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The effect of vibrations on asymmetric double beams is a common engineering problem 

in various engineering applications. In this paper, the synchronous (lower) and 

asynchronous (higher) natural frequencies of the asymmetric double beams are 

calculated using the Bernoulli-Euler method. Where the traditional methods are used to 

find the frequency equations at different boundary conditions, such as Pinned beam, 

clamped-Clamped beam, Clamped-Free beam, and Clamped-Pinned beam. The 

increase in the stiffness of the elastic connected layer leads to an increase in the values 

of the high frequencies of double beams. The greatest effect of changing the thickness 

of one of the upper or lower beams is for CF beams and the least effect is for CP beams. 

The length of the beam affects the higher and lower frequencies in high and close 

proportions for almost all types of beams, and the least effect is only on the higher 

frequencies of CF beams. The influence of the modulus elasticity change is relatively 

small on the lower natural frequencies of all types of beams except for CF beams, and 

its effect is relatively large on the higher natural frequencies of the most types of beams 

and comparatively less on the CF beams. The effect of varying the values of mass 

density is relatively small on the low natural frequencies of all types of beams except 

for CF beams, and its effect is comparatively large on the higher natural frequencies of 

all types of beams and relatively less on the CF beams. 
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1. INTRODUCTION

One of the important industrial applications in aerospace 

engineering and construction is the double beams because it 

has distinctive engineering properties such as resistance to 

stresses and high impacts on external surfaces, with resistance 

to bending stresses and buckling due to the elastic conduction 

layer while having a very important property of lightweight. 

Which made the researchers make their best efforts to analyze 

them in terms of dynamic loads and resistance to vibrations, 

especially for asymmetric types.  Under arbitrary boundary 

conditions, Kim et al. [1] examined the free vibration of an 

elastically linked double-beam structure linked by an elastic 

layer with a homogeneous elastic stiffness. The vibration of 

the structure is modeled using Timoshenko theory, which 

considers the effects of shear deformation as well as rotational 

inertia. The vibration of linked double-beam with generalized 

elastic boundary conditions was investigated using the Haar 

wavelet discretization method. Hao et al. [2] used a modified 

Fourier–Ritz technique to analyze the vibration of a linked 

double beam with random boundary conditions and arbitrary 

fundamental parameters of beams. The displacement 

components were stated as Fourier cosine series with auxiliary 

polynomial functions. Hammed et al. [3] examined the 

dynamical responses of a double Euler-Bernoulli beam system 

under the influence of a moving distributed force, which is 

elastically coupled by a two - parameter Pasternak 

constructional work. The fourth order partial differential 

equations describing the beam motion were transformed into 

second order ordinary differential equations using the Finite 

Fourier sine transformation. Using the differential 

transformation approach, the dynamic response of the beams 

was estimated. Yang et al. [4] explored analytically the 

double-beam system, which consists of two generic beams 

with an assortment of symmetric boundary conditions and 

found the double beam mode shapes are similar to those of a 

single at identical boundary conditions and the amplitude of 

its for a double-beam system is doubled that of a single beam. 

He and Feng [5] developed a formula for the dynamic response 

of an elastically coupled multiple beam system under a moving 

oscillator using the finite sine-Fourier inverse transform. 

Stojanovi'c et al. [6] studied a universal approach for 

determining the buckling loads and natural frequencies for a 

collection of beam systems subjected to a compressive axial 

stress. The dynamical behavior of multi-layered microbeam 

systems in the presence of a moving mass was studied by 

Khaniki and Hashemi [7]. An analytical solution has been 

discovered for double- and three-layered microbridge systems 

utilizing the Laplace transform. A state space technique has 

also been employed for higher-layered microbridge systems. 

Abu-Hilal [8] discussed the dynamic behavior of a double-

beam system passes by a moving load. The two simply 

supported beams are parallel, identical to one another, and 

joined by a viscoelastic layer that runs the length of the beam. 

