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 On-grid approaches for DOA estimation majorly exhibits the problem of grid mismatch. 

Coarse grid leads to reduced estimation accuracy and dense grid leads to increased 

algorithm complexity and performance degradation due to highly correlated array 

manifold matrix. In this paper, a fixed off-grid DOA estimation algorithm is proposed 

to overcome this grid mismatch problem. Firstly, a sparsity based linear interpolation 

model for array manifold matrix is proposed to avoid the above limitation by 

introducing a bias parameter into the estimation framework. To solve this model, an 

Auto-regression (1) (AR (1)) based sparse Bayesian learning algorithm is proposed. To 

exploit the temporal correlation property of unknown DOA spatial spectrum in a MMV 

case, we develop this AR (1) model along with SBL to estimate the unknown DOA 

spectrum and expectation maximization (EM) framework to update the hyper-

parameters. The results section shows that the proposed algorithm enjoys good 

estimation resolution and accuracy in the cases of fewer snapshots available, highly 

correlated signal sources, very low SNR and very closely spaced sources. 
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1. INTRODUCTION 

 

In recent years, the direction of arrival estimation problem 

has been a hot-topic in the areas of research like statistical 

array signal processing. The main objective of this problem is 

to accurately estimate the incoming signal directions at the 

receiver end or simply to locate the signal sources. Extensive 

survey on this topic indicates the use of a uniform linear array 

of antenna elements or sensors at the receiver to provide 

solution to this problem of DOA estimation [1]. The 

transmitted signals in the case of far-field sources impinge on 

this linear array of sensors. The signal samples collected by 

this linear array possess the mathematical property from which 

the direction information of the signals can be estimated. 

Generally, in array signal processing, if the signal directions 

are known, the signal itself can be received without the loss of 

information. This concept is reversed in DOA estimation 

algorithms where, from the received signal samples the 

direction information of signals is estimated [1]. DOA 

estimation algorithm finds its application in variety of areas 

such as RADAR, navigation, SONAR, seismology, wireless 

mobile communications and many more [2]. 

There are a quiet plenty of such DOA estimation algorithm 

in the literature which has its own good performance 

parameters and at the same time the shortfalls. Such 

algorithms can be widely categorized into two major 

techniques including conventional subspace based methods 

[3-5] and sparse based methods [6]. MUSIC [3] is the most 

appreciated subspace based algorithm in the field of DOA 

estimation, which is the simplest form of all the algorithms 

giving acceptable estimation accuracy, but suffers in the case 

of highly correlated signal sources. Many algorithms like 

IMUSIC [7], RMUSIC [7], ESPRIT [4] and other extended 

versions of MUSIC were developed to improve the 

performance of the conventional MUSIC algorithm in later 

years. After the induction of sparse signal reconstruction (SSR) 

in the field of compressive sensing, an era of sparsity based 

DOA estimation algorithms has emerged [8]. These 

algorithms modified the problem of DOA estimation into a 

SSR problem [9-13]. As these SSR problems work on finite 

signal measurements, need of a grid, which contains a set of 

all possible directions (0° ≤ θ ≤ 180°) is required. From the set 

of single measurement vector (SMV) or multiple measurement 

vector (MMV) of received signals, a sparse DOA spatial 

spectrum can be estimated from the help of the defined on-grid 

possible DOAs. 

The first group of SSR modeled DOA estimation algorithms 

are proposed based on lp -norm (0≤p≤1) convex optimization 

techniques [9]. These techniques yield good accuracy of 

estimation but suffer in the case of highly correlated columns 

of array steering matrix. A dimensionality reduction technique 

[6] using singular value decomposition (SVD) is applied for 

l1-norm framework. This resulting l1-SVD algorithm is the 

major breakthrough in the research of sparse based DOA 

estimation because of its less complexity and good estimation 

resolution. When a fine grid size is selected to achieve high 

accuracy of estimation, the performance of l1-SVD algorithm 

deteriorates due to highly correlated columns of array steering 

matrix, which is a result of compact grid set. 

