

Modeling Algorithms for Task Scheduling in Cloud Computing Using CloudSim

Mohammed Gollapalli1*, Abrar Alamoudi2, Arwa Aldossary2, Arwa Alqarni2, Sarah Alwarthan2, Yousof Z.

AlMunsour1, Mamoun M. Abdulqader2, Rami M. Mohammad1, Sghaier Chabani3

1 Department of Computer Information Systems, College of Computer Science and Information Technology, Imam

Abdulrahman Bin Faisal University, Dammam P.O. Box 1982, Saudi Arabia
2 Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal

University, Dammam P.O. Box 1982, Saudi Arabia
3 Network and Communications Department, College of Computer Science and Information Technology, Imam Abdulrahman

Bin Faisal University, Dammam P.O. Box 1982, Saudi Arabia

Corresponding Author Email: magollapalli@iau.edu.sa

https://doi.org/10.18280/mmep.090506

ABSTRACT

Received: 18 April 2022

Accepted: 4 October 2022

 As the number of cloud users are spontaneously growing globally, there is an urgent

need to constantly provide quality services to consumers. Consequently, task scheduling

plays an essential role in improving the performance of the cloud computing

environment. Most of the published research in this field share common goals, which

can be summarized in maximizing resource utilization, reducing cost, and increasing

performance. This research provides the foundation knowledge on the latest works done

to enhance and optimize the existing task scheduling algorithm in cloud computing by

considering various parameters. Furthermore, in this study, we have applied

comparative study to analyze the performance of three task scheduling algorithms

namely Max-Min, First Come First Serve (FCFS), and Round Robin (RR) in cloud

computing environments based on the performance metric of the Virtual Machines

(VM) resources' cost, average time and makespan to find the best performing algorithm

in the cloud environment. The experimental evaluations were conducted using

CloudSim simulation tool. The results show that Max-Min achieved better performance

based on makespan and average waiting time than other algorithms in Space and Time-

shared policies.

Keywords:

cloud computing, FCFS, Max-Min, RR,

virtualization, CloudSim

1. INTRODUCTION

Cloud computing has been the technology trend in recent

decades for hosting, storing, and distributing services through

the Internet. Cloud computing offers a variety of services at

various levels to satisfy the needs of users. These services have

been widely used in many different applications and domains.

Three types of cloud computing services on different layers

are used by private and public organizations to reduce their

operational consumption as shown in Figure 1 [1].

(1) Infrastructure as a service (IaaS) offers users physical

equipment like storage, services, and virtual machine networks.

Amazon EC2 and RackSpace Cloud are examples of IaaS [2].

(2) Platform as a service (PaaS) offers developers the

required computing platform to run and develop their

applications such as Apprenda and Google Apps engine [3].

(3) Software as Service (SaaS) has allowed the end-user to

access the services or applications that cloud providers offer

directly. Cisco WebEx and Google Apps are an example of

SaaS [3].

The public, private, and hybrid cloud deployment options

are the most common. All users could access a public cloud

based on a pay-as-you-use. However, the Private cloud is

when a particular organization owns the cloud. The Hybrid

cloud consists of both Private and Public Clouds [3].

Since there is a massive number of users using cloud

computing, it is vital to provide good quality services for them.

One of the most prominent roadblocks in cloud computing is

task scheduling, which focuses on distributing activities to

available resources at the right times to deliver a valuable

Quality of Service (QoS) [4]. The efficiency of cloud

computing services is influenced significantly by task

scheduling algorithms. Many studies have been published with

the goal of improving the quality of cloud services by reducing

the time it takes to complete a task and the time it takes to do

it. Furthermore, one of the key objectives used to improve task

scheduling algorithms is to increase resource utilization.

The primary contribution of this study is to summarize the

recent studies in this area and to present a comparison between

three task scheduling algorithms: FCFS, RR, and Max-Min.

CloudSim simulator toolkit will be used to determine the best

algorithm according to the performance metric of the VMs

resources' cost, average time and makespan. Section 2

introduces the key concepts in task scheduling. Section 3

discusses previous studies on task scheduling that have been

published. The proposed methodology is presented in Section

4. Section 5 discusses the final outcomes. Section 6

summarizes the findings and future research.

Mathematical Modelling of Engineering Problems
Vol. 9, No. 5, October, 2022, pp. 1201-1209

Journal homepage: http://iieta.org/journals/mmep

1201

https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.090506&domain=pdf

Figure 1. Different models in the cloud computing

2. BACKGROUND

This section introduces and discusses the fundamental

concepts of task scheduling in cloud computing environments.

The first section goes over the scheduling level in cloud

computing, and the second section goes over the scheduling

policies. The remaining sections go over the various

scheduling algorithms and performance metrics. The final

section provides an overview of the simulation tool used in this

study to assess the efficiency of task scheduling algorithms.

2.1 Cloud computing scheduling levels

The techniques for assigning resources to particular

activities are referred to as scheduling. Utilizing scheduling

algorithms is mostly intended to raise the caliber of cloud

computing. In order to do this, average waiting times and

makespan must be kept to a minimum while utilization is

increased. Scheduling the cloud's resources are categorized

into two levels: virtual machines (VMs), and host. At the host

level, VMs are assigned to physical machines (PMs) by using

a VM scheduler, this level is known as VM scheduling. Tasks

at the VM level are assigned to VMs for the purpose of

execution by using a task scheduler, this level is known as

Task Scheduling [5], as shown in Figure 2. This study will

concentrate on the VM level, with the goal of scheduling tasks,

which is the most difficult issue in cloud computing.

