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This paper demonstrates the implications of heat transfer and chemical reactions by 

considering the flow of a Carreau-Yasuda fluid through the diseased tapered inclined 

artery. The analysis has performed on the artery with mild stenosis. The analytical 

solution has been obtained using the perturbation method due to its low Weissenberg 

number to get the blood velocity, the wall shear stress distribution, the temperature, the 

concentration, the resistance impedance and the stream function. The critical results in 

this study have depicted that the blood velocity for dilatant fluid is higher than that in 

viscous and pseudoplastic fluids in the core region of the artery. The value of blood 

velocity through a Newtonian fluid is extraordinarily lower than that through a Carreau-

Yasuda fluid at the core region of the artery. The magnitude of blood velocity across 

the vertical artery is higher than those in the inclined and horizontal arteries inside the 

core region of the artery. The wall shear stress distributions are higher in the case of 

stenosis (diseased artery) than in no stenosis (healthy artery). The temperature 

transmission for the Carreau fluid is higher than that for the Carreau-Yasuda fluid. The 

flow resistance progressively increases as the depth of the stenosis increases. The size 

of the trapping bolus gradually increases, shifting toward the right at the diverging 

tapering artery, and it gradually increases, moving toward the left at the converging 

tapering artery. Finally, the streamlines are noticeably more comprehensive along the 

vertical artery and are higher than those in the inclined and horizontal arteries. 
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1. INTRODUCTION

Arterial stenosis is a lumen narrowing that harasses blood 

flow to blood vessels. Vascular stenosis may be caused by 

aneurysms and tumours or linked to arteriosclerosis. Arterial 

stenosis has motivated biomechanics scientists to execute 

blood flow awareness and empirical measurement of pressure 

and velocity in human organs [1].  

The Carreau-Yasuda fluid is a known rheological model 

utilized to appreciate the steady-state viscosity in non-

Newtonian fluid (e.g. pendants, emulsions, and polymer 

solvents). Non-Newtonian Carreau-Yasuda fluid is the 

generalized form of Carreau fluid and has numerous industrial 

implementations like food treatment, drilling, bio-engineering 

processes etc. [2]. Carreau-Yasuda fluid model predicts the 

shear-thinning/shear-thickening behaviours, which display 

diverse impacts on the thermal-transfer features of fluid [3]. 

Although various circumstances may appear in these fluids, 

they have displayed shear-thinning behaviour; this refers to the 

viscosity dwindling due to a plus in the malformation rate 

implemented to the fluid [4]. The Carreau-Yasuda model has 

received widespread emphasis due to its nature being most 

suitable for depicting shear-thinning fluid [5]. A few research 

attempts to study Carreau-Yasuda fluid flow through 

narrowed arteries under certain physical conditions, but it 

lacks the analytical mathematical procedure [6-10]. 

The contemplation of the impacts of heat and chemical 

reactions on blood flow is impressive to many researchers. 

Heat and mass transfer survey is the needful theme for 

researchers due to their biomedical engineering utilizations 

like tissue delivery and food treatment. So, the effect of 

rheological features of the fluid with a synchronized scattering 

of heat and mass transfer is located in enormous indication 

[11]. The quantitative anticipation of blood flow rate and heat 

build-up is pivotal for personifying blood circulation disease 

and gauging blood glucose [12]. 

Motivated by the studies mentioned above, the unsteady 

flow of Carreau-Yasuda fluid across the oblique stenosed 

catheterized artery in the presence of heat transfer and 

chemical reactions are considered in this paper. The problem 

has been modelled, and then the non-dimensional governing 

equations for mild stenosis with the corresponding boundary 

conditions have been depicted and solved analytically utilizing 

the perturbation technique. Graphical results and discussions 

are explained, and some conclusions are included. 

2. PROBLEM FORMULATION

An inclined arterial segment with overlapping stenosis can 

be modelled as a superfine solid cylindrical of finite length L. 