In the second group of SSR modeled DOA estimation 

algorithms, there comes Sparse Bayesian Learning (SBL) and 

its extensions [11, 12] in the spot light. Sparse Bayesian 

inference [14] was first proposed for linear regression problem 

and was applied to DOA estimation problem [15, 16] using on-

grid approaches. It is clear [11] that SBL based algorithms are 

better than lp-norm techniques even in the case of highly 
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correlated signal sources and the column of array steering 

matrix. These on-grid SBL algorithms uses Bayesian inference 

to estimate the sparse DOA spectrum through posterior mean 

and covariance estimation of the unknown parameter by 

assuming Gaussian probability distribution for the prior and 

likelihood functions [17, 18]. It is clearly shown [19] that SBL 

approach enjoys less convergence error when compared to l1-

SVD approach. But, for all these SBL and its extension 

techniques [11-19], defining of a suitable grid set and grid size 

is very much essential. The algorithm’s resolution and 

accuracy directly depend on this on-grid set values. A coarse 

grid set defined, might not include the true DOAs in it, leading 

to poor estimation accuracy and a fine grid set leads to highly 

correlated columns of array steering matrix, which in turn 

makes the algorithm complex and very slow. This grid 

mismatch problem can be solved by the off-grid technique 

proposed [20-22]. In off-grid methods, a grid is required for 

the DOA estimation, but the true DOAs need not to be present 

in the defined grid set. 

Even though the true DOAs are not part of the grid set, they 

can be estimated accurately by estimating the bias offset 

values of true DOAs from its nearest grid set value. The 

algorithms proposed [22] introduces off-grid method in SBL 

to solve DOA estimation problem by utilizing the first order 

Taylor series expansion on the columns of the array steering 

matrix. The authors [20] propose linear interpolation method 

instead of Taylor expansion like [22], to improve the 

performance in-terms of accuracy. 

In this paper, an Auto-regressive model for the sparse, 

spatial DOA spectrum is developed in the MMV case. By 

using linear interpolation as in the case of [20], an off-grid 

algorithm for DOA estimation is established, involving a SBL-

EM solver. The AR (1) property of the spatial DOA spectrum 

[20] is not exploited resulting in the deterioration of estimation 

accuracy during low SNR and highly correlated signal sources 

[23, 24]. This problem is overcome in this paper, where the 

AR (1) model developed in the beginning of the proposed 

framework exploits the correlation property through AR (1) 

coefficient as one of the updating hyper-parameter. Further, 

the paper has been organized as follows: Section II describes 

the proposed AR (1) modeling of the DOA estimation problem. 

Section III showcases the experimental results carried out on 

the proposed algorithm. Section IV concludes the paper with 

major summarized points on the simulation results along with 

advantages, disadvantages and the future work. 

In this paper, following are the notations considered: Bold 

letters are used to represent vectors and matrices, with 

uppercase letters for matrices and lowercase letters for vectors. 

 

 

2. DOA ESTIMATION BY INTERPOLATED AR (1) 

BASED SPARSE BAYESIAN LEARNING 

 

Consider an uniform linear array (ULA) of M sensors with 

an array manifold matrix of 𝐴(𝜃) = [𝑎(𝜃1), 𝑎(𝜃2) … 𝑎(𝜃𝐾)], 
by assuming K number of far-field signals impinging on the 

ULA. Each column vector of A(θ) contains the time-delay 

information of the Kth signal received at the ULA by taking 

first sensor in the ULA as the [25]. The general representation 

of the array manifold matrix is as shown below: 

 

𝐴(𝜃) = [

1 1 1
𝑒−𝑗𝛽𝑑𝑠𝑖𝑛𝜃1 𝑒−𝑗𝛽𝑑𝑠𝑖𝑛𝜃2 𝑒−𝑗𝛽𝑑𝑠𝑖𝑛𝜃𝐾

⋮
𝑒−𝑗𝛽𝑑(𝑀−1)𝑠𝑖𝑛𝜃1

⋮
𝑒−𝑗𝛽𝑑(𝑀−1)𝑠𝑖𝑛𝜃2

⋮
𝑒−𝑗𝛽𝑑(𝑀−1)𝑠𝑖𝑛𝜃𝐾

] 

where, β=2π/λ and λ is the wavelength of the received signal, 

d is the spacing between the array elements. 

