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Deciding on optimal hotel capacity is strategically important and even very sensitive 

for investors in the hospitality industry. This article is an attempt to determine optimal 

hotel capacity with a novel approach, and then present a mathematical optimization 

model based on queuing theory. In that respect, upon simulating the hotel check-in 

system via the models of queuing and making use a limited two-dimensional backpack 

pattern, the optimal capacity and the hotel rooms number are acquired. Given the fact 

that the suggested model has high complexity in large scales, a meta-innovative 

approach is utilized to solve the problem of optimal hotel capacity determination. 

Contrary to previous models and approaches, merely applied to a specific hypothetical 

situation, the queuing theory, thanks to the existence of various models and the power 

to generate new patterns utilizing Markov chains, makes it possible to adapt the 

proposed model to different real conditions. There exist several queuing models, which 

can be implemented based on different conditions. Such models are progressively 

increasing and being expanded according to various requirements for modeling real 

environments. It seems necessary and innovative to expand the model proposed in the 

present study, employing non-Markov queuing models along with the general 

distribution functions. 
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1. INTRODUCTION

Being as a dynamic global and social phenomenon, the 

tourism (viz. travel) industry is nowadays characterized by its 

own intricacies beyond the scope of an industry. There are 4 

major features of tourism, and those include inseparability, 

perishability, intangibility, and variability that are against 

those of physical goods that are produced, stored, later sold, 

and stilled later consumed. 

Over recent years, the industry concerned has significantly 

influenced economic and sociocultural situation worldwide 

through job creation, higher rates of foreign exchange, 

regional balance, world peace, cultural heritage investments, 

and improved environmental performance.  

Today, tourism is known as the largest industry in the 

service sector and even one of the three major and profitable 

industries, following the oil and automotive industries, which 

will be ranked first according to the forecasts in terms of 

revenue generation in less than two decades. 

The tourism elements and activities directly and indirectly 

shape this industry. The most important elements, in this 

sense, are hotels. Indeed, hotel management and tourism 

complement each other, so bolstering each one will be vital for 

the development and progress of the other. 

Even though the term "tourism" is often associated with 

economic prosperity plus social development, some objective 

observations in the most popular tourist cities in Iran (e.g., 

Mashhad, Shiraz, etc.) draw attention to the large number of 

travelers accommodated during peak periods as well as the 

positive output of such tourist cities when travel demand is at 

its highest or the number of closed or empty hotels when travel 

demand is at its lowest. This issue can be considered and 

expanded from both macro and micro perspectives. 

From the macro perspective, this issue can be addressed 

using strategic and long-term plans, as to whether or not the 

arrival rate of travelers and tourists (by road, rail, sea, and air) 

to these cities, as well as their length of stay in the hotels in 

various times of the year, matches the existent capacity of the 

hotels in terms of their reception and accommodation. 

In other words, the following questions can be raised: 

- What level of service does current hotel capacity

provide to travelers at different times of the year? 

- What is the possibility of encountering hotel capacity

shortages at various times? 

- Is there a need to change the existing capacity of

hotels according to the forecasts made regarding the arrival 

rate of travelers and the length of stay for the coming years? 

Reflecting on this issue from the micro perspective, the 

question is that what capacity and how many rooms should be 

considered to create, buy, or rent a hotel to maximize one's 
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profits by people applying to do so according to their ability to 

attract travelers through various means (e.g., phone, internet, 

intermediaries, tourism companies, and travel agencies).  

Overall, this article intends to discover that if there is a 

model by which investors in the hospitality industry can be 

advised in choosing the most favorable capacity to create, 

purchase, or rent a hotel. To address that, this article attempts 

to present a combined model of the queuing theory basics and 

planning for this purpose to obtain hotel optimal capacity.  

Over the course of this study, the hotel check-in system is 

first simulated utilizing the queuing theory basics. Following 

that, through defining a cost function and considering the 

investors' financial constraints and the spatial limitations of the 

hotel location; a backpack model is developed to determine 

optimal hotel capacity. Given the results, queuing theory can 

facilitate adapting the proposed model to different real 

conditions. 
 