The non-Newtonian incompressible Carreau-Yasuda fluid (as 

a blood model) is injected into the arterial segment. The 

cylindrical polar coordinate (r, θ, z) is chosen where the z-axis 

Mathematical Modelling of Engineering Problems 
Vol. 9, No. 5, October, 2022, pp. 1359-1368 

Journal homepage: http://iieta.org/journals/mmep 

1359

https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.090526&domain=pdf


 

is picked along the arterial segment axis, and all flow 

parameters are independent of the direction θ. Moreover,, 

asuming that r=0 is selected as the axis of the symmetry of the 

arterial segment. The heat and mass transfer phenomena are 

subjected by afforcing heat T0 and concentration C0 to the 

artery's wall, while at the centre of the artery, we are 

considering symmetry conditions on both temperature and 

concentration. The geometrical shape of the constricted 

inclined tapered artery is chosen (see Figure 1) [13].  
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where, h(z) is the radius of the tapering arterial segment in the 

narrowed region, R0 is the radius of the non-tapering artery in 

the non-narrowed region, m=tanφ symbolize the slope of the 

tapering vessel, φ is the angle of tapering where the possibility 

of diverse forms of the artery viz, the converging tapering 

(φ<0), non-tapered artery (φ=0) and the diverging tapering 

(φ>0) [14]. 3L0/2 is the extent of overlapping stenosis, d is the 

site of the narrowing. Here, δ is the maximum altitude of the 

stenosis, such that the ratio δ/R0<<1, appears at two specific 

locations, i.e., z=d+L0/2 and z=d+L0. The height of the stenosis 

at a distance of z=d+3L0/4 from the origin is 3δ/4 and δcosφ is 

taken to be the maximum altitude of overlapping stenosis.  

 

 
 

Figure 1. Graphical scheme of inclined tapered overlapping 

narrowed artery 

 

The following governing equations may list the 

mathematical description of the problem: 

Continuity: 
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Energy equation: 
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Concentration equation: 
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where, p represents the pressure of the fluid, ρ is the density of 

the fluid, Vr and Vz are the components of the velocity in radial 

and axial directions respectively, g represent gravitational 

acceleration, α is tilt angle, T is the temperature, cp is the 

specific heat at fixed pressure, K denotes the thermal 

conductivity, C is the concentration of fluid, D is diffusion 

coefficient, KT is the thermal-diffusion ratio, and Tm is the 

temperature of the medium. The supplementary stress tensor 

for Carreau-Yasuda fluid is identificated by [2, 3, 15-21]: 
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where, μ∞ is viscosity at infinite shear rate, μ0 is viscosity at 

zero shear rate, Γ is time constant, �̇� is shear rate, q is Carreau-

Yasuda parameter, n is power low index number, A1 is first 

Rivlin Ericksen tensor and V=(Vr, 0, Vz) is velocity vector. 

Assume μ∞/μ0 to be very small. Eq. (8) becomes 
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and for the case Γ�̇�<<1, Eq. (10) is reduced to 
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The specified status of viscous fluid is kept at (n=1). Also, 

there are two various issues i.e., (n>1) leads to the dilatant 
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fluid and (n<1) drives to pseudoplastic fluid. The original 

Carreau fluid model can also be retained by substituting (q=2). 

The boundary conditions are: 
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where, u0 is the average velocity of the fluid over arterial 

segment, Re is Reynolds number, Fr is the Froud number, Pr is 

Prandtl number, Br is Brickmann number, Sc is Schmidt 

number and Sr is Soret number, We is Weissenberg number. 

Let us facilitate the governing equations for mild stenosis by 

adoptiving the two conditions * 1
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The corresponding boundary conditions (dropping dashes): 
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where, h*(z)=m*z+1, d*=d/L0 and m*= L0m/R0 is the 

corresponding slope of the tapered vessel. 

 

 

3. SOLUTION DEVELOPMENT 

 

We extend the dependent variables as: 
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The solutions of pressure gradient, axial velocity, 

temperature and concentration with the corresponding 

boundary conditions are 
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Using Eq. (25), the wall shear stress can be listed as 
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The stream function 
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Assuming the flow rate is fixed for all the syllables of artery. 