Figure 2. Cloud Resources Scheduling level (adapted with

modification from [5])

2.2 Scheduling policies

According to the scheduling policy, the tasks are allocated

to the resources. Two types of scheduling policies are provided

by cloud computing: Space and Time-shared policies. One

task is permitted to be performed at a given VM in Space-

Shared policy, which means that the task will own the VM

until it completes its execution. In Time-Shared policies, the

VM is being shared by multiple tasks, which means it allows

several tasks to run in parallel over a VM [6, 7]. This work

focuses on both policies to evaluate various task scheduling

algorithms.

2.3 Task scheduling classes

Task scheduling is a technique that has been used to assign

resources to a particular task to be completed effectively. This

section contains a brief description of scheduling algorithm

types including Static/Dynamic scheduling, Preemptive/Non-

Preemptive scheduling, and Heuristic /Metaheuristic

scheduling approach.

2.3.1 Static/Dynamic scheduling

There are two types of task scheduling: static task

scheduling and dynamic task scheduling. When the execution

period is known and there is a minimum running time, static

task scheduling is used. Dynamic task scheduling, on the other

hand, has a maximum running time and the execution period

is unknown [4].

2.3.2 Preemptive/ Non-Preemptive scheduling

Preemptive scheduling enables a newly arrived task, that

has a small job or a higher priority, to be executed instead of

the currently running task. As a result, the current task will be

halted, and the new task will be allocated to the instant of the

resource in order to run. On the other hand, non-preemptive

scheduling does not allow to a running task to be interrupted.

As a result, if the resource is allocated to a task, this task will

not stop even if a higher priority task arrives [8, 9].

2.3.3 Heuristic/Metaheuristic

The problem of task scheduling is that it is a non-

polynomial complete problem for the system. There are two

approaches to task scheduling algorithms: The heuristic

approach and the metaheuristic approach [10]. Heuristic

approach offers a specific solution for a particular problem.

Whereas the metaheuristic approach provides a consistent

solution and a master strategy that can solve a wide range of

problems. Genetic Algorithm (GA) is an example of

metaheuristic algorithms, whereas First Come First Serve

(FCFS), Round Robin (RR), and Min-Max are examples of

heuristic algorithms. The metaheuristic algorithms require

more time to execute than heuristic algorithms [11, 12].

The primary goal of this research is to evaluate and compare

the following algorithms based on the performance metrics of

the VMs resources' cost, average time, and makespan [13].

(1) First Come First Serve (FCFS): Is a heuristic non-

preemptive scheduling algorithm where the tasks are queued

based on the time which the task has arrived, then they will be

assigned to the available resource to be executed.

(2) Round Robin (RR): Is known as a heuristic preemptive

scheduling algorithm which works in the same way that FCFS

does but with considering the time quantum. That means the

task will be assigned to the available resource for a certain time

1202

quantum then the task will be preempted. The preempted task

will be queued back to get another chance to complete its

execution.

(3) Max-Min: Is a heuristic method for scheduling tasks

based on their completion time on each VM. It chooses the

task with the shortest completion time among all available

VMs to be executed on the best free VM with the shortest

completion time.

Figure 3. CloudSim entities (adapted with modification from

[14])

2.4 Parameter overview

Several task scheduling algorithms were evaluated based on

different parameters. This section presents a brief discussion

about the most common parameters [15, 16].

(1) Makespan: The maximum amount of time for

completing the most recent tasks that have been scheduled.

The makespan of scheduling algorithms must be kept to a

minimum for the system's performance.

(2) Execution Time: The amount of time required to

complete the assigned task. A better scheduling algorithm's

optimal goal is to minimize execution time.

(3) Load balancing: It is the process of managing and

distributing workloads across multiple servers in order to

maximize system performance and avoid system downtime.

Many scheduling algorithms strive to maintain load balance in

order to improve the performance of the cloud system.

(4) Deadline: It is the maximum time in which a task must

be completed. Efficient scheduling algorithms always attempt

to implement tasks within the limits of the deadline.

(5) Scalability: It is the capacity of the system to operate

well when its size has increased or de-creased to meet the

needs of the user.

(6) Throughput: The throughput refers to how many tasks

have been executed in a given amount of time. The cloud

environment always aims to give high throughput.

(7) Resource Utilization: It demonstrates how efficiently the

resources at hand are used. Increasing the likelihood that

resources will be completely utilized is a key component of

improving resource utilization. One of the goals that cloud

environments are aiming to accomplish is to maximize

resource consumption.

(8) Average Waiting Time: It refers to the time interval for

the task before starting their execution.

(9) Cost: It is an economic parameter that refers to the total

amount of payment required of using the resources, which are

charged by cloud consumers to the cloud providers.

2.5 CloudSim overview

In order to evaluate scheduling algorithms before their

actual implementation in a cloud environment, a cloud

computing simulator tool, such as CloudSim, can be used.

CloudSim [17] is a simulation tool used to simulate the cloud

computing environment's infrastructure and services. Cloud

computing simulator tools are used to evaluate the new

services and algorithms with-out any concern about

performance issues that may occur when they are actually

implemented on the real cloud.

