aperiodic non-preemptive tasks is NP-hard [12,

13]. Experiments [14] show that EDF can achieve very good

results even when the system is lightly loaded. When the

processor is overloaded (i.e., the combined requirements of

pending tasks exceed the system's capabilities), EDF performs

poorly. Researchers have proposed several adaptive techniques

for dealing with heavily loaded situations, but they all require

the detection of the overload condition [15].

Some successful and related real time systems algorithms

are discussed subsequently. In this regard, it is also mentioned

that how good or bad the algorithms are in terms of power

consumption.

2.1 Earliest Deadline First scheduling

Earliest Deadline First (EDF) scheduling focuses on the

burst time of the task, and it arranges the priority of the tasks

according to the burst time. The lower burst time of the task it

will assign a higher priority for it. But there is a drawback of

this algorithm if the lower priority tasks with a high burst time

they may take too long time to start executing. This algorithm

can be preemptive or non-preemptive depends on the nature of

the system [16].

2.2 First Come First Serve scheduling

First Come First Serve (FCFS) scheduling focuses on the

arrival time of the task only and it arranges the tasks according

to the arrival time [17].

2.3 Longest Job First scheduling

Longest Job First (LJF) scheduling focuses on the burst time

of the task, and it arranges the priority of the tasks according to

the longest burst time. And this algorithm can be preemptive or

non-preemptive based on the nature of the system [18].

2.4 Longest Remaining Time scheduling

Longest Remaining Time (LRT) scheduling focuses on the

burst time of the task same as LJF, but the work of this

scheduling is different from LJF. This scheduling arranges the

tasks based on the remaining time of the burst time and it

arranges the priority of the tasks according to the longest burst

time [19].

2.5 Least Slack Time scheduling

Least Slack Time (LST) scheduling focuses on the slack

time of the task, and it arranges the priority of the tasks

according to the least slack time [20]. This scheduling is not

used often because it behaves like EDF scheduling

2.6 Most Slack Time scheduling

Most Slack Time (MST) scheduling focuses on the slack

time of the task same as LST scheduling but this scheduling

arranges the tasks according to the longest slack time [21].

2.7 Priority Scheduling

Priority scheduling focuses on the priority of the task, and it

arranges the execution of the tasks according to the highest

priority first. This algorithm doesn’t consider the arrival time

and burst time. This algorithm can be used as preemptive or

non-preemptive [22].

2.8 Round Robin scheduling

Round Robin (RR) scheduling is a preemptive scheduling,

and in this scheduling the tasks are assigned to a time called

quantum time. This type of scheduling keeps the tasks in the

ready queue to execute them while taking in consideration the

time slice in the ready queue [23]. In this type of scheduling the

job queue behaves like a circular queue. It is more appropriate

for the interactive processing.

1226

2.9 Shortest Remaining Time

Shortest Remaining Time (SRT) scheduling focuses on the

burst time of the task, but it the work of the scheduling is

different from LRT. This type of scheduling focuses on the

remaining time of the burst time, and it arranges the priority of

the tasks according to the least remaining time [24]. So with

that said, the process with minimum left over time is considered

as prior than the one with more left over time.

3. RTS SCHEDULING ALGORITHMS

3.1 Scheduling algorithms for uniprocessor

Real-time systems that used a single processor have various

scheduling algorithms. As shown in Figure 1, these algorithms

can be classified into static and priority-driven algorithms. The

static category involves many algorithms such as Round Robin

(RR) in which the processor time is divided equally among the

tasks. The other category is priority-driven algorithms, and it is

the focus of this section.

Static priority is used to determine base time slice of a

process. Dynamic priority is used to select a process to be

executed next. Real time priorities are defined only for Real

time processes and its value can range from 0 to 99.