 

2. LITERATURE REVIEW 
 

Capacity management has been thus far investigated by 

some researchers as demand management or demand capacity 

management. Nevertheless, both need to be taken into account 

as two separate items. During demand management, much 

effort is to control the time of announcing customer demands 

as well as the volume of goods demanded via marketing 

strategies [1, 2]. Capacity management, on the other hand, 

ensures sufficient capacity to meet market demands [3, 4]. 

Moreover, decision-making capacity is among the most 

important strategic concerns of the managers of different 

industries, affecting the way industries respond to current and 

future market demands [5, 6]. Considering capacity 

measurement, previous research has mainly examined it in 

various industries based on a specific approach. For example, 

most researchers in the tourism industry have explored a 

revenue management approach, and then focused on capacity 

management [7, 8]. However, there is the lack of broad-

spectrum analysis in the literature in the field of the capacity 

management of different industries [9, 10]. Of note, the 

number of such studies on the service sector is smaller. As 

service capacity has a significant impact on customer 

satisfaction and the level of services provided, in areas, 

including parking lots, hospitals, hotels and restaurants, the 

issue of calculating optimal capacity has become of utmost 

importance. In the production sector, much work has been 

done in this respect, including proposing models for 

determining the warehouse optimal capacity. 

For example, White and Francis [11] established optimal 

warehouse capacity for both definite and probable warehouse 

demands, using the theory of duality in linear programming as 

well as the network equilibrium model. They further 

considered the costs of building the warehouse, keeping the 

products there, and meeting demands from the external 

warehouse. Rao and Rao [12] also presented a warehouse 

capacity model as a product, and then examined some variable 

costs over a given period, investment savings, and operating 

costs in the probable terms. They similarly developed a 

structure to acquire the most desirable solution and 

demonstrated that the issue of the static size of the warehouse 

and its extensions could be simply resolved without the 

implementation of common linear programming procedures. 

They even resolved the dynamic size issue facing the 

warehouse through network flow algorithms, and ultimately 

discussed concave costs by dynamic programming. 

In the field of hospitals, several research has been so far 

fulfilled to calculate the optimal number of operating rooms 

due to the high costs of preparing and equipping them. For this 

purpose, various methods have been proposed to establish 

their optimal capacity, including discrete-event simulation, 

random simulation, queuing theory, and combined techniques 

[13]. As an example, Kokangul [14] presented a model for 

optimizing the bed capacity of a hospital ward, recruiting a 

mixture of random and deterministic methods, in which the 

number of patients admitted and the length of stay of each 

patient were modeled as random processes.  

In the field of restaurant capacity management, Hwang et 

al. [15] modeled a local restaurant system employing the 

relevant queuing models, and then solved it with the aim of 

maximizing profits and augmenting customer satisfaction. 

Some studies have been also conducted to determine hotel 

optimal capacity. In this regard, Gu [16] used an inventory 

model to optimize and analyze the capacity of Las Vegas 

casinos. He also practiced this model to obtain hotel optimal 

capacity, arguing that both features of the possible single-

period inventory model, namely, perishable items and 

potential demand ones, could be applied to the hotels. If empty 

rooms to receive travelers every night were considered as a 

hotel product, the guest was not accepted, and the rooms 

remained empty, the empty rooms would thus play the role of 

perishable items in the production units. The main drawback 

of this model was that a period had been simply planned for a 

period. If this period had been regarded as one year, the 

demand included in the model would be in the form of 

potential annual demand, while this industry was highly 

seasonal and the demand varied in different months of the 

year. In other research, Chen and Lin [17] used the data 

collected from tourist hotels in Taiwan, between 1998 and 

2008, to examine the effects of demand uncertainty on hotel 

capacity. They initially applied an autoregressive model to 

estimate the random demand of each period using the former 

one, and then combined this random demand with several 

other factors affecting the capacity of a hotel into another 

regression equation in order to estimate the capacity needed 

for the new period [18].  