Both beams' dynamic deflections are expressed in analytical 

closed forms. Atiyah and Abdulsahib [9] investigated the 

effect of four geometric and material characteristics on the 

vibration of twin beams. The qualities of the intermediate layer 
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are mass density, thickness, and modulus of elasticity of the 

two beams. The frequencies of the twin beams were computed 

using the Bernoulli-Euler beam. Mirzabeigy and Madoliat [10] 

examined the influence of a nonlinear Winkler inner layer on 

small-amplitude free vibration. The well-known frequency 

solutions for double-beam systems were used, and it was 

discovered that the elastic inner layer had the greatest 

influence on the fundamental frequency, using the first mode 

of vibration. De Rosa and Lippiello [11] used the differential 

quadrature method to investigate the vibration of double 

beams linked by a Winkler-type elastic layer. Vertical 

translation and rotation elastic restrictions were applied to the 

ends of the double-beam. Abdulsahib and Atiyah [12] studied 

the effect of non-linear elasticity on the frequency of sandwich 

beams under arbitrary boundary conditions. The impact of the 

inner layer's non-linearity stiffness on those frequencies was 

calculated using the energy balancing approach. Most of the 

previous studies focused on the investigation of vibrations of 

symmetric beams and did not pay much attention to the effect 

of properties of connecting layers between the beams on the 

vibration characteristics. The behavior of the higher and lower 

natural frequencies of the asymmetric doubled beams will be 

studied under different boundary conditions with the influence 

of a number of properties, such as the difference in thickness 

of the two beams, their mass densities, their elasticity modulus, 

the properties of the connected layer between them, or the 

length of the two beams. To validate the present results, a 

comparison is achieved with previous results. The influence of 

material properties of connecting layer on the vibration 

asymmetric double beam is examined. 

 

 

2. THEORETICAL WORK 

 

Figure 1 shows the asymmetric double beam of different 

properties (ρ, E, b, and h). An elastic layer between them 

having the elastic stiffness (Ke) connects these beams. The 

Bernoulli-Euler beam theory for vibrations is utilized to relate 

the equations of motion [12, 13]: 

 

𝜕2

𝜕𝑥2
(𝐸1𝐼1

𝜕2𝑌1

𝜕𝑥2
) + 𝐾𝑒(𝑌1 − 𝑌2) + 𝜌1𝐴1

𝜕2𝑌1

𝜕𝑡2
= 0 (1) 

 

𝜕2

𝜕𝑥2
(𝐸2𝐼2

𝜕2𝑌2

𝜕𝑥2
) − 𝐾𝑒(𝑌1 − 𝑌2) + 𝜌2𝐴2

𝜕2𝑌

𝜕𝑡2
= 0 (2) 

 

where, A1, A2, ρ1, ρ2, E1, E2, I1, I2, Y1 and Y2 are the cross-

sectional area, mass density, modulus of elasticity, moment of 

area and the deflection for first and second beam, respectively. 

 

 
 

Figure 1. Asymmetric double beam 

 

Assuming the time-harmonic motion as follow [14]: 

 

𝑊𝑖(𝑥, 𝑡) = ∑ 𝑥𝑛(𝑥) ∙ 𝑇𝑛𝑖(𝑡)

∞

𝑛=1

, 𝑖 = 1,2  (3) 

 

where, [15], 

 

𝜁 =
𝑥

𝐿
 (4) 

 

𝑦𝑛(𝜁) = 𝑐𝑜𝑠ℎ(Ω𝑛𝜁) − 𝑐𝑜𝑠(Ω𝑛𝜁)
− 𝜎𝑛[𝑠𝑖𝑛ℎ(Ω𝑛𝜁) − 𝑠𝑖𝑛(Ω𝑛𝜁)],

Ω𝑛 =
𝜋(2𝑛 + 1)

2
, 

𝑛 = 1,2,3, … . ., 𝜎𝑛 ≅ 1 For Clamped beams [15] 

(5) 

 

𝑦𝑛(𝜁) = 𝑠𝑖𝑛(𝛺𝑛𝜁), 𝛺𝑛 = 𝑛𝜋, 𝑛 = 1,2,3, … .. 
For Pinned beams [15] 

(6) 

 

𝑦𝑛(𝜁) = 𝑐𝑜𝑠ℎ(Ω𝑛𝜁) + 𝑐𝑜𝑠(Ω𝑛𝜁)
− 𝜎𝑛[𝑠𝑖𝑛ℎ(Ω𝑛𝜁) + 𝑠𝑖𝑛(Ω𝑛𝜁)],

Ω𝑛 =
𝜋(2𝑛 + 1)