CloudSim affords a set of functions that form the basis of

the cloud environment including: Cloud system entities'

creation (data center, broker, hosts and VMs), simulation clock

management, tasks handling and queuing, and connection

between cloud components. The Cloud Information Service

(CIS) is a component of CloudSim that includes the entire data

center information. The data center has one or more physical

machines (hosts), which include many of the VMs. VMs are

responsible for executing the tasks and applications which are

called cloudlets in CloudSim. The broker is responsible to

assign the VMs to a particular host, then assign the cloudlets

to the VMs. When the cloudlets of a specific VM completed,

then the broker will destroy the VM that is finished all its

cloudlets [14]. Figure 3 shows the CloudSim entities.

3. LITERATURE REVIEW

This section presents and analyzes previous research in the

domain of task scheduling algorithms conducted in the cloud

computing environment. The related works are divided into

two sections: The first shows the improved task scheduling

algorithms, and the second section presents studies that

evaluate existing scheduling algorithms.

3.1 Task scheduling enhancing algorithms

Hlaing and Yee [18] proposed a new static task algorithm

to improve the efficiency of cloud computing environments. A

queue of independent tasks and virtual machines will be

considered as an input to the new algorithm. An independent

task will be allocated to a proper VM by considering the VM's

processing cost and power. Authors used a CloudSim tool to

assess the proposed algorithm by comparing between the

proposed algorithm and two existing algorithms, which are

Shortest Job First (SJF) and FCFS. Authors found that the

proposed algorithm outperformed FCFS and SJF by

minimizing the cost and execution time.

Mazumder et al. [19] proposed a new strategy for

dynamically allocating algorithms based on task types and

minimizing the restrictions of some well-known algorithms

such as Min-Min and Max-Min. They also presented the trade-

off between the makespan and the average waiting time. The

results of the experiment revealed that the proposed algorithm

outperforms the Min-Min algorithm in terms of makespan,

while outperforming the Max-Min algorithm in terms of

average waiting time.

Fang et al. [20] enhanced task scheduling algorithms

depend on an adaptive genetic algorithm (AGA). The

suggested algorithm aims to op-timize the total task time and

balance the load of each computing resource. They compared

their proposed work with traditional genetic algorithm and

adaptive genetic algorithm by using the CloudSim platform.

1203

They found that the suggested algorithm achieved good

performance compared to others. Also, they noted that if the

jobs' number is minimal, then the proposed algorithm is not as

efficient as AGA.

Sarvabhatla et al. [21] suggested a new methodology for

reducing the energy usage of virtual machines in data centers.

The advantage of this model is that it assigns the task

dynamically to VM that has the highest efficient of energy.

They compared the model with two algorithms which are Most

Efficient Server First (MESF) and Random Scheme Algorithm

considering response time and energy cost metrics. The

outcomes presented that the proposed approach has a high-

performance advantage over MESF and Random Scheme

Algorithm.

Sood et al. [22] proposed the Hybridized Firefly

Gravitational Search Algorithm (HFGSA), which is based on

two algorithms: The Firefly Algorithm (FA) and the

Gravitational Search Algorithm (GSA) (GSA). The authors

used the CloudSim toolbox to compare the proposed algorithm

to the FA, GSA, and ACO algorithms in diverse situations. In

certain cloud setups, the suggested approach takes less time to

execute than others.

Kaur and Sengupta [6] proposed an enhanced Time-Shared

algorithm for the successful assignment of tasks to VMs. The

proposed algorithm aims to minimize the free RAM space in

the host and increase the task's response time. The researchers

compared their proposed work with Time-Shared scheduling

police by using the CloudSim tool. They evaluated these

algorithms based on response time and total delay metrics.

They found that their proposed work obtained better

performance in both metrics.

Orthogonal Taguchi-Based-Cat Swarm Optimization is a

revolutionary work scheduling technique presented by Gabi et

al. [23]. (OTB-CSO). The proposed approach was tested using

the CloudSim tool and the makespan, with the goal of reducing

dynamic scheduling execution time. Several algorithms were

compared to the suggested work. They discovered that the

suggested approach outperformed the competition by

achieving the shortest possible makespan.

Elmougy et al. [24] introduced a hybrid scheduling system

based on SJF and RR with a dynamic variable task quantum

termed (SRDQ). Their goal was to solve the scheduling

algorithm starving problem in cloud computing. They put

SRDQ to the test using the CloudSim simulation tool,

comparing the results against the Time Slice Priority Based

RR (TSPBRR), RR, and SJF algorithms. The experiment

found that the proposed algorithm minimizes reaction time,

waiting time, and moderates the task's starving issue when the

execution time is considerable.

Gupta and Garg [10] employed a meta-heuristic strategy to

improve job scheduling algorithms based on the ACO

algorithm, or load balancing ant colony optimization

algorithm (LB-ACO). By improving load balancing and

reducing makespan time, this technique seeks to enhance

resource use and execution performance. They compared the

suggested approach to a fast and elitist multiobjective genetic

algorithm using the CloudSim tool (NSGA-II). Given the

desired metrics, they discovered that the LB-ACO

outperformed the NSGA-II.

Kumari and Jain [25] introduced a new approach that

attempted to reduce the makespan and maximize resource

utilization. The proposed approach, known as Max-Min PSO,

combines the Particle Swarm Optimization (PSO) technique

with the Max-Min Algorithm. Using the CloudSim tool, the

proposed work is assessed and compared to two existing

algorithms: Bee Colony Optimization Algorithm and Particle

Swarm Optimization Algorithm (PBCOPSO). When

compared to the PBCOPSO method, the average makespan

and CPU utilization improved by 5.01 percent and 3.63

percent, respectively.