Pullman and Rodgers [9] also reviewed some studies on 

hotel capacity management. They accordingly categorized 

capacity management into two areas: physical capacity and 

staff capacity. Capacity management decision-making was 

also examined in two sections: strategic and short-term. They 

additionally sorted the studies in terms of their solution 

methods. In another article, Pan [19] presented a model for 

determining the optimal number of hotel rooms, considering 

the drastic changes in room demand and hotel capacity.  

Of note, many models have been thus far proposed to 

determine the optimal number of hotel rooms and hotel 

revenue management [18, 20], but not much research has been 

done to reflect on optimal hotel capacity. Among the domestic 

studies, no case has been so far reported to be directly dealing 

with optimal hotel capacity, but the issue of hotel capacity has 

been briefly described in several articles. For example, 

Tirkolaee et al. [21], using optimization methods, to measure 

the efficiency of some decision-making units, found that the 

capacity and scale were among the cases for measuring the 

efficiency of such units and their perspectives. The application 

of optimization to evaluate system conditions has been further 

observed in other studies, too [22-24]. 

Besides, Goli et al. [24] examined the quality of services 
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and customer satisfaction via investigating hotels in Mashhad, 

and reported that the capacity of the hotels to receive travelers 

was one of the criteria in relation to the services. Goli and 

Malmir [25] also researched the current capacity of hotels in 

Shiraz in terms of receiving travelers, and reported lost profits 

due to insufficient hotel capacity. 

In this article, using fuzzy queuing models, a two-

dimensional backpack model is presented to determine 

optimal hotel capacity. Given the importance of the backpack 

problem, several algorithms are correspondingly reported to 

solve it, which can be further divided into two general groups: 

approximation and exact algorithms. 

Given the fact that the backpack problem is an NP-complete 

one, exact algorithms, typically using the branch-and-cut 

method or combined and dynamic programming, are complex 

in the worst case and are not favorable for viable usage. Hence, 

several approximation algorithms have been reported to 

address this issue. Much research has also solved the one-

dimensional backpack problem (m=1) and many efforts have 

been further made to approximate the multidimensional 

backpack problems. Although approximation algorithms to 

solve multidimensional backpack problems are iterative, they 

do not guarantee optimal responses, but produce acceptable 

approximate ones in most cases. One of the iterative 

algorithms considered by researchers in many studies [13, 22] 

is the genetic algorithm (GA). Therefore, it was used in this 

article to solve the proposed two-dimensional backpack 

model. 

A review of the studies on capacity management also 

indicates the relative dearth of research in this area. It should 

be noted that the models presented in these studies have been 

merely used for a series of specific assumed conditions, which 

might have lost their effectiveness with the slightest changes 

in the problem assumptions. Consequently, in this article, 

using fuzzy queuing models, a backpack model is presented to 

determine optimal hotel capacity. It is possible to adapt the 

proposed model to different real conditions because queuing 

models, thanks to their high diversity and power to generate 

new patterns utilizing Markov chains, are employed. 

 

 

3. METHODOLOGY 
 

Considering the fact that the suggested model is on the basis 

of the queuing concepts, the hotel and its reception and 

accommodation system should be adapted to the queuing 

system components [13, 22]. 

Accordingly: 

- Travelers are queuing as customers in this system of 

queuing, getting to the hotel to stay in the type-j rooms at the 

rate of λj. 

- The rooms pf hotel are service suppliers in this system of 

queuing, hence the rooms’ number is the same as the service 

suppliers number. 

- Travelers' mean length of stay in the type-j rooms is equal 

to the service rate, viz. the queuing service suppliers to its 

customers, displayed as μj. 

- The mean number of full rooms in the hotel is equal to that 

of customers in the queuing system simulated, represented by 

Lj. 

 

3.1 Basic assumptions 

 

- The time interval between the arrival of travelers 

applying for an accommodation in the type-j rooms of the 

hotel and their length of stay has an exponential distribution. 