The pressure drop along the overlapping stenosis is 
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The resistance impedance exposed by the flowing blood in 

the arterial segment under deem using Eq. (30) may be 

recognised as 
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where, L*=L/L0 and ∑(z)=χ(z)|m*z+1. 

 

 

4. DISCUSSION OF NUMERICAL RESULTS 

 

This paper uses computer simulations of blood flow in 

diseased tapered inclined arteries subject to heat transfer and 

chemical reactions. In this part, we exhibit drawing 

illustrations of some essential features of the flow features, 

like blood velocity, wall shear stress, temperature, 

concentration, resistance impedance and the trapping 

phenomenon for distinct values of power low index parameter 

n, Weissenberg parameter We, tilt angle α, Froud parameter Fr, 

angle of tapering φ, maximum constriction altitude δ*, the 

Brickmann parameter Br, the Soret parameter Sr and the length 

of the artery L. For the goal of numerical calculations, we use 

the following informations (Re=1, dp0/dz=-0015, F=0.3, 

d*=0.75). The numerical results are simulated in the following 

figures below to get a deeper insight into the qualitative 

analysis of the results. 

The impacts of power low index number n and Weissenberg 

parameter We on the velocity profile of blood are analyzed. 

Figure 2(a) describes how the blood velocity varies with power 

low index number. The blood velocity declines with an 

increment in the exponent number in the two terminal regions 

and whilst the blood velocity increases with a rise in the 

exponent number in the core region. Moreover, the curves of 

dilatant fluid (n>1) are higher than those in the viscous fluid 

(n=1) and the pseudoplastic fluid (n<1) in the core region. 

Figure 2(b) shows the behaviour of the axial velocity with the 

Weissenberg parameter We. The velocity increases as the 

Weissenberg parameter increases in the core region this 

consistent with the results of Khan et al. [2]. At the same time, 

the opposite happens in the two terminal regions. Furthermore, 

the values of blood velocity for a Newtonian fluid (We=0 or 

n=1) are lower than that for a Carreau-Yasuda fluid (We≠0 or 

n≠1) at the core region. The archaeology of tilt angle α and 

Froud parameter Fr on blood velocity Vz are presented in 

Figures 3(a) and 3(b). The magnitude of the blood velocity 

across the vertical artery (α=90o) is superior than those across 

inclined artery (α=30o) and horizontal artery (α=0o) inside the 

core region, while the inverse occurs at the two terminal ends.  

We can also record that blood velocity grows by a rise in 

the Froud number Fr near the two terminal ends. At the same 

time, it reduces by dwindling the Froud number Fr at the core 

region. 

 

 

 
 

Figure 2. Variance of velocity aspects Vz versus r for 

diversified values of n and We at z=1.2, δ*=0.09, φ=0, q=3, 

α=15°, Fr=0.1 (panels (a) and (b) respectively) 
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Figure 3. Variance of velocity aspects Vz versus r for 

diversified values of α and Fr at z=1.2, δ*=0.09, φ=0, We=0.3, 

q=2, n=3 (panels (a) and (b) respectively) 

 

 

 
 

Figure 4. Distribution of wall shear stress τR versus z for 

diverse values of φ and δ* at We=0.1, q=2, n=3, α=30°, 

Fr=0.1 (panels (a) and (b) respectively) 

 

 
 

Figure 5. Distribution of wall shear stress τR versus z for 

diverse values of n and We at δ*=0.09, φ=0, q=2, α=30°, 

Fr=0.1 (panels (a) and (b) respectively) 

 