Figure 1. Classification of scheduling algorithms for

uniprocessor [11]

3.1.1 Priority-driven scheduling algorithms

As represented in Figure 1, the priority-driven scheduling

algorithms are divided into fixed and dynamic. This

classification is based on the priority assignment whether the

priority is static or changed at running time. This section

represents an overview of the most widely used priority-driven

algorithms in real-time systems which are EDF and RM. The

Rate Monotonic Algorithm is another name for the RM

Scheduling Algorithm. The RM algorithm is a fixed or static

priority scheduling algorithm. Tasks are preferred by RM based

on their period. The disadvantage of this algorithm is that it

does not provide a perfect result in a low-load situation. When

compared to dynamic scheduling, RM performs better in

overloaded situations. In the RM algorithm, the shortest period

gives the most chances to execute [12]. The Eq. (1) used for

RM is:

𝐶1
𝑇1
+⋯ . . +

𝐶𝑛
𝑇𝑛

≤ 𝑈(𝑛) = 𝑛(2
1
2 − 1) (1)

where, Ci stands for computation time, Ti stands for period time,

and U(n) stands for CPU utilization [13]. RM can be

implemented in any operating system which supports static

priority scheme, like VxWorks, DSP/BIOS.

The Earliest Deadline First scheduling algorithm is also

known as the nearest deadline first scheduling algorithm. The

EDF algorithm is a dynamic scheduling algorithm. The task

must be completed as soon as possible. The task with the

earliest deadline has the highest priority. EDF Scheduling

provides 100 percent task utilization under loaded conditions

or when the utilization is less than or equal to 1. In contrast,

when task utilization is more than the cross-load factor or

slightly overloaded, the utilization of the processor decreases

exponentially [12]. The equation used for EDF as follows

T1<T2<…<Tn. T stands for task, which the finish time of the

current task is less than the next task. EDF is used in real-time

operating systems to arrange the processes in a priority queue

according to finish time. Table 1 shows the advantages and

disadvantages of RM and EDF. Figure 2 represents a case study

of how RM and EDF behave on the same task set. The goal of

the used task in this case study is to find out which one of the

algorithms is faster than the other, and how long the execution

time of each task. This task set is just a sample to make the

picture of flow work of RM and EDF, but in real life where the

RM and EDF used on real-time systems the tasks will become

more complex. Suppose a task set consists of three tasks where

each task Ti is represented by its computation time and the

period, Ci and Pi, respectively.

Figure 2. (a) RM and (b) EDF scheduling comparison [14]

The tasks are T1 (2,6), T2 (3,8), T3 (2,12). As it is shown in

Figure 2 (a), the priority in RM is assigned based on the period.

So, the task with the lowest period has the highest priority. In

Figure 2 (b), the EDF’s priority is changed based on the task

deadline. So, the task with the shortest deadline at each time

interval has the highest priority. Figure 3 represents another

case study of how RM misbehaves in some conditions.

Suppose a task set consists of two tasks T1 (2,5), T2 (4,7).

As it is shown in Figure 3 (a), since T1 has a higher priority

than T2, T1 will preempt every instance of T2, and sometimes it

may cause a deadline missing. In contrast, in Figure 3(b), the

EDF’s can schedule this task set because it doesn’t cause any

deadline missing. As stated, “For larger task sets, the number

of preemptions caused by RM increases, thus the overhead due

to the context switch time is higher under RM than EDF” [13].

1227

Table 1. RM and EDF advantages and disadvantages

Algorithms Advantages Disadvantages

RM (Rate

Monotonic)

 Simple to

implement.

 Commonly

used algorithm.

 Waste CPU

utilization

EDF (Earliest

Deadline First)

 Full process

utilization

 Difficult

implantation

 Misbehave in

overloaded

conditions

Figure 3. (a) RM, (b) EDF scheduling comparison [14]

3.2 Scheduling algorithms for multiprocessor

As time goes, the need for more than one processor is

increased to perform more complex and heavier computations.

Multiprocessor systems require a different scheduling scheme

than uniprocessor. Many research works have been done in

this field to obtain the best scheduling algorithm. Figure 4

represents the algorithm's classification of multiprocessor

systems. They are divided into classic and heuristic and the

evolutionary algorithms. In the classic category, most

algorithms are not exclusively created to be used in

multiprocessor environments, however, they achieve less time

complexity in multiprocessor systems compared to other

categories. One drawback of classic algorithms is that they

don’t guarantee an optimal solution. The other category is

heuristic & evolutionary algorithms, which achieve a near-

optimal solution but with more running time.

Figure 4. Scheduling algorithms for multiprocessor systems

[15]

In Table 2, we present a comparison of some uniprocessor

and multiprocessor scheduling algorithms and compare them

from different metrics such as priority, CPU utilization,

number of contexts switching, optimality, deadline miss

chances, response time, predictability, effectiveness,

suitability, and limitations.