- Investors have limited capital to construct a hotel, but 

can invest up to Bmax currency. 

- Investors have limited space to construct a hotel and 

the maximum space available is Smax square meters. 

- Hotels have 3 kinds of rooms to accommodate 

travelers (suites (j=1), single-bed rooms (j=2), and double 

rooms (j=3)). 

 

3.2 Model symbols 

 

Bmax: Maximum initial capital for hotel construction 

Smax: Maximum initial space available for hotel 

construction 

aj: Space required for building a type-j room  

bj: Capital required for building a type-j room  

kj: Capacity and number of rooms in a type-j hotel 

πnj: Probability that n rooms will be filled with j-type rooms 

in the long run (the percentage when the hotel has n rooms 

with j-type travelers) 

λj: Rate at which a traveler visits a hotel to stay in j-type 

rooms 

μj: Mean length of stay in j-type rooms 

Pj: Profits from each type-j room for one-night stay 

i: Interest rate 

N: Number of courses along the planning horizon 

Based on the given assumptions and symbols, the 

reservation and reception system for each of the three hotel 

rooms is an M/M/kj queuing system, in which the time interval 

between the arrival of the guests and their length of stay is 

distributed, and the number of kj servers (the type-j room) is 

intended to serve the customers of this queuing system (viz. 

travelers). Here, it is aimed to get the optimal number of each 

type of hotel room, i.e., kj*, so that the restrictions on the 

amount of capital and the space available are covered, and the 

costs imposed on investors are minimized. 

The proposed model in this research is formulated as 

follows: 

 

Min CT =∑

[
 
 
 

[
i. (1 + i)N

(1 + i)N − 1
] .∑(Kj − n). πnj . bj

kj

n=0

3

j=1

+ ∑ (n − Kj). πnj . Pj

∞

n=Kj+1 ]
 
 
 

 

(1) 

 

s. t: 

∑ajKj ≤ Smax

3

j=1

 
(2) 

 

∑bjKj ≤ Bmax

3

j=1

 (3) 

 

Kj ≥ 0Integer          ∀j ∈ J (4) 

 

According to Eq. (4), the capacity of triple rooms, as the 

response variable of the problem, must be an integer and a 

positive number. 

1194



 

Eqns. (2) and (3) are also associated with the maximum 

space and capital constraints, respectively, which lead to the 

total space and the cost required for creating the optimal 

capacities of triple rooms, not exceeding the maximum space 

and the available capital. 

Eq. (1) refers to the cost function of the proposed model, 

which is to be minimized. 

The cost function concerned consists of the sum of two 

opposing types of costs. The cost of the first part is due to the 

creation of too much optimal capacity (k>k*). In fact, if a hotel 

with a very high capacity is constructed, part of it will be left 

empty most of the time, and it will cost investors much money 

due to capital sedimentation and the loss of other investment 

opportunities. At the same time, such a hotel with such a large 

number of rooms will not be very efficient. This cost is known 

as the cost of excess capacity, obtained using the Eq. (5): 

 

∑(Kj − n). πnj . bj

Kj

n=0

 (5) 

 

The second cost is caused by the construction of a hotel with 

a capacity less than the optimal capacity (k<k*). In fact, if a 

hotel is built with a low capacity, that will be full most of the 

time, and there will be no capacity to receive and 

accommodate more travelers. In this case, a lost profit for each 

lost customer occurs, known as the cost of a capacity shortage, 

obtained from the Eq. (6): 

 

∑ (n − Kj). πnj . Pj

∞

n=Kj+1

 (6) 

 

As the hotel capacity changes, both costs fluctuate in 

opposite directions. In fact, higher capacity increases the cost 

of excess capacity and decreases the cost of a capacity 

shortage and vice versa (Figure 1). 