Let s(t)  = [𝑠1(𝑡), 𝑠2(𝑡) … 𝑠𝐾(𝑡)]𝑇  be the K number of 

signals impinging on the ULA. Modeling an ULA 

mathematically, the signal vector received by the ULA sensors 

is given by Eq. (1). 

 

𝑦(𝑡) = 𝐴(𝜃)𝑠(𝑡) + 𝑤(𝑡) (1) 

 

where, t = t1, t2 …tL represents the number of snapshots with 

t=1 for SMV case and t>1 for MMV case. w(t) is the complex 

independent white Gaussian noise introduced by the sensors 

and the environmental conditions with zero mean and a 

variance of 𝜎2 . To model the DOA estimation problem, 

selecting a grid set of all possible values of angle space from 

0o to 180° is essential. Considering N as the number of grids, 

let �̅� = [�̅�1, �̅�2 … �̅�𝑁]𝑇 be a finite set of grid angle values. 𝜃 =
[𝜃1, 𝜃2 … . 𝜃𝐾]𝑇  being the true DOAs will be a sub-set of �̅�, 

only if the true DOAs exactly lie on the chosen grid set. The 

model in Eq. (1) can be re-written as in Eq. (2) by considering 

the atoms of array manifold matrix corresponding to all the N 

grid set values. 

 

𝑦(𝑡) = 𝐴(�̅�)�̅�(𝑡) + 𝑤(𝑡) (2) 

 

In Eq. (2), the �̅�(𝑡) is a sparse vector, which mostly contains 

zeros and K number of non-zero values corresponding to the 

rows that are associated with the true DOAs. The solution to 

this DOA estimation problem in model Eq. (2) is to estimate 

�̅�(𝑡) with the only knowledge of y(t) i.e. the array received 

signal vector in the presence of noise w(t) [26]. Extending the 

model in Eq. (2) to MMV case, we get the Eq. (3). 

 

𝑌 = 𝐴𝑆̅ + 𝑊 (3) 

 

where, 𝑌 = [𝑦(𝑡1), 𝑦(𝑡2) … … 𝑦(𝑡𝐿)] is array received matrix, 

𝑆̅ = [�̅�(𝑡1), �̅�(𝑡2) … … �̅�(𝑡𝐿)] is the sparse spatial signal matrix 

and 𝑊 = [𝑤(𝑡1), 𝑤(𝑡2) … … 𝑤(𝑡𝐿)]  is the sensor 

measurement noise matrix. The grid set �̅�  chosen must be 

dense enough to make sure that it consists of the true DOAs. 

This dense grid makes the algorithm computationally very 

complex and also results in highly correlated columns of array 

manifold matrix A. This makes most of the sparse based signal 

recovery techniques to fail. This grid mismatch problem can 

be overcome by adopting off-grid methodology [22].  
 

2.1 Linearly interpolated signal model 
 

In off-grid technique a grid set is still needed but the true 

DOAs need not to be strictly lying on the chosen grid. There 

will be an offset or bias between the true DOAs and its nearest 

value in the grid set [27, 28]. Using linear interpolation 

technique to model the array manifold matrix A as given in Eq. 

(4) will introduce the bias parameter into the DOA estimation 

model. Along with the estimation of the sparse spatial 

spectrum, one should also estimate the bias parameter, which 

alleviates the performance degradation caused by the grid 

mismatch problem. 

 

�̅�(𝜃𝑛) = (1 − 𝜌𝑛)𝑎(�̅�𝑛
(𝑙)

) + 𝜌𝑛𝑎(�̅�𝑛
(𝑟)

) (4) 

 

where, 𝜌𝑛 is the nth bias parameter, �̅�𝑛
(𝑙)

 and �̅�𝑛
(𝑟)

 are the angles 

present in the grid set adjacent to the true DOA 𝜃𝑛 from left 
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and right respectively. Replacing each column of A as per the 

interpolation given in Eq. (4), a new array manifold matrix �̅� 

is formed as given in Eq. (5). 