Hicham and Chaker [26] devised a novel CPU allocation

mechanism to minimize the average waiting time for the task.

Using the CloudSim toolkit, the suggested technique, RR

based on the Average Burst Time of the Task (RRABT), was

compared to the original RR. Authors found that the growing

in the cloudlets numbers, the average waiting time of the

RRABT will be lower than the average waiting time for the

traditional RR. Moreover, two more algorithms, which are

FCFS and SJF, were evaluated with different numbers of

cloudlets. They discovered that by increasing the number of

tasks, the FCFS’ average waiting time will increase when

compared to the SJF's average waiting time. Finally, the SJF

has the shortest average waiting time, followed by the RRABT,

FCFS, and RR.

Another task scheduling technique was developed [27],

with the goal of completing jobs with low latency in the

shortest time possible. Tasks are classified into five groups in

the proposed algorithm, Grouped Tasks Scheduling (GTS),

based on the similarity of the task's features. After

experimenting with the suggested method, they discovered

that the GTS algorithm took less time to execute than the Min-

Min algorithm. They also achieved lower latency than the

Min-Min and TS algorithms.

Agarwal and Srivastava [28] suggested a Genetic

algorithm-based task scheduling method and compared it to

the CloudSim tool’s FCFS algorithm and Greedy-based

approach. They discovered that genetically based task

scheduling outperforms others in terms of the execution time

parameter.

3.2 Task scheduling evaluating algorithms

Ibrahim et al. [29] conducted a comparative analysis of

eight static task heuristic scheduling algorithms, including

Min-Min, Load-Balanced-Improved-Min-Min (LBIMM),

Minimum Completion Time (MCT), Resource-Aware-

Scheduling-Algorithm (RASA), Resource-Aware-Load-

Balancing-Algorithm (RALBA), Max-Average (MaxAvg

(TASA). The study took into account the following factors:

makespan, throughput, and resource consumption. The

comparison of algorithms was carried by using CloudSim

tools. In comparison to all other algorithms, the TASA attained

a high performance in the aforementioned parameters,

according to the output.

Alhaidari et al. [14] compared various algorithms called

FCFS, SJF, RR, and LTF based on the completion time by

using the CloudSim tool. They applied 20 experiments

according to two policies of resource allocation, which are

Space-Shared and Time-Shared policies with distinct

scenarios. The outcomes of the study revealed that the SJF

achieved higher performance than the other algorithms in

terms of the Space-Shared poli-cy in whole scenarios.

Moreover, the performance of the Time-Shared re-source

policy performed better than the other policy with completion

time metric.

A comparative evaluation of many contemporary work

scheduling algorithms was offered by Anushree and Xavier [3].

The comparative study was proposed based on performance

1204

indicators, algorithm benefits, and algorithm drawbacks [30,

31]. As a result of this research, they discovered that no single

strategy can attain all of the essential parameters.

Pratap and Zaidi [32] worked on a comparative study

between three of the static task scheduling algorithms, which

are FCFS, SJF, and RR by using CloudSim tools. They used

Time-Shared and Space-Shared policies of execution on the

cloudlet while considering the waiting time and turnaround

time for each algorithm. They found that the RR achieved

higher performance com-pared with others.

Kumar et al. [33] compared various static load balancing

algorithms, which are SJF, FCFS, equal distribution of task,

and unequal distribution of task. The authors contrasted the

algorithms based on the execution time by using CloudSim

tools to measure the performance, assuming that the tasks and

virtual machines are using Space-Shared policies. They found

that the equal distribution approach has better performance as

compared to others.

Borrowed-Virtual-Time (BVT), Start-Time-Fair-Queuing

(STFQ), and Weighted-Round-Robin are the three task

scheduling methods studied by Jambigi et al. [34]. (WRR).

The CloudSim simulator was used to simulate all three

algorithms. They discovered that the BVT had greater energy

consumption efficiency, but had the longest execution time

when compared to the others, based on execution time and

energy consumed.

The task scheduling approaches assessed in this study [35]

were Minimum-Execution-Time (MET), Max-Min, Min-Min,

Sufferage, Minimum-Completion-Time (MCT), and FCFS.

The comparison was made using the following metrics: the

degree of imbalance, cost, throughput, and makespan. The

program that was utilized to compare all six algorithms was

CloudSim. They discovered that Min-Min was the optimal

method for maximizing cost, throughput, and makespan. The

rest of the algorithms, on the other hand, performed admirably

in terms of work scheduling in IaaS cloud computing.

In conclusion, multiple studies have been conducted to

assess work scheduling algorithms using a variety of

performance indicators. We discovered that just a few studies

looked at scheduling approaches using Time and Space Shared

rules together. The CloudSim program was used in the

majority of the publications to test the performance of

scheduling approaches. As a result of the findings of previous

studies, the algorithms employed in this study will be FCFS,

RR, and Max-Min, with the makespan, average waiting time,

and cost of using VMs parameters taken into account. The

policies of Time-Shared and Space-Shared are considered.

Finally, the CloudSim tool will be used to assess how well

various scheduling strategies compare.