 

 
 

Figure 1. The process of changing costs by increasing 

warehouse capacity 

 

The total cost function (CT) resulting from the construction 

of a hotel with non-optimal capacity (k≠k*) is further obtained 

from the sum of the costs of excess capacity and a capacity 

shortage. Moreover, the cost of excess capacity is imposed 

only once at the beginning of the planning horizon when 

building, buying, or renting a hotel, while the cost of a capacity 

shortage during the planning horizon must be paid in each 

period. The cost of excess capacity is multiplied by the capital 

recovery factor (CRF) (Eq. (7)). 

CRF = (
A

P
, i, N) = [

i. (1 + i)N

(1 + i)N − 1
] (7) 

 

Finally, this cost function is added for all three types of hotel 

rooms (per j=1, 2, 3) (Eq. (8)): 

 

CT =∑

[
 
 
 

[
i. (1 + i)N

(1 + i)N − 1
] .∑(Kj − n). πnj . bj

kj

n=0

3

j=1

+ ∑ (n − Kj). πnj . Pj

∞

n=Kj+1 ]
 
 
 

 

(8) 

 

Note that the values of probabilities (πnj) in the objective 

function are obtained by the Markov chain of the queuing 

model (M/M/kj), and based on the Eqns. (9) and (10): 

 

πnj =

{
 
 

 
 (
λj

μj
)

nj π0j

nj!
            ;           nj <

(
λj

μj
)

nj π0jkj
kj−nj

kj!
    ;      nj ≥

 (9) 

 

π0j = [1 + ∑ (
λj

μj
)

n
1

n!
+ ∑ (

λj

μj
)

n
1

kj!
∗

1

kj
n−kj

∞

n=kj

kj−1

n=1

]

−1

 (10) 

 

The code to solve the proposed model from a micro 

perspective is developed in MATLAB, and applied in the 

numerical results. Considering that the proposed backpack 

model is one of the NP-complete problems [25, 26], solving it 

using accurate solution methods, especially for large-scale 

problems, is not possible within a reasonable computational 

time. Therefore, the model is solved on a large scale utilizing 

a meta-innovative approach based on the GA. 

 

 

4. SUGGESTED MODEL 
 

The GA is known as an efficient method to solve 

optimization problems. Most of the novel meta-heuristic, viz. 

evolutionary, methods are thus an extended form of this 

algorithm. Evolutionary computation was first proposed by 

Richenberg in 1960, when he was researching evolution 

strategies. His theory was later explored by many researchers 

until the GA was put forward by Holland in 1975 at the 

University of Michigan [5, 16, 23]. 

In 1992, Coza used the GA to solve and optimize advanced 

engineering problems [17, 21, 24], and even translated this 

type of algorithm for the first time into a computer language, 

and developed a programming language specifically for it, 

called genetic programming. The details of the proposed GA 

are described in this section: 

 

4.1 Chromosome definition (response display code) 

 

Duplicate metaheuristics need some structures to display 

(namely, encode) the solutions. Coding has also affected the 

efficiency and effectiveness of metaheuristics as well as their 

design. To create the initial response, three discrete numbers 

(the number of room types) between zero and n (the maximum 
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number of rooms of each type) are established (Figure 2). 

 

 
 

Figure 2. How to display the responses 

 

4.2 Initial population 

 

A prevalent method for producing the initial population is 

to generate a random population because of the execution 

speed, and then create variety in the responses. Therefore, a 

random response to the number of populations is generated, 

and the value of the objective function for each one is 

calculated. 

 

4.3 Crossover  

 

To create a crossover, three random numbers (equal to the 

number of hotel rooms) from a uniform distribution between -

1 gamma and +1 gamma are initially created. Then, new 

children are produced by multiplying these numbers in the 

parents and rounding them (Figures 3-9). 
 

 
 

Figure 3. First parent's chromosome 
 

 
Figure 4. Second parent's chromosome 

 

 
 

Figure 5. Random numbers generated 
 

 
 

Figure 6. First child's chromosome 
 

 
 

Figure 7. Second child's chromosome 
 

4.4 Mutation 
 

The mutation operator is used to make random changes in 

the chromosome genes. This operator also barricades 

premature convergence and decreases the probability of 

getting entrapped in the optimal local response. To generate a 

mutation, a random normal number of 10% of the amplitude 

of the response is added to a number of randomly selected 

genes, and a new response is obtained by comparing it with the 

minimum and maximum acceptable ones. 
 