 

�̅� = 𝐴(1: 𝑁 − 1)𝑑𝑖𝑎𝑔(1 − 𝜌)
+ 𝐴(2: 𝑁 − 1)𝑑𝑖𝑎𝑔(𝜌) 

(5) 

 

where, 𝜌 = [𝜌1, 𝜌2, … 𝜌𝑁−1]𝑇 and A(m:n) indicates that mth to 

nth column of A matrix. With this interpolation, the signal 

model in Eq. (3) gets modified to equation shown in Eq. (6). 

 

𝑌 = �̅�𝑆̅ + 𝑊 (6) 

 

2.2 Auto-regression based sparse Bayesian learning 

algorithm 

 

To solve the model in Eq. (6), we make the assumption that 

the unknown signal matrix 𝑆̅ (in MMV case) have the same 

sparsity structure i.e, common sparsity [29]. Each row of 𝑆̅ 
corresponds to the signal parameter received in the direction 

present in the corresponding row of the chosen grid set vector 

�̅�. Except for the K number of rows, all the other rows of 𝑆̅ 
will be having entirely zeros. Those each non-zero row of 𝑆̅ 
will also have the same correlated signal parameter values and 

satisfies Auto-regression (AR(1)) model given by Eq. (7). 

 

𝑆�̅�,𝑡+1 = 𝛽𝑆�̅�,𝑡 + √1 − 𝛽2 𝑛𝑖,𝑡    𝑓𝑜𝑟 𝑖

= 1,2 … 𝑁 𝑎𝑛𝑑 𝑡 = 𝑡1, 𝑡2 … 𝑡𝐿 
(7) 

 

where, the AR coefficient 𝛽 ∈ (−1,1) and assuming  𝑛𝑖,𝑡 and 

𝑆�̅�,𝑡  both are Gaussian random processes with probability 

distribution function of 𝒩(0, 𝛼𝑖). This Gaussian assumption 

for the unknown, noise variance and other hyper-parameters 

are motivated by the SBL framework [14-19]. The value of 𝛼𝑖 

as zero indicates the variance of ith row of 𝑆̅ matrix is zero; 

which means the entries of that complete row is zero 

promoting sparsity. With this AR(1) model assumption for 𝑆̅, 
the joint probability distribution function of 𝑆̅ is given by Eq. 

(8). 

 

P(S̅i ; αi, β) = 𝒩𝑠(0 , Ri)         ;  ∀ i ∈ [1, 2, … N] (8) 

 

where, Ri = αiB
−1  is the covariance matrix of S̅i . B is a 

Toeplitz matrix of AR coefficient β defined by Eq. (9). 

 

𝐵 ≡ [
1 β ⋯ β𝐿−1

⋮ ⋱ ⋮
β𝐿−1 β𝐿−2 ⋯ 1

]

−1

 (9) 

 

By converting MMV model in Eq. (6) into block sparse 

SMV model, we get Eq. (10). 

 

𝑦 = 𝜙�̅� + 𝜖 (10) 

 

where, 𝑦 = 𝑣𝑒𝑐(𝑌𝑇) ∈ ℝ𝑀𝐿𝑋1 , 𝜙 = �̅� ⊗ 𝐼𝐿 , 𝑒 = 𝑣𝑒𝑐(𝑊𝑇) 

and �̅� = 𝑣𝑒𝑐(𝑆̅𝑇) ∈ ℝ𝑁𝐿𝑋1. Sparse Bayesian Inference [14, 15] 

can be applied to solve this model in Eq. (10) by the assuming 

the Gaussian probability distribution function for the 

likelihood of the model Eq. (10) as given in Eq. (11). 

 

P(y|�̅�; σ2, ρ)~𝒩(𝜙�̅� , σ2I) (11) 

 

As followed in our previous work [19], the prior of �̅�  is 

given by: 

 

P(�̅�; αi, β) = ∏ 𝑃(

𝑁

𝑖=1

�̅�𝑖; αi, β) 

P(�̅�; αi, β)~𝒩(0 , Σ0
−1) 

(12) 

 

where, Σ0 ≡ Γ ⊗ 𝐵 and Γ = diag{α1
−1 … . αN

−1}. The posterior 

function will also be a Gaussian distribution given by Eq. (13). 