2
, 

𝑛 = 1,2,3, … . . , 𝜎𝑛 ≅ 1 For Free beams [15] 

(7) 

 

𝑦𝑛(𝜁) = 𝑐𝑜𝑠ℎ(Ω𝑛𝜁) − 𝑐𝑜𝑠(Ω𝑛𝜁)
− 𝜎𝑛[𝑠𝑖𝑛ℎ(Ω𝑛𝜁) − 𝑠𝑖𝑛(Ω𝑛𝜁)],

Ω𝑛 =
𝜋(2𝑛 − 1)

2
, 

𝑛 = 1,2,3, … . ., 𝜎𝑛 ≅ 1 For Cantilever beam [15] 

(8) 

 

𝑦𝑛(𝜁) = 𝑐𝑜𝑠ℎ(Ω𝑛𝜁) − 𝑐𝑜𝑠(Ω𝑛𝜁)
− 𝜎𝑛[𝑠𝑖𝑛ℎ(Ω𝑛𝜁) − 𝑠𝑖𝑛(Ω𝑛𝜁)],

Ω𝑛 =
𝜋(4𝑛 + 1)

4
, 

𝑛 = 1,2,3, … . ., 𝜎𝑛 ≅ 1 

For Clamped-Pinned beams [15] 

(9) 

 

The time functions are assumed as follow [14]: 

 

𝑇𝑛𝑖 = 𝐷𝑖𝑒𝑗𝑤𝑛𝑡 , 𝑖 = 1,2 (10) 

 

The double beams have the following Boundary conditions: 

 

Cantilever: 

𝑌𝑖(0, 𝑡) = 𝑌𝑖
́ (0, 𝑡) = 𝑌𝑖

́́ (1, 𝑡) = 𝑌𝑖
́́́ (1, 𝑡) = 0, 𝑖 = 1,2  

(11) 

 

Clamped: 

𝑌𝑖(0, 𝑡) = 𝑌𝑖
́ (0, 𝑡) = 𝑌𝑖(1, 𝑡) = 𝑌𝑖

́ (1, 𝑡) = 0, 𝑖 = 1,2  
(12) 

 

Simply Supported:  

𝑌𝑖(0, 𝑡) = 𝑌𝑖
́́ (0, 𝑡) = 𝑌𝑖(1, 𝑡) = 𝑌𝑖

́́ (1, 𝑡) = 0, 𝑖 = 1,2  
(13) 

 

Free 

𝑌𝑖
́́ (0, 𝑡) = �́́�

́
(0, 𝑡) = 𝑌𝑖

́́ (1, 𝑡) = 𝑌𝑖
́́́ (1, 𝑡) = 0, 𝑖 = 1,2  

(14) 

 

Substituting the above expressions in to Eqns. (1) and (2) 

will get: 

 

(𝐸1𝐼1Ω𝑛
4 + 𝐾𝑒 − 𝜌1𝐴1𝜔𝑛

2)𝐷1 − 𝐾𝑒𝐷2 = 0 (15) 

 

(𝐸2𝐼2Ω𝑛
4 + 𝐾𝑒 − 𝜌2𝐴2𝜔𝑛

2)𝐷2 − 𝐾𝑒𝐷1 = 0 (16) 
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For simplifying the solution of Eqns. (15) and (16), the 

following parameters are assumed: 

 

𝛺𝑛1 = 𝐾𝑒 + 𝛺𝑛
4𝐸1𝐼1 (17) 

 

𝛺𝑛2 = 𝐾𝑒 + 𝛺𝑛
4𝐸2𝐼2 (18) 

 

𝐴 = (𝜌2𝐴2) ∙ 𝛺𝑛1 + (𝜌1𝐴1) ∙ 𝛺𝑛2 (19) 

 

𝐵 = (𝜌2𝐴2)2 ∙ Ω𝑛1
2 + (𝜌1𝐴1)2 ∙ Ω𝑛2

2  (20) 

 

𝐶 = 2(𝜌1𝐴1) ∙ (𝜌2𝐴2) ∙ [2𝐾𝑒
2 − Ω𝑛1 ∙ Ω𝑛2] (21) 

 