  
 

Figure 8. Current response 

 
 

Figure 9. New response after mutation 

 
4.5 Evaluation and selection 

 
In each generation, chromosomes are evaluated by 

measuring their degree of optimality according to the main 

objective function. Since a minimization problem is 

considered here, the value of the objective function of each 

chromosome is converted into its fit function, so that a better 

chromosome can have a better fit. In this article, three types of 

selection mechanisms are assumed. 

 
4.6 Roulette wheel 

 
The main idea of a roulette wheel lies in the following two 

points: 

- Better chromosomes have a better chance of selection. 

- The chance of choosing each chromosome is 

proportional to its degree of optimality.  

First, the fit value is calculated for each chromosome in the 

population, so highly fit chromosomes have a better chance of 

being selected. Then, the cumulative fit is computed and the 

fit of each chromosome is divided by it. In this method, a 

random number between 0 and 1 is generated, as the 

probability of chromosome selection is determined. The 

chromosomes (arranged in an ascending order) are 

subsequently examined from the beginning, and the first 

chromosome, whose cumulative distribution is greater than or 

equal to the number produced, is selected. 

 
4.7 Random method 

 
Regardless of the degree of optimality, the simplest way to 

select chromosomes is to randomly choose and transfer them 

to the genetic pool. Implementing this method is 

uncomplicated; in contrast, it has a very little efficiency. In 

some cases, part of the selection process can be done randomly 

because both good and bad chromosomes have an equal 

chance of being selected in this method. It should be noted that 

incorporating a bad chromosome can lead to better 

chromosome production in some cases. 

 
4.8 Tournament selection 

 
A subset of the attributes of a population (here the value of 

the objective function) is selected, and then the members of 

that subset compete according to the desired attribute. Finally, 

a certain number of members (viz. tournament size) from each 

subset are chosen for reproduction purposes. 

 
4.9 Stop condition 

 
By increasing the number of the algorithm iterations, there 

is enough time to solve the model, and as a result, larger values 

of this parameter can lead to better results. Of note, selecting 

larger values increases the number of such iterations. For the 

proposed GA, 200 iterations are considered, and the algorithm 

stops upon reaching 200 iterations. To summarize the 

performance of the proposed algorithm, its flowchart is 

presented in Figure 10. 
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Figure 10. The flowchart of solving the problem using the 

GA 

 

 

5. NUMERICAL RESULTS 

 

5.1 A numerical example for the problem of the optimal 

capacity of a small hotel 

 

Table 1. The data related to a numerical example 

 
Parameter values Problem parameters 

365 = 3650 × 10 N 
0.05% i 

200000 𝐵𝑚𝑎𝑥  
1000 𝑆𝑚𝑎𝑥 

30, 40, 60 𝑎1, 𝑎2, 𝑎3 
4500, 5500, 7000 𝑏1, 𝑏2, 𝑏3 

90, 150, 200$ 𝑃1, 𝑃2, 𝑃3 

(5,2, 3) 𝜆1, 𝜆2, 𝜆3 

(3, 5, 2, 5,4) 
1

𝜇1
 ,
1

𝜇2
,
1

𝜇3
 

 

Suppose a number of investors in the tourism industry 

decide to build a five-star hotel. After finding the location, 

they need to agree on the hotel capacity. They accordingly 

obtain the optimal capacity to build it, taking into account a 

10-year time horizon. Upon collecting and analyzing the data 

from several hotels in the surrounding areas, the data needed 

to determine the optimal capacity of the hotel is given in Table 

1. 

Using the code developed in MATLAB, the values of the 

cost function of the proposed model are obtained for different 

capacities, and then, those meeting the constraints and 

bringing the least amount of cost function to the investors are 

proposed as the optimal capacities to create different types of 

suites as well as single-bed and double rooms. 