 

𝑃(�̅�|𝑦; 𝜎2, Γ, β, 𝜌)~𝒩(𝜇�̅� , Σ�̅�) (13) 

 

where, the posterior mean and covariance matrix are given by 

Eq. (14) and Eq. (15) respectively. 

 

𝜇�̅� = σ−2Σ�̅�𝜙Ty (14) 

 

Σ�̅� = [σ−2𝜙T𝜙 + Σ0]−1 (15) 

 

The hyper-parameters like σ2, Γ, β and 𝜌  are updated 

iteratively using Expectation Maximization (EM) framework 

as followed [19] by treating �̅� as the hidden variable. The cost 

function Q in the EM framework is given by Eq. (16). 

 

𝑄 = 𝐸�̅�|𝑦{log 𝑃 (𝑦, �̅�; 𝛼, 𝜎2, β, 𝜌)} (16) 

 

To estimate the variance 𝛼, the above Q function reduces to 

Eq. (17). 

 

𝑄(𝛼) = 𝐿𝑙𝑜𝑔(|Γ|) − 𝑇𝑟[(Γ ⊗ 𝐵)(Σ̂�̅� + �̂��̅��̂��̅�
𝑇)] (17) 

 

The �̂��̅� and Σ̂�̅� are evaluated from the previous values of the 

hyper-parameters. Differentiating Eq. (17) with respect to 

𝛼𝑖(i=1,2..N) and equating it to zero we get the update equation 

for 𝛼𝑖 as in Eq. (18). 

 

𝛼𝑖
(𝑛𝑒𝑤) =

1

𝐿
𝑇𝑟[𝐵(Σ̂�̅�𝑖𝑖

+ �̂��̅�𝑖
�̂��̅�𝑖

𝑇)] (18) 

 

where, �̂��̅�𝑖
 refers to the ith row of �̂��̅� vector and Σ̂�̅�𝑖𝑖

 refers to 

the ith row and ith column of the Σ̂�̅� matrix. 

To estimate the AR coefficient β, the Q function can be 

written as: 

 

𝑄(β) = 𝑁𝑙𝑜𝑔(|B|) − 𝑇𝑟[(Γ ⊗ 𝐵)(Σ̂�̅� + �̂��̅��̂��̅�
𝑇)] (19) 

 

Differentiating Eq. (19) with respect to β and equating it to 

zero, we get: 

 

𝛽(𝑛𝑒𝑤) = 𝛽(𝑜𝑙𝑑) + 𝜂𝑇𝑟[(Γ ⊗ (𝐵𝐹𝐵))(Σ̂�̅� + �̂��̅��̂��̅�
𝑇)

− 𝑁𝐵𝐹] 
(20) 

 

where, 𝐹 = 𝜕(𝐵−1) 𝜕𝛽⁄  and η is a small step size which can 

be determined by classic backtracking method.  

𝜎2  can be updated by maximizing the EM cost function 

given in Eq. (21). 

 

𝑄(𝜎2, 𝜌) = −𝑀𝐿 𝑙𝑜𝑔𝜎2

− 𝜎−2 [‖𝑦 − 𝜙�̂��̅�‖2

+ 𝜎2[𝑁𝐿 − 𝑇𝑟(Σ̂�̅�Σ0)]] 

(21) 
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Hence the update equation of 𝜎2 is given by Eq. (22). 

 

𝜎2(𝑛𝑒𝑤)
=

‖𝑦 − 𝜙�̂��̅�‖2 + 𝜎2(𝑜𝑙𝑑)
[𝑁𝐿 − 𝑇𝑟(Σ̂�̅�Σ0)]

𝑀𝐿
 (22) 

 

Differentiating Eq. (21) with respect to ρ and equating it to 

zero gives the update equation for ρ as follows: 

 

𝜌 = 𝑈−1𝑉 (23) 

 

where,  

 

𝑈 = ℛ{(𝐿Σ̂�̅� + �̂��̅��̂��̅�
𝑇) ⊙ (𝜙𝑏𝑓

𝑇 𝜙𝑏𝑓)} (24) 