Table 2. Comparison between uniprocessor and multiprocessor algorithms [16]

Algorithm

Uniprocessor Algorithms Multiprocessor Algorithms Performance

Metric

Priority EDFD LLFD MUF Hybrid IUFD EDFZLD ILLFD
MMUF

Hybrid

MIUF

D

CPU Utilization High High High High High High High High

No. of context

switching
Less High High High Very less Less Less Less

Optimal Yes Yes For critical tasks Yes No Yes Yes Yes

Deadline miss

chances
Average Average Less Less Less Less Less Very less

Response time High Average Low High Low High Average Low

Predictability Not predictable Not predictable
Predictable under

transient load

Dynamic

predictability

More

predictable

than EDF

More

predictable

Predictable

under

transient

load

Dynamic

predictability

Effectiveness
Optimal, easy to

implement

Takes execution

time into

consideration

Work in transient

overload

Maximize

utilization in

bound of

schedule

Context

switching

overhead is

low

Less context

switching

Optimal for

non-critical

tasks

Improves

context

switching,

response

time and

CPU

utilization

Limitations

Not work in

overload, not

optimal for

pro>1

In laxity time,

more context

switches occur.

Non-critical task

may miss

deadline

Context

switching is very

high

Chances of

deadline miss

of the critical

tasks

Execution time

is more.

Only

consider

static

utilization

of task set

1228

4. METHODOLOGY

In this study we will use different RTS algorithms to

compare the results. And these RTS algorithms will be used in

this test to find out which one of these is the best, because each

algorithm works in different way as mentioned in section 2.

Some of the algorithms divides into two types of scheduling

which are preemptive and non-preemptive. We will take in

consideration if the algorithm has these two types or not in

testing them. While we are preparing the test of these

scheduling algorithms, we take in consideration only one

performance aspect of the algorithm which is the generated

heat caused by the algorithm or in other words the temperature

of the CPU. The dataset used was created by us. And this

dataset contains 1,000 of the processes with random arrival

time, burst time, slack time, priority, and fixed quantum time

which is 8 ns. A standard dataset was used to figure out the test

and the optimum analysis [25-28].

In this test we are going into four stages because we will

modify the consumed power by the CPU to figure out which

algorithm is the best in all stages and which stage is the best.

The best algorithm will be the least temperature of the CPU,

the average algorithm will be calculated by summation of best

and worst temperature dividing by 2 and taking the nearest

temperature of the result, and the worst algorithm will be the

maximum temperature reached by the CPU.

The CPU was used in this test is Intel I7-9750H 6-core and

32 GB of RAM. Also, the chosen level of under-volting was

the optimum level of the used device, because if we under-

volted the device more than this level we will face issue in in

stability of the operating system. The experiments were

conducted at standard room temperature. Furthermore, we will

describe now the four stages of the test.

5. EXPERIMENT RESULTS

5.1 Stage 1

In the first stage we made the test with the default power

consumption of the CPU which the default watts of the CPU

are 90 without under-volting it. And in this stage, we found the

best algorithm was Round Robin because it has the lowest

CPU temperature which is 46.2℃, the average algorithm was

Most Slack Time which the temperature of the CPU reached

48.8℃. Finally, the worst algorithm in this stage was EDF

Preemptive which the temperature of the CPU reached 51.8℃.

This is shown in Figure 5.

Figure 5. Stage 1

5.2 Stage 2

In the second stage we undervolted the CPU to -100 mv with

default watts and found in this stage the best algorithm is LJF

non-preemptive which the temperature of the CPU reached

45.5℃. Secondly, the average algorithm was Priority non-

preemptive which the temperature of the CPU reached

48.14℃. Finally, the worst algorithm we found was LJF

preemptive which the temperature of the CPU reached

50.85℃. This is shown in Figure 6 as the stage two experiment

outcome.

Figure 6. Stage 2

5.3 Stage 3

In the third stage we modified the consumed watts by the

CPU to 45 watts without undervolting it. And we found in this

stage the best algorithm was Round Robin and LJF non-

preemptive because the temperature of the CPU reached

46.28℃. Secondly, the average algorithm we found was Most

Slack Time because the temperature of the CPU reached

49.42℃. Finally, the worst algorithm we found was Priority

non-preemptive because the temperature of the CPU reached

53.28℃. This is depicted in Figure 7 as stage three test.