The MATLAB outputs for this example show the optimal 

number of the suites equal to 12 units and the optimal number 

of single-bed and double rooms equal to 4 and 8 units, 

respectively. 

In MATLAB, the value of the upper limit of the second 

sigma in the cost function should be set to a large number 

instead of (∞) infinite. This large number must be also chosen 

so that the sum of the probabilities is very close to one. In this 

example, the number is set as 1,000. 

 

∑ πn1 = 0.9999 ≅ 1

1000

n=0

 (11) 

 

∑ πn2 = 0.9998 ≅ 1

1000

n=0

 (12) 

 

∑ πn3 = 0.9999 ≅ 1

1000

n=0

 (13) 

 

According to the values related to the arrival and stay rates 

in this example, the maximum number of rooms that can be 

built for each type of triple room is 50 (kj<50). If this problem 

is to be solved by considering more rooms for each of the triple 

rooms due to the rate of more arrivals, then the code developed 

in the previous step will no longer be responded in a 

reasonable time. Therefore, the proposed meta-heuristic 

method should be used in situations wherein the problem is 

viewed from a macro perspective. 

 

5.2 A numerical example for the problem of the optimal 

capacity of a large hotel 

 

Table 2. The data for the large-scale capacity measurement 

problem 

 
Parameter values Problem parameters 

365 = 3650 × 10 N 
0.05% i 
500000 𝐵𝑚𝑎𝑥  

3000 𝑆𝑚𝑎𝑥 
30, 40, 60 𝑎1, 𝑎2, 𝑎3 

4500, 5500, 7000 𝑏1, 𝑏2, 𝑏3 
90, 150, 200$ 𝑃1, 𝑃2, 𝑃3 

(25,15, 10) 𝜆1, 𝜆2, 𝜆3 

(3, 5, 2, 5,4) 
1

𝜇1
 ,
1

𝜇2
,
1

𝜇3
 

 

The input data for this example is provided in Table 2. 

Compared with the numerical example in Section 5.1., the 

arrival rate and also the capital and space available for the 

construction of the hotel has risen in that instance. Hence, it 

seems reasonable to expect that the optimal capacity for each 

of the three types of hotel rooms is more than 50. The 

maximum capacity, allocated to each of the three rooms as 

1,000 is thus considered here, and there is an attempt to 

address the issue applying the GA. 

To solve the problem with the help of the GA, it is first 

necessary to set the parameters used in this algorithm. 

The Taguchi method is employed to adjust the GA 

parameters. In an efficient parameter design, the first objective 

is to identify and adjust the factors that minimize the changes 
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in the response variables, and the second objective is to 

identify the controllable and uncontrollable factors. The 

ultimate objective in the Taguchi method is to find the optimal 

combination of the values for the controllable factor [21]. For 

the proposed GA, the parameters of crossover rate, mutation 

rate, mutation percentage, and selection mechanism must be 

accordingly set. Three levels are thus selected for each of the 

input factors, with reference to previous research as well as 

trial and error. Table 3 shows the selected levels of the GA 

parameters.  
 

Table 3. The selected levels of the GA parameters 

 
High Medium Low Level 

3 2 1 Parameter 

0.9 0.8 0.7 Crossover rate 

0.3 0.2 0.1 Mutation percentage 

0.1 0.05 0.02 Mutation rate 

Random Tournament 
Roulette 

wheel 

Selection 

mechanism 

 

According to the standard Taguchi table, two L9 and L27 

designs can be used by considering four three-level factors. In 

this sense, the L9 design is used due to its simplicity and less 

computation. First, the value of the objective function is 

measured in different experiments, and then this criterion is 

scaled using the relative percentage deviation, as follows: 

 

RPD =
|each response −  better response| ∗ 100

the best response
 (14) 

 

 
 

Figure 11. The comparison of mean responses 
 

It should be noted that the smallest value in Eq. (11) is equal 

to the best response. Figure 11 illustrates the mean response 

for each compound. As the "smaller is better" option is 

selected for different levels of the response variable, lower 

response values are considered. Accordingly, the appropriate 

compounds based on the mean response factor are as follows: 

Crossover rate: 0.9%, Mutation percentage: 0.3, Mutation 

rate: 0.02, Selection mechanism: Roulette wheel. 