 

𝑉 = ℛ{𝑑𝑖𝑎𝑔[𝜙𝑏𝑓
𝑇 (𝑦 − 𝜙𝑓�̂��̅�)�̂��̅�

𝑇 − 𝐿𝜙𝑏𝑓
𝑇 𝜙𝑏𝑓Σ̂�̅�]} (25) 

 

𝜙𝑏𝑓 = 𝜙(𝐼𝑏 − 𝐼𝑓) (26) 

 

𝜙𝑓 = 𝜙𝐼𝑓 (27) 

 

𝐼𝑏 = [0(𝑁−1)×1, 𝐼𝑁−1]
𝑇
 

𝐼𝑓 = [𝐼(𝑁−1), 0(𝑁−1)×1]
𝑇
 

 

Once the EM framework converges, the ρ obtained as a 

sparse vector contains many zero entries and a few non-zero 

values. These non-zero values indicate the relationship 

between the true DOAs and the corresponding �̅�𝑛
(𝑙)

 present in 

the chosen grid set. The true DOAs which are not on the grid 

set can be accurately determined by the Eq. (28). 

 

�̂�𝑛 = �̅�𝑛
(𝑙)

+ 𝛿𝜌𝑛 (28) 

 

where, 𝛿  is the grid spacing or interval and the suffix ‘n’ 

represents the nth non-zero element of ρ. That is the number of 

non-zero elements of ρ is equal to the number signal sources 

impinging on the ULA. In summary, the proposed off-grid 

AR(1) based SBL algorithm for DOA estimation (OGARSBL) 

is presented in Table 1. 

 

Table 1. The proposed OGARSBL DOA estimation 

algorithm 

 

Input Parameters: Y (MxL), A (MxN) 

Output Parameter: Estimated DOAs �̂� 

Initialize the hyper-parameters 𝜎2, 𝛼, 𝜌, 𝛽. 

Repeat 

Estimate 𝜇�̅� using Eq. (14). 

Estimate Σ�̅� using Eq. (15). 

Update αi using Eq. (18). 

Update β using Eq. (20). 

Update 𝜎2 using Eq. (22). 

Update ρ using Eq. (27), Eq. (26), Eq. (25), Eq. (24) and Eq. 

(23) in sequence. 

Until convergence 

Estimate true DOAs using Eq. (28). 

 

 

3. RESULTS AND DISCUSSIONS 

 

In this section, the simulation results of the proposed 

algorithm (OGARSBL) are presented along with the 

performance comparison of proposed algorithm with the 

previous standard and conventional algorithms like l1-SVD [6], 

MUSIC [3], MVDR [30] and OGSBI [20]. All of these 

simulations are carried out on MATLAB 2019 platform with 

minimum 1000 to 2000 Monte-Carlo simulations. 

Before the discussion on the simulation results, some of the 

initializations and performance parameters used for the 

experimentation are defined below. 

The root mean square (RMSE) is the parameter used to 

analyze the proposed algorithm’s estimation accuracy and is 

defined as 𝑅𝑀𝑆𝐸 = √∑ ‖�̂�(𝑡) − 𝜃(𝑡)‖
2

2𝑇
𝑡=1

𝑇𝐾
⁄  where, T is the 

number of trials, K is the number of signal sources, �̂�(𝑡) and 

𝜃(𝑡) are the estimated and true DOA sets of the K signals in tth 

trial respectively. The simulations are carried out on a 10-

element uniform linear array with an element spacing less than 

the wavelength of the signal. The hyper-parameters are 

initialized as follows: 𝛼 = [1,1, … . .1], 𝜌 = 0, 𝛽 = 1, 𝜎2 =
0.1 × ‖𝑌‖𝐹

2 𝑀𝐿⁄ . The proposed algorithm OGARSBL 

terminate when (
|𝛼(𝑖+1) − 𝛼(𝑖)|

|𝛼(𝑖)|
⁄ ) < 10−4. 

 

3.1 Spatial spectrum comparisons 

 

In this subsection, the DOA spatial spectrum of our 

proposed algorithm is compared with other standard DOA 

estimation algorithms. 