The profiles of wall shear stress τR in the narrow area 

(0.75≤z≤2.25) for distinct values of taper angle φ, and 

maximum constriction altitude δ* are displayed in Figures 4(a) 

and 4(b), consecutively. Figure 4(a) indicates that the curves 

via the converging tapering artery (φ=-0.05<0) are above those 

in the non-tapering artery (φ=0) and the diverging tapering 

artery (φ=0.05>0). This is consistent with the results of Padma 

et al. [23]. Figure 4(b) depicts that the wall shear stress 

increases from the purely healthy artery (no stenosis) to the 

diseased artery case because the augmentation of the 

maximum constriction altitude decelerates the flow and 

increases wall stress. Hence, the wall shear stress disturbances 

are higher for stenosis (δ*≠0) (diseased artery) than that for no 

stenosis (δ*=0) (healthy artery). The wall shear stress distros 

along the narrow zone for diversified values of the power low 

index parameter n and the Weissenberg number We are 

exhibited in Figures 5(a) and 5(b). It should be observed that 

the shear wall stress increases as the values of n and We 

increase. It is surprisingly enjoyable to note that the exponent 

number n has a reinforcing impact on the wall shear stress. The 

consequences in Figure 5(a) show that the curves of wall shear 

stress for dilatant fluid (n>1) are higher than those in the 

viscous fluid (n=1) and the pseudoplastic fluid (n<1). It also 

reveals that from Figure 5(b), the values of wall shear stress 

for Carreau-Yasuda fluid (We≠0) are substantially maximal 

than that for Newtonian fluid (We=0). The results of wall shear 

stress distributed over arterial segment for diversified values 

of the angle of inclination α and Froud number Fr are presented 

in Figures 6(a) and 6(b). It might be evident that the shear 

stress distribution along the inclined vessel (α=30°) is superior 

to those in the horizontal vessel (α=0°) and the vertical vessel 

(α=90°). Also, the wall shear stress increases by growing the 

Froud number Fr. 
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Figure 6. Distribution of wall shear stress τR versus z for 

diverse values of α and Fr at δ*=0.09, φ=0, We=0.1, q=2, n=4 

(panels (a) and (b) respectively) 

 

 

 
 

Figure 7. Variation of tempresure θ versus r for diverse 

values of n and We at z=1.2, δ*=0.09, φ=0, q=2, α=15o, 

Fr=0.1, Br=0.3 (panels (a) and (b) respectively) 

 

The variation of temperature θ with radial distance r 

presented in Figures 7(a) and 7(b) predict the effects of the 

exponent number n and the Weissenberg parameter We on the 

thermal transmission of the fluid while Figures 8(a) and 8(b) 

help making a comparative study of the mass transfer for 

various values of the Carreau-Yasuda parameter q and the 

Brickmann number Br. All these results suggest that the non-

dimensional temperature of the fluid increases with the 

increase of the power low index number n, Weissenberg 

number We, and the Brickmann number Br while it decreases 

by increasing of the Carreau-Yasuda parameter q. Figure 7(a) 

depicts that the dimensionless heat transfer rate for the dilatant 

fluid (n>1) is maximal than that in the viscous fluid (n=1) and 

the pseudoplastic fluid (n<1). It is observed that the heat values 

for a Newtonian fluid (We=0) are much less than that for the 

Carreau-Yasuda fluid (We≠0), as shown in 7(b). Moreover, the 

transmission of the temperature for Carreau fluid (q=2) is 

higher than that for Carreau-Yasuda fluid (q≠2), as described 

in Figure 8(a). It can be seen in Figure 8(b) that, the higher 

Brickmann number value, the larger temperature of the fluid 

rise. This is consistent with the results of Nazir et al. [11] and 

Farooq et al. [24]. 

 

 

 
 

Figure 8. Variation of tempresure θ versus r for diverse 

values of q and Br at z=1.2, δ*=0.09, φ=0, We=0.2, α=15o, 

n=3, Fr=0.1 (panels (a) and (b) respectively) 

 

Figures 9 and 10 are intended to show the disparity of 

concentration for the power low index parameter n, the 

Weissenberg number We, the Brickmann number Br, and the 

Soret parameter Sr. It is observed that the concentration has an 

adverse behaviour as compared to the temperature. Figures 

9(a) and 9(b) depict that the concentration for the dilatant 

liquid (n>1) is more minimal than that for the viscous liquid 

(n=1) and the pseudoplastic liquid (n<1). Also, the 

concentration for a Newtonian fluid (We=0) is maximal than 

that for Carreau-Yasuda fluid (We≠0). Figures 10(b) and 10(b) 

explain the difference of concentration profile for the 

Brickmann parameter Br, and the Soret parameter Sr to show 
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the concentration of the fluid decreases as the Brickmann 

parameter Br and the Soret parameter Sr increase. This is 

consistent with the results of Alam et al. [25]. 
 