Figure 12 depicts the stability factor of the response for each 

compound. The stability factor in the response accordingly 

indicates the power of the factors intended to minimize the 

variability in the process by controlling other uncontrollable 

factors; therefore, the higher the stability of a combination, the 

more suitable the combination. Accordingly, the appropriate 

compounds based on the stability factor are as follows: 

Crossover rate: 0.9, Mutation percentage: 0.3, Mutation 

rate: 0.02, Selection mechanism: Roulette wheel. 

 

 
 

Figure 12. The stability comparison of the responses 

 

In addition to adjusting the parameters discussed here, the 

number of the algorithm iterations and the size of the 

population used to run it must be adjusted. By increasing the 

number of the algorithm iterations, the model is allowed to 

have enough time to solve. As a result, the larger values of this 

parameter bring better results. It should be noted that the 

number of the algorithm iterations augments by selecting 

larger values. For the proposed GA, 200 iterations are 

considered and the algorithm stops upon reaching 200 

iterations. As the population size increases, the algorithm 

searches for more points in the response space and the quality 

and distribution of the responses also elevate. Accordingly, a 

population size of 30 is considered for the proposed algorithm. 

After adjusting the parameters and solving the model with 

the GA, the MATLAB outputs show the optimal number of 

the suites equal to 64 and that of single-bed and double rooms 

equal to 37 and 32, respectively. 

To compare the responses obtained from the two methods 

of accurate and meta-innovative solution in MATLAB, the 

problem is solved from different perspectives, as summarized 

in Table 4. 

 

Table 4. The comparison of the solution methods for the problem of hotel capacity measurement 
 

GA-based meta-innovative method Exact solution method  

 Solution 

time 

Difference in the value of objective 

function 

Function 

value 

Solution 

time 

Target function 

value 

𝐤𝐣Maximum 

value 

81 0% 736 42 736 10 

Small 84 0% 1450 113 1450 15 

92 2% 295 251 288 20 

99 3% 475 484 459 30 

Medium 102 5% 199 753 190 40 

108 4% 1140 1152 1093 50 

188 - 894 - - 100 

 Large 223 - 570 - - 500 

302 - 1230 - - 1000 
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6. CONCLUSION 

 

In order to determine optimal hotel capacity in this article, 

a backpack model based on the queuing theory is presented. In 

the proposed approach, the hotel check-in system is first 

simulated using the queuing theory basics. Then, by defining 

a cost function and taking into account the investors' financial 

constraints and the spatial limitations of the hotel location; a 

backpack model is developed to determine optimal hotel 

capacity. Due to the complexity of the backpack model, a 

meta-heuristic approach based on the GA is used to solve the 

problem on a large scale. It should be noted that the basic 

parameters of the GA are adjusted by the Taguchi method. 

Unlike previous models and approaches, merely applied to 

a specific hypothetical situation, the queuing theory, thanks to 

the existence of various models and the power to create new 

models using Markov chains, makes it possible to adapt the 

proposed model to different real conditions. There are also 

many queuing models, which can be implemented based on 

different conditions. Such models are progressively increasing 

and being expanded according to different needs for modeling 

real environments. It is thus suggested to expand the model 

proposed in this article, using non-Markov queuing models 

with general distribution functions (such as the G/G/1 model), 

for situations where travelers arrive at a hotel, or the length of 

stay, because it provides better distributions other than Poisson 

and exponential ones. Definitely, some more complex cases 

fail to be fully adapted to the conventional types of queuing 

models, so it is suggested to utilize a combination of such 

models via simulation. Furthermore, it is recommended to 

employ better crossover operators in the GA to search for more 

parts of the response in future research. 
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