Case 1: Considering an ULA with M=8 number of sensors 

with an element spacing of d≥λ/2. Let us assume two far-field 

signal sources with true DOAs of 42.37° and 120.23° impinge 

on the ULA. The grid size chosen for this case is N=91 i.e, 

with a grid interval of 2° covering the entire angle space from 

0o to 180°. The number of snapshots considered for the 

measured signal is 200. The SNR of received signal is 

considered as 0dB. Figure 1(a) shows the DOA spatial 

spectrum obtained as a simulation result of various algorithms 

along with the proposed OGARSBL, l1-SVD and MUSIC 

exhibits two peaks at the angles near to 40o and 120°. Figure 

1(b) and Figure 1(c) shows the point view of the DOA peaks. 

It can be observed that OGARSBL algorithm produces peaks 

at 42.56° and 120.2°, whereas all the other algorithms show 

the peak point at 42° and 120°. This is due to the on-grid 

approach followed by other algorithms. 

Case 2: In this case, the effect of reducing the number of 

snapshots on the DOA peaks is shown. For the same 

parameters considered in Case 1, the number of snaphots L is 

reduced to 50. Figure 2(a) shows the increase in number of 

redundant side peaks for false DOAs, but at the true DOAs the 

peaks are maximum and indicating the DOAs as 42.4° and 

120.5° as shown in Figure 2(b) and Figure 2(c). 

It can also be observed that the other previous algorithms 

show the peaks at 44° and 122°. Even though the number of 

side peaks increased for OGARSBL compared to other 

algorithms, the estimation accuracy at the two maximum peaks 

is high.  

Case 3: This case shows the performance of proposed 

algorithm for a single snapshot of received signal (i.e., L=1) 

by keeping all other parameters as same as Case 1. Figure 3 

shows the clear peak point view with a DOA peak at 45.69° 

achieved by OGARSBL algorithm and a DOA peak at 48° 

achieved by l1-SVD, whereas MVDR and MUSIC does not 

produce any peaks at the true DOA. The same thing is true 

even for the true DOA of 120.23°. 
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Figure 1. (a): DOA spatial spectrum for L=200; (b): DOA 

spectrum showing true DOA of 42.37° for L=200; (c): DOA 

spectrum showing true DOA of 120.23° for L=200 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 2. (a): DOA spatial spectrum for L=50; (b): DOA 

spectrum showing true DOA as 42.37° for L=50; (c): DOA 

spectrum showing true DOA of 120.23° for L=50 
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Figure 3. DOA spectrum showing true DOA of 42.37° for 

L=1 

 

 
(a) 

 
(b) 

 

Figure 4. (a): DOA spatial spectrum for correlated cases; (b): 

DOA spectrum point view for correlated sources 

 
(a) 

 
(b) 

 

Figure 5. (a): DOA spectrum for closely spaced signal 

sources; Figure 5(b): Point view of Figure 5(a) 

 

Case 4: When the two signal sources that are impinging on 

the ULA are correlated with each other, the simulation results 

are shown in Figure 4(a) and Figure 4(b) with the same 

parameters as mentioned in Case 1. As seen in the figures, only 

OGARSBL and l1-SVD produces DOA peaks higher than -

5dB of power level at true DOAs, whereas all other algorithms 

do not indicate highest peaks at true DOAs. Figure 4(b) shows 

that OGARSBL estimates the DOAs as 42.22° and 120.7°, 

whereas l1-SVD estimates the DOAs as nearest point in the 

chosen grid set i.e., 44° and 120°. Hence, even in the case of 

highly correlated signal sources, OGARSBL does not fail to 

produce highly accurate results. 

Case 5: Consider two signals impinging on the ULA are 

very closely spaced to each other with true DOAs being 120.58° 

and 123.67°, with all other same parameters mentioned in Case 

1. Figure 5(a) and Figure 5(b) shows clear two separate peaks 

at the true DOAs produced by l1-SVD and OGARSBL and 

other algorithms like MVDR and MUSIC shows a single peak 

and fails to differentiate between the closely spaced two signal 

sources. As the considered true DOAs in this case is very much 

nearer to the chosen grid set (i.e., 120° and 124°), both 
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OGARSBL and l1-SVD performances are observed as almost 

similar, but l1-SVD performance deteriorates when the actual 

true DOA values are far from the grid set values. 