Figure 7. Stage 3

5.4 Stage 4

In the fourth stage we modified the consumed watts by the

CPU to 45 and we undervolted it to -100mv and we found in

this stage the best algorithm was LJF and EDF both non-

preemptive which the CPU temperature reached 45.71℃.

Secondly, the average algorithm was EDF pre-emptive which

the temperature of the CPU reached 49.14℃. Finally, the

40

50

60

Stage 1

EDF (NP) EDF (P) FCFS

LJF (NP) LJF (P) MST

LRT LST Priority (NP)

Priority (P) Round Robin SRT

40

50

60

Stage 2

EDF (NP) EDF (P) FCFS

LJF (NP) LJF (P) MST

LRT LST Priority (NP)

Priority (P) Round Robin SRT

40

60

Stage 3

EDF (NP) EDF (P) FCFS

LJF (NP) LJF (P) MST

LRT LST Priority (NP)

Priority (P) Round Robin SRT

1229

worst algorithm was Priority pre-emptive which the

temperature of the CPU reached 53.28℃. This is demonstrated

in Figure 8 as stage 4 analysis.

Figure 8. Stage 4

6. RESULTS DISCUSSION

When we finished from the experiment, we found different

scheduling algorithms are best in different stages. We found

the best algorithm in stage 1 was Round Robin (Figure 1), in

stage 2 we found the best algorithm was LJF non-preemptive

(Figure 4), in stage 3 we found the best algorithms are Round

Robin and LJF non-preemptive (Figure 6.

Finally, in stage 4 we found that the best algorithms are LJF

and EDF both non-preemptive (Figure 7). And we can

conclude from this experiment adjusting the voltage was

having a big impact on the temperature of the CPU. Also, we

conclude that the best algorithms are Round Robin and LJF

because they are the lowest algorithms in heat generation. And

for the stages we found that the best stage was stage 2 and the

CPU was under-volted to -100 mv.

7. CONCLUSION AND FUTURE WORK

In this research work we investigate the least generation of

heat in CPU scheduling algorithms in different conditions such

as minimum average waiting time, improved throughput and

reduce power consumption etc. Firstly, we examine the best

algorithm in these conditions by various experiments and the

results show that the best algorithms were Round Robin and

Longest Job First scheduling in a non-preemptive scenario.

That is obviously a typical case of real-time systems.

Secondly, the other algorithms need to be improved to

generate less heat, because each one of the algorithms is used

in different circumstances, and some of the circumstances

takes too long to finish the executing of the tasks which the

temperature of the CPU will be raised as long as the execution

is running, and this will lead to the device failure. In future,

machine learning based algorithms may also be investigated in

the real time systems especially where the cloud systems are

involved, and green technology is evolved to save the power

consumed and reduce the carbon discharge from the cloud

centers that are mainly depending on the nature of algorithms

being used not only the type of high-performance hardware

[29-60].

REFERENCES

[1] Bernat, G., Burns, A., Llamosí, A. (2001). Weakly hard

real-time systems. IEEE Transactions on Computers,

50(4): 308-321. https://doi.org/10.1109/12.919277

[2] Salam, A., Abbas, S., Khan, Y. (2019). Developing the

best scheduling algorithm from existing algorithms for

real time operating systems. SSRN Electronic Journal.

http://dx.doi.org/10.2139/ssrn.3331997

[3] Abdullahi, I. (2012). Process Scheduling in Longest Job

First (LJF) Algorithm. A proposed framework for

starvation problem. ResearchGate, Nigeria.

http://dx.doi.org/10.13140/RG.2.1.2706.9607

[4] Hefetz, N., Adiri I. (1982). An efficient optimal

algorithm for the two-machines unit-time jobshop

schedule-length problem. Mathematics of Operations

Research, 3(7): 354-360.

https://doi.org/10.1287/moor.7.3.354

[5] Hwang, M., Choi, D., Kim, P. (2011).Least slack time

rate first: An efficient scheduling algorithm for pervasive

computing environment. Journal of Universal Computer

Science, 17(6): 912-925.