4. METHODOLOGY

The methodology used in this research for comparing the

behavior of various task scheduling algorithms in cloud

environments is described in this section [36, 37]. The

comparison was carried out using CloudSim simulation tool

which was used to configure the cloud environment and

execute the scheduling algorithms. The study started by

determining the characteristics of the main entities in

CloudSim, such as Datacenter, Physical Machine/Host, and

Virtual Machine. Then we applied the algorithms to schedule

the set of the proposed tasks and compared their behavior

based on the makespan, average waiting time, and cost

parameters. Moreover, we examined these algorithms in both

resource scheduling policies which are Space and Time shared

policies.

4.1 Simulation workflow on CloudSim (12 steps)

This section discusses the simulation workflow which is

applied in this study to compare between the three algorithms:

FCFS, RR, and Max-Min. First, we specify the characteristics

of the simulation entities as mentioned in steps 1 through 9.

Then, the simulation for the task scheduling algorithm is

initiated. Once the simulation is successfully completed, the

Cloud Information Service (CIS) will ask the entities to shut

down. Finally, the simulation output will be printed. The

simulation output contains the start time and finish time for

executing each cloudlet, which is used in the comparison

between the performance of each algorithm. The steps of cloud

computing task scheduling simulation are as follows [17]:

(1) Set the users’ number (related to brokers’ number)

(2) Set common variables (current time, user number, ...)

(3) Create cloud information service (CIS)

(4) Create data center (DC) instance by specifying the

Processor Elements (PEs), hosts that house the PEs, and

data center characteristics (time-zone, cost,

CostperMem)

(5) Processing Element (PE): MIPS is the computing

capacity of the PE.

(6) Host:

a. RAM

b. Storage (secondary storage)

c. Bandwidth (BW)

(7) Create data center broker where it gets the information

of the data center from the CIS and assigns the cloudlets

to the resources available in the data center.

(8) Create VMs and identify their characteristic:

a. Number of Cores (PEs).

b. RAM

c. Bandwidth (BW)

(9) Share the VM information with broker.

(10) Determine the characteristics of each cloudlet:

a. Required MIPS/ length (Millions of Instructions Per

Second)

b. Required Bandwidth (BW)

c. Required RAM

d. Required number of Cores (PEs)

(11) Share the cloudlet information with broker

(12) Start simulation

(13) Stop simulation (shut down the entities)

(14) Print the results of simulation

4.2 CloudSim simulation configuration

This section describes the properties of CloudSim entities

that are used for simulating the cloud environments to test and

measure the efficiency of task scheduling techniques. The

configuration of cloud simulation will be as follow:

(1) One data center which has a single host. The

characteristics of data center are presented in Table 1.

(2) One host with one core, 1000 MIPS computing capacity,

and 2048 MB of RAM. Table 2 presents the host’s properties.

(3) Two VMs allocated to a single host. Time-Shared

allocation policy is utilized for assigning the VMs to the host

resources. The characteristics of the VMs are presented in

Table 3.

1205

(4) The experiment tested different sets of cloudlets that

have been executed in the proposed cloud environment. Each

cloudlet has a different length, the characteristics of the

cloudlets are presented in Table 4.

Table 1. Data center characteristics

Characteristic Value

No. of data center 1
No. of hosts 1

System architecture x86
Operating system Linux

 Time-zone 10.0

CPU’s cost 3.0

Memory’s cost 0.05

Bandwidth’s cost 0

Storage’s cost 0.001

Table 2. Host properties

Characteristic Value

PEs 1
Computing Capacity of the PEs (MIPS) 1,000 MIPS

RAM for each host 2,048 MB
Bandwidth (BW) 10,000

Storage 1,000,000

Table 3. Virtual machine characteristics

of VM Pe MIPS RAM Bandwidth

VM 1 1 300 512 1,000
VM 2 1 500 512 1,000

Table 4. Cloudlet properties

Characteristic Value
of Cloudlets From 10 to 50

Cloudlets Length Different length from 1000 to 5100
CPU Utilization Full
RAM Utilization Full

Bandwidth Utilization Full

5. RESULTS AND DISCUSSION

The results obtained by evaluating the three task scheduling

algorithms in terms of makepan, average waiting time, and the

cost of using the VM resources metrics are discussed in this

section. The experiment has gone through several phases [38],

we have evaluated each algorithm by considering two points:

a) the effect of raising the number of cloudlets, and b) the

resource allocation policies that have been applied.

Table 5, Table 6, and Table 7 show the performance metrics

of the FCFS, RR, and Max-Min algorithms in Space-Shared

and Time-Shared policies. The results indicated that the Time-

Shared policy outperforms the Space-Shared policy

considering the cost of using VMs resources and the average

waiting time. The main reason for the superiority of the Time-

Shared policy over the Space-Shared policy is that Time-

Shared policy distributes the processing capabilities of the

VMs among the cloudlets. Moreover, the results show that the

two policies are approximately similar based on the makespan

metric.