The lower and higher (synchronous and asynchronous) 

natural frequencies for asymmetric double beams at arbitrary 

boundary conditions can get as follow: 

 

𝜔1𝑛 = √
𝐴 − √𝐵 + 𝐶

2(𝜌1𝐴1) ∙ (𝜌2𝐴2)
 (22) 

 

𝜔2𝑛 = √
𝐴 + √𝐵 + 𝐶

2(𝜌1𝐴1) ∙ (𝜌2𝐴2)
 (23) 

 

 

3. RESULTS AND DISCUSSION 

 

In order to validate the accuracy of Eqns. (22) and (23), 

comparison tests were made between the results of the present 

work and other references. Those comparisons are shown in 

Tables 1 and 2. An excellent identification between the present 

work and the results of the references [2, 3] can be observed. 

 

Table 1. The natural frequencies of double beam at PP and CP boundary conditions 

 

𝜌1𝐴1 =
1

2
𝜌2𝐴2 = 300

𝑘𝑔

𝑚
, 𝐸1𝐼1 =

1

2
𝐸2𝐼2 = 6 × 106, 𝐿 = 8 𝑚, 𝐾𝑒 = 2.5 × 105

𝑁

𝑚2
 

 

No. of Mode 
Pinned-Pinned Clamped-Pinned 

Present Ref. [2] Present Ref. [2] 

1 21.8090 21.8090 34.0697 34.0697 

2 41.5407 41.5407 49.0993 49.0994 

3 87.2358 87.2358 110.4076 110.4080 

4 94.1280 94.1281 115.9303 115.9300 

5 196.2806 196.2810 230.3563 230.3560 

6 199.4394 199.4390 233.0537 233.0540 

7 348.9432 348.9430 393.9221 393.9220 

8 350.7298 350.7300 395.5055 395.5060 

 

Table 2. The natural frequencies of double beam at P-P, C-C and C-F boundary conditions 

 

𝜌1𝐴1 =
1

2
𝜌2𝐴2 = 100

𝑘𝑔

𝑚
, 𝐸1𝐼1 =

1

2
𝐸2𝐼2 = 4 × 106, 𝐿 = 10 𝑚, 𝐾𝑒 = 1 × 105

𝑁

𝑚2
 

 
No. of 

mode 

Pinned-Pinned Clamped-Clamped Clamped-Free 

Present Ref. [3] Present Ref. [3] Present Ref. [3] 

1 19.7392 19.7392 44.7466 44.7451 7.0320 7.0320 

2 43.4699 43.4699 59.1799 59.1790 39.3630 39.3630 

3 78.9568 78.9564 123.3457 123.3403 44.0690 44.0690 

4 87.9442 87.9439 129.2832 129.2791 58.6692 58.6688 

5 177.6529 177.6508 241.8068 241.7925 123.3943 123.3918 

6 181.8256 181.8239 244.8888 244.8888 129.3296 129.3297 

The change of the natural frequencies with the difference in 

the stiffness values of the connected layer between the two 

beams can be noted in Figure 2 and Table 3. When the stiffness 

values of the elastic layer are increased from 100 kN/m2 to 

2,100 kN/m2, an increase in the values of high frequencies 

(asynchronous) is observed up to 125% for PP beams, 40% for 

CC beams, 280% for CF beams, and 170% for CP beams. The 

different hardness values of the connected layer have no effect 

on the values of the lower natural frequencies of double beams, 

as these frequencies maintain their values despite the increase 

and decrease in the stiffness values of the connected layer. 

From the above, it can be concluded that the greatest effect of 

the stiffness layer is on the values of the higher natural 

frequencies of CF beams and the least effect is on the PP 

beams. Generally, the increase in the stiffness of the elastic 

connected layer leads to an increase in the values of the high 

frequencies of those beams and does not affect the values of 

the lower natural frequencies of them. 