[6] Li, J., Guo, R.F., Shao, Z.X. (2010). The research of

scheduling algorithms in real-time system. In CCTAE

2010 - 2010 International Conference on Computer and

Communication Technologies in Agriculture

Engineering, 1: 333-336.

https://doi.org/10.1109/CCTAE.2010.5544771

[7] Ramamritham, K. Stankovic, J.A. (1994). Scheduling

algorithms and operating systems support for real-time

systems. In Proceedings of the IEEE, 82(1): 55-67.

https://doi.org/10.1109/5.259426

[8] Singh, J. An algorithm to reduce the time complexity of

earliest deadline first scheduling algorithm in real-time

system. re, accessed on September 10, 2022.

[9] Lunniss, W., Altmeyer, S., Davis, R.I. (2014). A

comparison between fixed priority and EDF scheduling

accounting for cache related pre-emption delays. Leibniz

Transactions on Embedded Systems, 01: 1-24.

https://doi.org/10.4230/LITES-v001-i001-a001

[10] Cho, H., Ravindran, B., Jensen, E.D. (2006). An optimal

real-time scheduling algorithm for multiprocessors. 2006

27th IEEE International Real-Time Systems Symposium

(RTSS'06), pp. 101-110.

https://doi.org/10.1109/RTSS.2006.10

[11] Jeffay, K., Stanat, D.F., Martel, C.U. (1991). On non-

preemptive scheduling of periodic and sporadic tasks. In

Proceedings - Real-Time Systems Symposium, pp. 129-

139. https://doi.org/10.1109/real.1991.160366

[12] Garey, M.R., Johnson, D.S. Computers and

intractability: A guide to the theory of NP-completeness.

SIAM Review, 24(1): 90-91.

https://doi.org/10.1137/1024022

[13] Sha, L., Klein, M.H., Goodenough, J.B. (1991). Rate

monotonic analysis for real-time systems. Technical

Report Submitted to Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, Pennsylvania

15213, pp. 1-29.

https://resources.sei.cmu.edu/asset_files/TechnicalRepo

rt/1991_005_001_15923.pdf.

[14] Locke, D. (2022). Best-effort decision making for real-

time scheduling.

https://.researchgate.net/publication/238690426,

accessed on September 11, 2022.

40

50

60

Stage 4

EDF (NP) EDF (P) FCFS

LJF (NP) LJF (P) MST

LRT LST Priority (NP)

Priority (P) Round Robin SRT

1230

https://www.researchgate.net/publication/48176486
https://.researchgate.net/publication/238690426

[15] Georges, L., Mühlethaler, P., Rivierre, N. (2000). A few

results on non-preemptive real time scheduling.

[Research Report] RR-3926, INRIA.

[16] Harkut, D.G., Ali, M.S., Lohiya, P. (2013). Real-time

scheduler for wireless sensor network : A review.

International Journal of Engineering Research &

Technology (IJERT), 2(12): 254-259.

[17] Thakar, H. (2016). Comparison between EDF_RM and

EDF_DM in dynamic scheduling algorithm with

sporadic task.

https://www.academia.edu/73284340/Comparison_betw

een_EDF_RM_and_EDF_DM_in_dynamic_scheduling

_algorithm_with_sporadic_task, accessed on September

11, 2022.

[18] Buttazzo, G.C. (2005). Rate Monotonic vs. EDF:

Judgment Day. Real-Time Systems, 29: 5-26.

https://doi.org/10.1023/B:TIME.0000048932.30002.d9

[19] Rouhifar M., Ravanmehr, R. (2015). A survey on

scheduling approaches for hard real-time systems.

International Journal of Computer Applications,

131(17): 41-48. https://doi.org/10.5120/ijca2015907656

[20] Pandit S., Shedge, R. (2013). Survey of real time

scheduling algorithms. IOSR Journal of Computer

Engineering, 13(2): 44-51.

http://dx.doi.org/10.9790/0661-1324451

[21] Golconda, K.S., Doğan, A., Özgüner, F. (2004). Static

mapping heuristics for tasks with aard deadlines in real-

time heterogeneous systems. In: Aykanat, C., Dayar, T.,

Körpeoğlu, İ. (eds) Computer and Information Sciences

- ISCIS 2004. ISCIS 2004. Lecture Notes in Computer

Science, vol 3280. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-540-30182-0_83

[22] Burns, A. (1993). Preemptive priority based scheduling:

An appropriate engineering approach. Citeseer.