Table 5. Makespan of each algorithm in both policies

 Space-Shared Time-Shared

of cloudlets FCFS RR Max-Min FCFS RR Max-Min

10 50.0993 50.0993 38.136 50.09 50.09 38.1667

20 100.43 100.43 76.5847 100.4633 100.4633 76.6167

30 151.0947 151.0947 114.53 151.12 151.12 114.4833

40 202.094 202.094 151.972 202.1 202.1 151.954

50 253.4253 253.4253 190.786 253.4267 253.4267 190.916

Table 6. Cost of each algorithm in both policies

 Space-Shared Time-Shared

of

cloudlets
FCFS RR

Max-

Min
FCFS RR

Max-

Min

10 25.1541 25.1542 25.1686 18.4560 18.4560 18.6888

20 50.4491 50.4491 50.5707 37.0440 37.0440 37.2694

30 75.9538 75.9538 76.0059 55.7896 55.7896 55.9844

40 101.5806 101.5806 101.700 74.706 74.706 74.784

50 127.378 127.378 127.522 93.764 93.764 93.903

Table 7. Average waiting time of algorithm in both policies

 Space-Shared Time-Shared

of cloudlets FCFS RR Max-Min FCFS RR Max-Min

10 10.6893 10.6893 10.155 0 0 0

20 25.4834 25.4834 24.0682 0 0 0

30 40.4216 40.4216 37.9875 0 0 0

40 55.4572 55.4571 52.0553 0 0 0

50 70.6223 70.6223 66.2943 0 0 0

From the results, we found that Max-Min outperformed

FCFS and RR in terms of the makespan metric in both policies

as shown in Figure 4 and Figure 6. Moreover Max-Min

achieved a better average waiting time compared to FCFS and

RR in terms of Space-Shared policy as shown in Table 7. On

the other hand, RR and FCFS performed similar to Max-Min

in terms of the total cost in both policies, as shown in Figure 5

and Figure 7. Overall, the performance measurement for the

three algorithms has increased when raising up the cloudlet’s

number. Finally, the simulation revealed that the Max-Min has

the best performance in terms of makespan and average

waiting time in both policies.

Figure 4. Makespan for each algorithm in Space Shared

policy

1206

Figure 5. Cost for each algorithm in Space Shared policy

Figure 6. Makespan for each algorithm in Time Shared

policy

Figure 7. Cost for each algorithm in Time Shared policy

6. CONCLUSIONS

Cloud computing has become a very powerful way to

process complicated and large jobs. Task scheduling

algorithms in cloud computing plays an important role to reach

a high-level of efficiency by allowing full utilization of

resources to enhance the QoS. This study aims to compare

three task scheduling algorithms called FCFS, RR, and Max-

Min. The three algorithms are simulated using CloudSim tool

to be analyzed and evaluated according to the performance

metric of the VMs re-sources’ cost, average time and

makespan: While considering both resources allocation

policies Time and Space Shared. The outcomes of our

experiments show that Max-Min outperformed FCFS and RR

in terms of makespan with the two policies. In addition, Max-

Min achieved better average waiting time than FCFS and RR

in terms of Space-Shared Policy. Furthermore, RR and FCFS

recorded approximately similar performance as Max-Min

based on the total cost in both policies. In general, the Max-

Min achieved the best performance overall in all of the metric

measures for both policies which makes Max-Min the most

suitable scheduling technique for the proposed cloud

computing environment. For future work, it will be very

interesting to evaluate the three algorithms with additional

metrics such as Throughput and Load Balancing, then show

the effect of increasing the virtual machines’ number on these

algorithms’ performance.

REFERENCES

[1] Ali, S.A., Alam, M. (2016). A relative study of task

scheduling algorithms in cloud computing environment.

In 2016 2nd International Conference on Contemporary

Computing and Informatics (IC3I), Greater Noida, India,

pp. 105-111. https://doi.org/10.1109/IC3I.2016.7917943

[2] Rani, B.K., Rani, B.P., Babu, A.V. (2015). Cloud

computing and inter-clouds–types, topologies and

research issues. Procedia Computer Science, 50: 24-29.

https://doi.org/10.1016/j.procs.2015.04.006

[3] Anushree, B., Xavier, V.A. (2018). Comparative analysis

of latest task scheduling techniques in cloud computing

environment. In 2018 Second International Conference

on Computing Methodologies and Communication

(ICCMC), Erode, India, pp. 608-611.

https://doi.org/10.1109/ICCMC.2018.8487908

[4] Bittencourt, L.F., Goldman, A., Madeira, E.R., da

Fonseca, N.L., Sakellariou, R. (2018). Scheduling in

distributed systems: A cloud computing perspective.

Computer Science Review, 30: 31-54.

https://doi.org/10.1016/j.cosrev.2018.08.002

[5] Liu, L., Qiu, Z. (2016). A survey on virtual machine

scheduling in cloud computing. In 2016 2nd IEEE

International Conference on Computer and

Communications (ICCC), pp. 2717-2721.

https://doi.org/10.1109/CompComm.2016.7925192

[6] Kaur, A., Sengupta, J. (2017). Virtual machine

scheduling using improved time shared policy in cloud

computing. IJARCET-2017, 6(8): 1274-1277.

[7] Himthani, P.P., Ghanshyam, P., Dubey, P. (2019).

Performance analysis of space shared scheduling and

time shared scheduling in cloud sim. Int. J. Recent Dev.

Eng. Technol., 8(2): 43-49.

[8] Chen, L., Li, X., Ruiz, R. (2018). Idle block based

methods for cloud workflow scheduling with preemptive

and non-preemptive tasks. Future Generation Computer

Systems, 89: 659-669.

https://doi.org/10.1016/j.future.2018.07.037

[9] Gollapalli, M., AlMetrik, M.A., AlNajrani, B.S.,

AlOmari, A.A., AlDawoud, S.H., AlMunsour, Y.Z.,

Abdulqader, M.M., Aloup, K.M. (2022). Task failure

prediction using machine learning techniques in the

google cluster trace cloud computing environment.