 

 
 

Figure 9. Variation of concentration profiles σ versus r for 

diversified values of n and We at z=1.2, δ*=0.09, φ=0, q=2, 

α=15o, Fr=0.1, Br=0.3, Sr=0.1, Sc=0.1 (panels (a) and (b) 

respectively) 
 

 

 
 

Figure 10. Variation of concentration profiles σ versus r for 

diversified values of Br and Sr at z=1.2, δ*=0.09, φ=0, 

We=0.5, q=2, n=2, α=15o, Fr=0.1, Sc=0.2 (panels (a) and (b) 

respectively) 

The diversity of flow impedance λ with the altitude of the 

stenosis δ* for diverse values of the power low index number 

n, the Weissenberg number We, the angle of inclination α and 

artery length L* has been shown in Figures 11 and 12. The 

impedance λ piecemealy enhances as the altitude of the 

contraction grows. Also impedance curves in the dilatant fluid 

(n>1) are lower than those in the viscous fluid (n=1) and the 

pseudoplastic fluid (n<1). Furthermore, the values of 

resistance for a Newtonian fluid (We=0) is higher than that for 

a Carreau-Yasuda fluid (We≠0). Moreover, the impedance 

along the vertical artery (α=90°) is higher than that along the 

horizontal artery (α=0°) and the inclined artery (α=30°). It has 

been perceived from Figure 11(b) that the impedance 

diminishes with an increment in the Weissenberg number We. 

Also, the impedance grows with enhancement in the artery 

length L*, as shown in Figure 12(b). 

 

 

 
 

Figure 11. Variance of impedance λ versus δ* for diversified 

values of n and We at φ=0, q=2, α=60o, Fr=0.1, L*=3 (panels 

(a) and (b) respectively) 
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Figure 12. Variance of impedance λ versus δ* for diversified 

values of α and L* at φ=0, We=0.3, q=2, n=3, Fr=0.1 (panels 

(a) and (b) respectively) 

The taper angle φ effect is elucidated in Figure 13. It is 

remarked that the size of the trapping bolus gradually 

increases, shifting toward the right at (φ=0.2>0) (diverging 

tapering artery), and it gradually increases moving toward the 

left at (φ=-0.2<0) (converging tapering artery). Figure 14 

depicts the streamlined patterns for diversified values of 

exponent number n when all other parametric values are kept 

fixed. It is observed that the streamlines are converging at the 

upper and lower walls of the artery for the viscous fluid (n=1). 

It is shown that the streamlines are diverging at the arterial 

walls noting that there are many circular trapping boluses near 

the lower border of the artery for the dilatant fluid (n>1). It is 

seen that the size and the number of the intermittent trapping 

bolus increase near the lower border of the artery for the 

pseudoplastic fluid (n<1). Figure 15 indicates that the 

streamlines are noticeably wider along the vertical artery 

(α=90°) is maximal than that in the inclined artery (α=30°) and 

the horizontal one (α=0°). 
 

 

   
 

Figure 13. Streamlines for diversified values of the tapering angle φ at δ*=0.4, We=0.3, q=2, n=2, α=45°, Fr=0.1 
 

   
 

Figure 14. Streamlines for diversified values of the exponent number n at δ*=0.4, φ=0, We=0.5, q=5, α=30°, Fr=0.1 
 

   
 

Figure 15. Streamlines for diversified values of tilt angle α at δ*=0.4, φ=0, We=0.5, q=2, n=3, Fr=0.1 
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5. CONCLUSIONS 

 

An analytical investigation of the flow of a Carreau-Yasuda 

fluid through the diseased tapered inclined artery subject to 

heat transfer and chemical reactions has been conducted. The 

core findings of the analysis are as follows: 

●The blood velocity and the temperature curves for the 

dilatant fluid (n>1) are higher than those in the viscous fluid 

(n=1) and the pseudoplastic fluid (n<1) in the core region of 

the artery. 