[23] Yaashuwanth, C., Ramadoss, R. (2010). Intellgent time

slice for round robin in real time operating systems. pp.

126-131.

[24] Cheriere, N., Bouillud, P.D., Ibrahim, S., Simonin, M.

(2016). On the usability of shortest remaining time first

policy in shared Hadoop clusters. Proceedings of the 31

st Annual ACM Symposium on Applied Computing, pp.

426-431. https://doi.org/10.1145/2851613.2851626

[25] Sha, L., Abdelzaher, T., årzén, K.E. et al. (2004). Real

time scheduling theory: A historical perspective. Real-

Time Systems, 28: 101-155.

https://doi.org/10.1023/B:TIME.0000045315.61234.1e

[26] Hwang, M., Choi, D., Kim, P. (2011). Least slack time

rate first: An efficient scheduling algorithm for pervasive

computing environment. Journal of Universal Computer

Science, 17(6): 912-925.

[27] Ahmad, F., Mahmud, S.A., Khan, G.M., Yousaf, F.Z.

(2013). Shortest remaining processing time based

schedulers for reduction of traffic congestion. 2nd

International Conference on Connected Vehicles & Expo

(ICCVE), at: Las Vegas, USA.

http://dx.doi.org/10.1109/ICCVE.2013.6799805

[28] AlKhulaifi, D., AlQahtani, M., AlSadeq, Z., Rahman, A.

(2022). An overview of self-adaptive differential

evolution algorithms with mutation strategy.

Mathematical Modelling of Engineering Problems, 9(4):

1017-1024.

[29] Rahman, A. (2020). GRBF-NN based ambient aware

realtime adaptive communication in DVB-S2. Journal of

Ambient Intelligence and Humanized Computing.

https://doi.org/10.1007/s12652-020-02174-w

[30] Alhaidari, F., Rahman, A., Zagrouba, R. (2020). Cloud

of things: Architecture, applications and challenges.

Journal of Ambient Intelligence and Humanized

Computing. https://doi.org/10.1007/s12652-020-02448-

3

[31] Rahman, A., Dash, S., Ahmad, M., Iqbal, T. (2021).

Mobile cloud computing: A green perspective.

Intelligent Systems, Lecture Notes in Networks and

Systems Book Series (LNNS, volume 185), 523-533.

[32] Rahman, A., Abbas, S., Gollapalli, M., Ahmed, R.,

Aftab, S., Ahmad, M., Khan, M.A., Mosavi, A. (2022).

Rainfall prediction system using machine learning fusion

for smart cities. Sensors, 22(9): 1-15.

https://doi.org/10.3390/s22093504

[33] Jamal, M., Zafar, N.A., Rahman, A., Musleh, D.,

Gollapalli, M., Chabani, S. (2022). Modeling and

verification of aircraft takeoff through novel quantum

nets. Computers, Materials and Continua, 72(2): 3331-

3348. http://dx.doi.org/10.32604/cmc.2022.025205

[34] Ibrahim, N.M., Gabr, D.G.I., Rahman, A., Dash, S.,

Nayyar, A. (2022). A deep learning approach to

intelligent fruit identification and family classification.

Multimedia Tools and Applications, 81: 27783-27798.

https://doi.org/10.1007/s11042-022-12942-9

[35] Gollapalli, M.A.S., Rahman, A., Musleh, D., Ibrahim,

N.M., Khan, M.A., Abbas, S., Atta, A., Khan, M.A.A.,

Farooqui, M., Ahmed, M.I.B. (2022). A neuro-fuzzy

approach to road traffic congestion prediction.

Computers, Materials and Continua, 73(1): 295-310.

http://dx.doi.org/10.32604/cmc.2022.027925

[36] Rahman, A., Alqahtani, A., Aldhafferi, N., Nasir, M.U.,

Khan, M.F., Khan, M.A., Mosavi, A. (2022).