Mathematical Modelling of Engineering Problems, 9(2):

545-553. https://doi.org/10.18280/mmep.090234

[10] Gupta, A., Garg, R. (2017). Load balancing based task

scheduling with ACO in cloud computing. In 2017

International Conference on Computer and Applications

(ICCA), Doha, Qatar, pp. 174-179.

https://doi.org/10.1109/COMAPP.2017.8079781

[11] Jiang, Y., Shao, Z., Guo, Y., Zhang, H., Niu, K. (2015).

Drscro: A metaheuristic algorithm for task scheduling on

heterogeneous systems. Mathematical Problems in

Engineering, 2015: 396582.

https://doi.org/10.1155/2015/396582

[12] Soltani, N., Soleimani, B., Barekatain, B. (2017).

Heuristic algorithms for task scheduling in cloud

computing: A survey. International Journal of Computer

Network & Information Security, 9(8): 16-22.

https://doi.org/10.5815/ijcnis.2017.08.03

[13] Mathew, T., Sekaran, K.C., Jose, J. (2014). Study and

analysis of various task scheduling algorithms in the

cloud computing environment. In 2014 International

1207

Conference on Advances in Computing,

Communications and Informatics (ICACCI), pp. 658-

664. https://doi.org/10.1109/ICACCI.2014.6968517

[14] Bahwaireth, K., Tawalbeh, L.A., Benkhelifa, E.,

Jararweh, Y., Tawalbeh, M.A. (2016). Experimental

comparison of simulation tools for efficient cloud and

mobile cloud computing applications. EURASIP Journal

on Information Security, 2016(1): 1-14.

https://doi.org/10.1186/s13635-016-0039-y

[15] Alhaidari, F., Balharith, T., Eyman, A.Y. (2019).

Comparative analysis for task scheduling algorithms on

cloud computing. In 2019 International Conference on

Computer and Information Sciences (ICCIS), pp. 1-6.

https://doi.org/10.1109/ICCISci.2019.8716470

[16] Sudheer, M.S., Reddy, K.G., Sree, P.K., Raju, V.P.

(2017). An effective analysis on various scheduling

algorithms in cloud computing. In 2017 International

Conference on Inventive Computing and Informatics

(ICICI), Coimbatore, India, pp. 931-936.

https://doi.org/10.1109/ICICI.2017.8365274

[17] Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.

A., Buyya, R. (2011). CloudSim: A toolkit for modeling

and simulation of cloud computing environments and

evaluation of resource provisioning algorithms. Software:

Practice and Experience, 41(1): 23-50.

https://doi.org/10.1002/spe.995

[18] Hlaing, Y.T.H., Yee, T.T. (2019). Static independent task

scheduling on virtualized servers in cloud computing

environment. In 2019 International Conference on

Advanced Information Technologies (ICAIT), pp. 55-59.

https://doi.org/10.1109/AITC.2019.8920865

[19] Mazumder, A.M.R., Uddin, K.A., Arbe, N., Jahan, L.,

Whaiduzzaman, M. (2019). Dynamic task scheduling

algorithms in cloud computing. In 2019 3rd International

conference on Electronics, Communication and

Aerospace Technology (ICECA), pp. 1280-1286.

https://doi.org/10.1109/ICECA.2019.8822020

[20] Fang, Y., Xiao, X., Ge, J. (2019). Cloud computing task

scheduling algorithm based on improved genetic

algorithm. In 2019 IEEE 3rd Information Technology,

Networking, Electronic and Automation Control

Conference (ITNEC), pp. 852-856.

https://doi.org/10.1109/ITNEC.2019.8728996

[21] Sarvabhatla, M., Konda, S., Vorugunti, C.S., Babu, M.N.

(2017). A dynamic and energy efficient greedy

scheduling algorithm for cloud data centers. In 2017

IEEE International Conference on Cloud Computing in

Emerging Markets (CCEM), pp. 47-52. IEEE.

https://doi.org/10.1109/CCEM.2017.9

[22] Sood, K., Jain, A., Verma, A. (2017). A hybrid task

scheduling approach using firefly algorithm and

gravitational search algorithm. In 2017 International

Conference on Energy, Communication, Data Analytics

and Soft Computing (ICECDS), pp. 2997-3002.

https://doi.org/10.1109/ICECDS.2017.8390005

[23] Gabi, D., Ismail, A.S., Zainal, A., Zakaria, Z. (2017).

Solving task scheduling problem in cloud computing

environment using orthogonal taguchi-cat algorithm.

International Journal of Electrical & Computer

Engineering (2088-8708), 7(3): 1489-1497.

https://doi.org/10.11591/ijece.v7i3.pp1489-1497

[24] Elmougy, S., Sarhan, S., Joundy, M. (2017). A novel

hybrid of Shortest job first and round Robin with

dynamic variable quantum time task scheduling

technique. Journal of Cloud computing, 6(1): 1-12.

https://doi.org/10.1186/s13677-017-0085-0

[25] Kumari, R., Jain, A. (2017). An efficient resource

utilization based integrated task scheduling algorithm. In

2017 4th International Conference on Signal Processing

and Integrated Networks (SPIN), pp. 519-523.

https://doi.org/10.1109/SPIN.2017.8050005

[26] Hicham, G.T., Chaker, E.A. (2016). Cloud computing

cpu allocation and scheduling algorithms using cloudsim

simulator. International Journal of Electrical &

Computer Engineering (2088-8708), 6(4): 1866-1879.

https://doi.org/10.11591/ijece.v6i4.10144

[27] Gamal El Din Hassan Ali, H., Saroit, I.A., Kotb, A.M.