 
 

Figure 2. Higher natural frequencies vs. stiffness of 

connected layer 
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Table 3. Higher natural frequencies (Hz) vs. stiffness of connected layer (N/m2) 

 

𝐸1 = 𝐸2 = 10 𝐺𝑝𝑎. , ℎ1 = ℎ2 = 20 𝑚𝑚, 𝑏1 = 𝑏2 = 40 𝑐𝑚, 
𝐿 = 10 𝑚, 𝜌1 = 𝜌2 = 3000 𝑘𝑔/𝑚3

 

 
Ke PP CC, FF CF CP 

100000 201.998 418.555 111.598 295.928 

200000 221.667 428.394 144.179 309.688 

300000 239.728 438.012 170.648 322.863 

400000 256.521 447.424 193.531 335.520 

500000 272.280 456.641 213.980 347.717 

600000 287.175 465.677 232.639 359.500 

700000 301.335 474.540 249.908 370.909 

800000 314.859 483.240 266.059 381.978 

900000 327.826 491.787 281.284 392.734 

1000000 340.298 500.188 295.726 403.204 

1100000 352.330 508.450 309.495 413.409 

1200000 363.964 516.580 322.678 423.368 

1300000 375.237 524.584 335.342 433.098 

1400000 386.182 532.467 347.545 442.614 

1500000 396.825 540.236 359.334 451.929 

1600000 407.189 547.894 370.748 461.057 

1700000 417.297 555.447 381.821 470.007 

1800000 427.165 562.898 392.582 478.790 

1900000 436.810 570.253 403.056 487.415 

2000000 446.247 577.513 413.264 495.890 

2100000 455.488 584.683 423.227 504.222 

 

Table 4. Higher natural frequencies (Hz) vs. thickness of upper beam (m) 

 

𝐸1 = 𝐸2 = 10 𝐺𝑝𝑎. , ℎ2 = 20 𝑚𝑚, 𝑏1 = 𝑏2 = 40 𝑐𝑚, 

𝐿 = 10 𝑚, 𝜌1 = 𝜌2 = 3000
𝑘𝑔

𝑚3
, 𝐾𝑒 = 100

𝑘𝑁

𝑚2
 

 
h1 PP CC CF CP 

0.010 212.061 423.503 128.922 302.887 

0.015 205.407 420.211 117.656 298.266 

0.020 201.998 418.555 111.598 295.928 

0.025 199.924 417.558 107.800 294.517 

0.030 198.530 416.892 105.191 293.572 

0.035 197.528 416.416 103.288 292.896 

0.040 196.773 416.058 101.837 292.387 

0.045 196.184 415.780 100.694 291.991 

0.050 195.712 415.557 99.770 291.674 

0.055 195.324 415.375 99.008 291.414 

0.060 195.001 415.223 98.368 291.197 

0.065 194.727 415.094 97.824 291.014 

0.070 194.491 414.984 97.355 290.856 

0.075 194.287 414.888 96.946 290.720 

0.080 194.108 414.805 96.587 290.600 

0.085 193.950 414.731 96.270 290.495 

0.090 193.810 414.665 95.986 290.401 

0.095 193.684 414.606 95.732 290.317 

0.100 193.571 414.554 95.503 290.242 

0.105 193.468 414.506 95.295 290.173 

0.110 193.375 414.462 95.105 290.111 

Figure 3 and Table 4 manifest the relationship between the 

increase in the upper beam thickness and the change in the 

values of higher natural frequencies. When the thickness of the 

beam is increased by about 20 times, a decrease in higher 

frequencies is noted about 9% for PP beams, 9% for CC beams, 

9% for FF beams, 27% for CF beams, and about 4% for CP 

beams. The values of the higher natural frequencies vary in the 

same proportions when the ratio of the thickness of the lower 

layer of the beam changes for all types of beams. It was also 

found that the values of lower natural frequencies are not 

affected by the change in the thickness of the upper or lower 

layer of the beams. As a result, it can be concluded that the 

greatest effect of changing the thickness of one of the upper or 

lower beams, or the thickness of one of them to the other is for 

CF beams and the least effect is for CP beams. In general, the 

influence of thickness is small on the frequencies compared to 

the rest of the factors studied in this research.
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Figure 3. Higher natural frequencies vs. thickness of upper 

beam 

 

Figure 4 and Table 5 represent the behavior of low 

frequencies with the change in beam length. When the length 

increases about 50%, the lower frequencies will decrease 

approximately 55% for all types of beams. While Figure 5 

evinces the relationship of higher frequencies with the 

variation in length of beam. In this figure, it is observed that 

when the length of the beam is increased by 50%, the higher 

frequencies decrease 48% for PP beams, 44% for CC beams, 

25% for CF beams, and about 52% for CP beams. As a result, 

the length of the beam affects the higher and lower frequencies 

in high and close proportions for almost all types of beams, 

and the least effect is only on the higher frequencies of CF 

beams. 