Histopathologic oral cancer prediction using oral

squamous cell carcinoma biopsy empowered with

transfer learning. Sensors, 22(10): 3833.

https://doi.org/10.3390/s22103833

[37] Khan, M.A., Abbas, S., Atta, A., Ditta, A., Alquhayz, H.,

Khan, M.F., Rahman, A., Naqvi, R.A. (2020). Intelligent

cloud based heart disease prediction system empowered

with supervised machine learning. Computers, Materials

& Continua, 65(1): 139-151.

http://dx.doi.org/10.32604/cmc.2020.01141

[38] Ahmad, M., Qadir, M.A., Rahman, A., Zagrouba, R.,

Alhaidari, F., Ali, T., Zahid, F. (2020). Enhanced query

processing over semantic cache for cloud based

relational databases. Journal of Ambient Intelligence and

Humanized Computing. https://doi.org/10.1007/s12652-

020-01943-x

[39] Rahman, A., Dash, S., Luhach, A.K., Chilamkurti, N.,

Baek, S., Nam, Y. (2019). A Neuro-fuzzy approach for

user behavior classification and prediction. Journal of

Cloud Computing, 8(1): 1-15.

https://journalofcloudcomputing.springeropen.com/artic

les/10.1186/s13677-019-0144-9.

[40] Rahman, A., Sultan, K., Das, S., Khan, M.A. (2018).

Management of resource usage in mobile cloud

computing. International Journal of Pure and Applied

Mathematics, 119(16): 255-261.

[41] Rahman, A., Sultan, K., Naseer, I., Majeed, R., Musleh,

D., Gollapalli, M.A.S., Chabani, S., Ibrahim, N.,

Siddiqui, S.Y., Khan, M.A. (2021). Supervised machine

learning-based prediction of COVID-19. Computers,

Materials & Continua, 69(1): 21-34.

1231

https://doi.org/10.1007/978-3-540-30182-0_83
https://doi.org/10.1023/B:TIME.0000045315.61234.1e
https://doi.org/10.1007/s12652-020-02174-w
https://doi.org/10.1007/s12652-020-02448-3
https://doi.org/10.1007/s12652-020-02448-3
https://doi.org/10.3390/s22093504
https://doi.org/10.1007/s11042-022-12942-9
https://doi.org/10.3390/s22103833
https://doi.org/10.1007/s12652-020-01943-x
https://doi.org/10.1007/s12652-020-01943-x

https://doi.org/10.32604/cmc.2021.013453

[42] Alotaibi, S.M., Rahman, A., Basheer, M.I., Khan, M.A.

(2021). Ensemble machine learning based identification

of pediatric epilepsy. Computers, Materials & Continua,

68(1): 149-165.

http://dx.doi.org/10.32604/cmc.2021.015976

[43] Alhaidari, F., Almotiri, S.H., Ghamdi, M.A., Khan, M.

A. Rehman, A., Abbas, S., Khan, K.M., Rahman, A.

(2021). Intelligent software-defined network for

cognitive routing optimization using deep extreme

learning machine approach. Computers, Materials &

Continua, 67(1): 1269-1285.

http://dx.doi.org/10.32604/cmc.2021.013303

[44] Rahman, A., Mahmud, M., Iqbal, T., Saraireh, L.,

Kholidy, H.A., Gollapalli, M.A.S., Musleh, D.,

Alhaidari, F., Almoqbil, D., Ahmed, M.I.B. (2022).

Network anomaly detection in 5G networks.

Mathematical Modelling of Engineering Problems, 9(2):

397-404. https://doi.org/10.18280/mmep.090213

[45] Zaman, G., Mahdin, H., Hussain, K., Rahman, A.,

Abawajy, J., Mostafa, S.A. (2021). An ontological

framework for information etraction from diverse

scientific sources. IEEE Access, 9: 42111-42124.

https://doi.org/10.1109/ACCESS.2021.3063181

[46] Rahman, A., Dash, S., Luhach, A.K. (2021). Dynamic

MODCOD and power allocation in DVB-S2: A hybrid

intelligent approach. Telecommun Syst., 76(1): 49-61.

https://doi.org/10.1007/s11235-020-00700-x

[47] Rahman, A., Asif, R.N., Sultan, K., Alsaif, S.A., Abbas,

S., Khan, M.A., Mosavi, A. (2022). ECG classification

for detecting ECG arrhythmia empowered with deep

learning approaches. Computational Intelligence and

Neuroscience, 2022: 6852845.

https://doi.org/10.1155/2022/6852845

[48] Rahman, A., Nasir, M.U., Gollapalli, M., Alsaif, S.A.,

Almadhor, A.S., Mehmood, S., Khan, M.A., Mosavi, A.