(2017). Grouped tasks scheduling algorithm based on

QoS in cloud computing network. Egyptian Informatics

Journal, 18(1): 11-19.

https://doi.org/10.1016/j.eij.2016.07.002

[28] Agarwal, M., Srivastava, G.M.S. (2016). A genetic

algorithm inspired task scheduling in cloud computing.

In 2016 International Conference on Computing,

Communication and Automation (ICCCA), pp. 364-367.

https://doi.org/10.1109/CCAA.2016.7813746

[29] Ibrahim, M., Nabi, S., Hussain, R., Raza, M.S., Imran,

M., Kazmi, S.A., Oracevic, A., Hussain, F. (2020). A

comparative analysis of task scheduling approaches in

cloud computing. In 2020 20th IEEE/ACM International

Symposium on Cluster, Cloud and Internet Computing

(CCGRID, Melbourne, VIC, Australia, pp. 681-684.

https://doi.org/10.1109/CCGrid49817.2020.00-23

[30] Gollapalli, M., Alansari, A., Alkhorasani, H., Alsubaii,

M., Sakloua, R., Alzahrani, R., Al-Hariri, M., Alfares, M.,

AlKhafaji, D., Al Argan, R., & Albaker, W. (2022). A

novel stacking ensemble for detecting three types of

diabetes mellitus using a Saudi Arabian dataset: Pre-

diabetes, T1DM, and T2DM. Computers in Biology and

Medicine, Vol. 147, 105757.

https://doi.org/10.1016/j.compbiomed.2022.105757

[31] Gollapalli, M. (2015). Literature Review of Attribute

Level and Structure Level Data Linkage Techniques.

International Journal of Data Mining & Knowledge

Management Process, 5(5), 01-20.

https://doi.org/10.5121/ijdkp.2015.5501

[32] Pratap, R., Zaidi, T. (2018). Comparative study of task

scheduling algorithms through cloudsim. In 2018 7th

International Conference on Reliability, Infocom

Technologies and Optimization (Trends and Future

Directions)(ICRITO), pp. 397-400.

https://doi.org/10.1109/ICRITO.2018.8748514

[33] Kumar, R.R., Jha, S.K., Garg, D., Vaishnav, S. (2018).

Evaluation of load balancing algorithm using cloudsim.

In 2018 3rd International Conference on Inventive

Computation Technologies (ICICT), pp. 78-81.

https://doi.org/10.1109/ICICT43934.2018.9034367

[34] Jambigi, M.V., Desai, V., Athanikar, S. (2018).

Comparative analysis of different algorithms for

scheduling of tasks in cloud environments. In 2018

International Conference on Computational Techniques,

Electronics and Mechanical Systems (CTEMS), pp. 359-

361. https://doi.org/10.1109/CTEMS.2018.8769155

[35] Madni, S.H.H., Abd Latiff, M.S., Abdullahi, M.,

Abdulhamid, S.I.M., Usman, M.J. (2017). Performance

comparison of heuristic algorithms for task scheduling in

IaaS cloud computing environment. PloS one, 12(5):

e0176321. https://doi.org/10.1371/journal.pone.0176321

1208

[36] Gollapalli, M., Alfaleh, A. (2022). An artificial

intelligence approach for data modelling patients

inheritance of sickle cell disease (SCD) in the eastern

regions of Saudi Arabia. Mathematical Modelling of

Engineering Problems, Vol. 9, No. 4, pp. 1079-1088.

https://doi.org/10.18280/mmep.090426

[37] Gollapalli, M. (2022). Ensemble Machine Learning

Model to Predict the Waterborne Syndrome. Algorithms,

Vol. 15, No. 3, pp. 93.

https://doi.org/10.3390/a15030093

[38] Gollapalli, M., Li, X., & Wood, I. (2013). Automated

discovery of multi-faceted ontologies for accurate query

answering and future semantic reasoning. Data &

Knowledge Engineering, Vol. 87, pp. 405-424.

https://doi.org/10.1016/j.datak.2013.05.005

NOMENCLATURE

AGA Adaptive Genetic Algorithm

BVT Borrowed-Virtual-Time

CIS Cloud Information Service

DC Data Center

FA Firefly Algorithm

FCFS First Come First Serve

GA Genetic Algorithm

GSA Gravitational Search Algorithm

GTS Grouped Tasks Scheduling

LB-ACOA
Load Balancing Ant Colony Optimization

Algorithm

LBIMM Load-Balanced-Improved-Min-Min

MCT Minimum-Completion-Time

MET Minimum-Execution-Time

MESF Most Efficient Server First

OTB-CSO
Orthogonal Taguchi-Based-Cat Swarm

Optimization

PM Physical Machines

QoS Quality of Service

RASA Resource-Aware-Scheduling-Algorithm

RALBA
Resource-Aware-Load-Balancing-

Algorithm

RR Round Robin

SJF Shortest Job First

VM Virtual Machines

1209