●The values of axial velocity and heat transfer rate along a 

Newtonian fluid (We=0 or n=1) are more minimal than that 

along a Carreau-Yasuda fluid (We≠0 or n≠1) at the core region 

of the artery. 

●The magnitude of blood velocity through the vertical 

artery is maximal than that in the inclined and horizontal artery 

inside the core region of the artery. 

●The wall shear stress distributions are higher for stenosis 

(diseased artery) than that for no stenosis (healthy artery). 

●The wall shear stress values through the Carreau-Yasuda 

fluid (We≠0 or n≠1) are maximal than that along a Newtonian 

fluid (We=0 or n=1). 

●The wall shear stress values along the inclined artery are 

higher than those in the horizontal and vertical arteries. 

●The transmission of the temperature for the Carreau fluid 

(q=2) is higher than that for the Carreau-Yasuda fluid (q≠2). 

●The concentration profile has a reverse behaviour as 

compared to the temperature profile. 

●The impedance gradually increases as the maximum 

height of stenosis increases. 

●The curves of resistance impedance for the dilatant fluid 

(n>1) are lower than those in the viscous fluid (n=1) and the 

pseudoplastic fluid (n<1). 

●The resistance values for a Newtonian fluid (We=0 or n=1) 

is higher than that for a Carreau-Yasuda fluid (We≠0 or n≠1). 

●The impedance along the vertical artery is higher than 

horizontal and inclined arteries. 

●The size of the trapping bolus gradually increases, shifting 

toward the right at (φ>0) (diverging tapering artery), and it 

gradually increases, moving toward the left at (φ<0) 

(converging tapering artery). 

●The streamlines are noticeably more comprehensive along 

the vertical artery is higher than that in the inclined artery and 

the horizontal one. 
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NOMENCLATURE 

 

Br Brickmann number 

C concentration, Kg. m-2 .s-2 

cp specific heat capacity, J. Kg-1. K-1 

C0 & 

C1 
walls concentration, Kg. m-2 .s-2 

D diffusion coefficient, m2. s-1 

d site of the stenosis, m 

d* dimensional stenosis site 

dp0/dz initial pressure rise, Kg. m-2. s-2 

F flow rate, m3.s-1 

Fr Froud number 

G gravitational acceleration, m. s-2 

K thermal conductivity, W. m-1. K-1 

KT thermal-diffusion ratio, Kg. m-2 .s-2 

3L0/2 length of overlapping stenosis, m 

L* non-dimensional length of arterial segment 

m* slope of the tapered vessel 

n power low index number 

p pressure, N. m-2 

Pr Prandtl number 

q Carreau-Yasuda parameter 

R radius of the tapered artery, m 

r radial direction, m 

Re Reynolds number 

R0 radius of the non-tapered artery, m 

Sc Schmidt number 

Sr Soret number 

T temperature field, K 

t time, s 

Tm temperature of the medium, K 

T0 & T1 walls temperature, K 

u0 
average velocity of the fluid over arterial segment, 

m. s-1 

Vz axial velocity, m. s-1 

Vr radial velocity, m. s-1 

We Weissenberg number 

z axial direction, m 

 

Greek symbols 

 

α angle of inclination  

δ height of the stenosis, m 

δ* dimensionless height of the stenosis 

θ dimensionless temperature 

λ resistance impedance, Kg. m-4. s-1 

μ0 & μ∞ viscosity at zero and infinite shear rates, Kg. m-1. s-1 

ρ fluid density, Kg. m-3 

σ dimensionless concentration 

τR wall shear stress distribution, N. m-2 

ϕ angle of tapering  

ψ stream function, m3. s-1 

Γ time constant 

Δp pressure drop, Kg. m-1. s-2 
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