(2022). IoMT-based mitochondrial and multifactorial

genetic inheritance disorder prediction using machine

learning. Computational Intelligence and Neuroscience,

2022: 2650742. https://doi.org/10.1155/2022/2650742

[49] Rahman, A., Nasir, M.U., Gollapalli, M., Zubair, M.,

Saleem, M.A., Mehmood, S., Khan, M.A., Mosavi, A.

(2022). Advance genome disorder prediction model

empowered with deep learning. In IEEE Access, 10:

70317-70328.

https://doi.org/10.1109/ACCESS.2022.3186998

[50] Arooj, S., Rahman, A., Zubair, M., Khan, M.F., Alissa,

K., Khan, M.A., Mosavi, A. (2022). Breast cancer

detection and classification empowered with transfer

learning. Front Public Health.

https://doi.org/10.3389/fpubh.2022.924432

[51] Nasir, M.U., Ghazal, T.M., Khan, M.A., Zubair, M.,

Rahman, R., Ahmed, R., Hamadi, H.A., Yeun, C.Y.

(2022). Breast cancer prediction empowered with fine-

tuning. Computational Intelligence and Neuroscience,

2022: 5918686. https://doi.org/10.1155/2022/5918686

[52] Rahman, A., Ahmed, M., Zaman, G., Iqbal, T., Khan,

M.A.A., Farooqui, M., Ahmed, M.I.B., Ahmed, M.S.,

Nabeel, M., Omar, A. (2022). Geo-spatial disease

clustering for public health decision making.

Informatica, 46(6): 21-31.

http://dx.doi.org/10.31449/inf.v46i6.3827

[53] Asif, R.N., Abbas, S., Khan, M.A., Rahman, A., Sultan,

K., Mahmud, M., Mosavi, A. (2022) Development and

validation of embedded device for electrocardiogram

arrhythmia empowered with transfer learning.

Computational Intelligence and Neuroscience, 2022:

5054641. https://doi.org/10.1155/2022/5054641

[54] Nasir, M.U., Zubair, M., Ghazal, T.M., Khan, M.F.,

Ahmad, M., Rahman, A., Hamadi, H.A., Khan, M.A.,

Mansoor, W. (2022) Kidney cancer prediction

empowered with blockchain security using transfer

learning. Sensors, 22: 7483.

https://doi.org/10.3390/s22197483

[55] Rahman, A., Qureshi, I.M., Malik, A.N., Naseem, M.T.

(2016). QoS and rate enhancement in DVB-S2 using

fuzzy rule based system. Journal of Intelligent & Fuzzy

Systems, 30(1): 801-810. http://dx.doi.org/10.3233/IFS-

151802

[56] Rahman, A., Qureshi, I.M., Malik, A.N., Naseem, M.T.

(2016). Dynamic resource allocation in OFDM systems

using differential evolution and Fuzzy Rule Base System.

Journal of Intelligent & Fuzzy Systems, 26(4): 2035-

2046. http://dx.doi.org/10.3233/IFS-130880

[57] Rahman, A., Alhaidari, F. (2019). The Digital library and

the archiving system for educational Institutes. Pakistan

Journal of Information Management & Libraries 20(1):

94-117. https://doi.org/10.47657/2018201453

[58] Rahman, A. (2019). Optimum information embedding in

digital watermarking. Journal of Intelligent & Fuzzy

Systems, 37(1): 553-564.

http://dx.doi.org/10.3233/JIFS-162405

[59] Rahman, A. (2019). Memetic computing based

numerical solution to Troesch problem. Journal of

Intelligent & Fuzzy Systems, 37(1): 1545-1554.

http://dx.doi.org/10.3233/JIFS-18579

[60] Rahman, A., Alhaidari, F., Musleh, D., Mahmud, M.,

Khan, M.A. (2019). Synchronization of virtual

databases: A case of smartphone contacts. Journal of

Computational and Theoretical Nanoscience, 16(4):

1740-1757. http://dx.doi.org/10.1166/jctn.2019.8115

1232

https://doi.org/10.1007/s11235-020-00700-x
https://doi.org/10.1155/2022/6852845
https://doi.org/10.1155/2022/2650742
https://doi.org/10.1155/2022/5918686
http://dx.doi.org/10.31449/inf.v46i6.3827
https://doi.org/10.1155/2022/5054641
https://doi.org/10.3390/s22197483