 

 
(a) 

 
(b) 

Figure 6. (a): DOA spatial spectrum showing OGSBI and 

OGARSBL performances; (b): Point view of Figure 6(a) 

 

 
 

Figure 7. RMSE and computation time v/s number of 

snapshots 

 
 

Figure 8. Performance comparison of RMSE v/s SNR 

 

 
 

Figure 9. Performance comparison of RMSE v/s SNR for 

correlated signal sources 

 

Case 6: In this case, the proposed OGARSBL algorithm is 

compared with an algorithm based on off-grid approach 

referred as OGSBI [20]. Figure 6(a) and Figure 6(b) show the 

DOA spectrum obtained by these two algorithms for the same 

parametric data mentioned in Case 1 with the true DOAs being 

43.34° and 121.58°. In Figure 6(b), the DOA estimated by 

OGARSBL is 43.39°, where as OGSBI estimates it as 44°, 

even though the off-grid approach is used in OGSBI, since the 

correlation property present in the MMV model of DOA 

estimation is not exploited as it is done in the OGARSBL 

algorithm. 

 

3.2 Performance comparisons 

 

Considering the same parametric values as mentioned in the 

Case 1, Figure 7 shows the performance of OGARSBL 

algorithm in terms of Root mean square error (RMSE) and 

computational time with respect to variation in number of 

snapshots L. As the number of snapshots increases, the RMSE 

decreases to a minimum value, at the same time, the 
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computational time required by the algorithm also increases, 

suggesting a trade-off between both. Figure 8 shows the 

performance of various algorithms in terms of RMSE v/s SNR. 

The proposed algorithm observes very low RMSE for a SNR 

range of -10dB to -5dB compared to other standard algorithms. 

In high SNR ranges of 5dB to 20dB, OGARSBL performs 

similar to that of OGSBI algorithm. Figure 9 shows the 

performance comparison for the case of highly correlated 

signal sources indicating the better performance of proposed 

OGARSBL when compared to the other standard algorithms. 

 

 

4. CONCLUSION 

 

In this paper, the DOA estimation problem was solved using 

off-grid approach by employing Sparse Bayesian Learning-

Expectation maximization framework. Sparse Signal 

reconstruction technique was employed along with a bias 

parameter related to linear interpolation to accurately estimate 

the true DOAs which may or may not be present in the selected 

grid set. To solve this interpolated model, an Auto-Regression 

(1) based sparse Bayesian learning with expectation 

maximization framework was proposed. The AR (1) 

coefficient introduced into the SBL technique helps to exploit 

the temporal correlation property of the unknown spatial 

spectrum, which increases the estimation accuracy and the 

success rate in the case of highly correlated signal sources. The 

extensive simulation results shown in the previous section 

indicates the performance of the proposed algorithm in all the 

different scenarios and dimensions. The resolution obtained by 

the proposed algorithm in the case of very closely spaced 

signal sources enjoys greater performance when compared to 

the other standard and conventional DOA estimation 

algorithms. 
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NOMENCLATURE 

Variables 

y Array received signal vector 

A Array manifold matrix/Vandermode matrix 

s Signal vector impinging on the ULA 

w Array noise vector 

M Number of array elements in the ULA 

N Grid size 

L Number of snapshots 

K Number of signal sources impinging on the 

ULA 

Greek symbols 

 Variance of the signal 

 AR coeffecient 

 Array manifold matrix after AR modeling 

θ Angle of arrival of the signal 

µ Mean of the signal 

ρ Bias parameter of linear interpolation 

𝜎2 Noise variance 

δ Grid spacing 

Σ Covariance matrix of the signal 

Operators 

diag(.) Diagonal entries of a matrix 

𝒩(. ) Normal gaussian distribution function 

E{.} Expectation operator 

Vec(.) Vectorization operator 

⊗ Kronecker product 

Tr[.] Trace of a matrix 

ℛ{. } Real part of a complex variable 
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