 
 

Figure 4. Lower natural frequencies vs. length of beam 

 

 
 

Figure 5. Higher natural frequencies vs. length of beam 

 

Table 5. Natural frequencies (Hz) vs. length of beam (m) 
 

𝐸1 = 𝐸2 = 10 𝐺𝑝𝑎. , ℎ1 = ℎ2 = 20 𝑚𝑚, 𝑏1 = 𝑏2 = 40 𝑐𝑚, 

𝜌1 = 𝜌2 = 3000
𝑘𝑔

𝑚3
, 𝐾𝑒 = 100

𝑘𝑁

𝑚2
 

 

L (m) 
Lower Frequency Higher Frequency 

PP CC CF CP PP CC CF CP 

8.0 281.552 638.248 100.302 439.838 295.982 644.743 135.624 449.212 

8.2 267.986 607.493 95.469 418.644 283.107 614.314 132.090 428.482 

8.4 255.376 578.909 90.977 398.946 271.202 586.063 128.880 409.257 

8.6 243.636 552.296 86.795 380.606 260.177 559.790 125.963 391.401 

8.8 232.688 527.477 82.894 363.503 249.954 535.318 123.308 374.790 

9.0 222.461 504.294 79.251 347.526 240.463 512.490 120.889 359.316 

9.2 212.894 482.607 75.843 332.581 231.640 491.165 118.682 344.882 

9.4 203.931 462.289 72.650 318.579 223.431 471.216 116.668 331.400 

9.6 195.523 443.228 69.654 305.443 215.783 452.531 114.826 318.793 

9.8 187.623 425.321 66.840 293.103 208.653 435.007 113.141 306.990 

10.0 180.194 408.478 64.193 281.496 201.998 418.555 111.598 295.928 

10.2 173.196 392.617 61.701 270.566 195.781 403.090 110.183 285.550 

10.4 166.599 377.661 59.350 260.259 189.970 388.538 108.884 275.805 

10.6 160.372 363.544 57.132 250.531 184.533 374.830 107.691 266.644 

10.8 154.487 350.204 55.035 241.338 179.442 361.907 106.594 258.026 

11.0 148.920 337.586 53.052 232.642 174.673 349.710 105.584 249.911 

11.2 143.649 325.637 51.175 224.407 170.201 338.190 104.653 242.264 

11.4 138.653 314.311 49.395 216.602 166.006 327.299 103.794 235.053 

11.6 133.913 303.566 47.706 209.198 162.068 316.995 103.001 228.248 

11.8 129.412 293.363 46.103 202.166 158.369 307.238 102.268 221.821 

12.0 125.134 283.666 44.579 195.484 154.893 297.992 101.590 215.748 

The effect of varying the modulus of elasticity of the upper 

beam on the values of the lower frequencies of double beams 

is depicted in Figure 6 and Table 6. When the values of the 

elastic modulus are increased from 10 GPa. to 30 GPa., the 

lower frequencies increase about 6% for PP beams, 1% for CC 

beams, 26% for CF beams, and about 1% For CP beams. Also, 

from Table 6 and Figure 7, when the modulus of elasticity 

increased from 10 GPa. to 30 GPa., the higher natural 

frequencies increase about 58% for PP beams, 70% for CC 

beams, 21% for CF beams, and about 66% for CP beams. As 

a result, the influence of the change of the modulus elasticity 

is relatively small on the lower natural frequencies of all types 
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of beams except for CF beams, and its influence is relatively 

large on higher natural frequencies of the most types of beams 

and comparatively less on the CF beams. The same effect was 

seen for the variation of the modulus of elasticity of the lower 

or upper beam on the natural frequencies of the beams in the 

same ratios. 
 

 
 

Figure 6. Lower natural frequencies vs. modulus of elasticity 

of upper beam 
 

 
 

Figure 7. Higher natural frequencies vs. modulus of 

elasticity of upper beam 

 
 

Figure 8. Lower natural frequencies vs. mass density of 

upper beam 

 
Figure 8 and Table 7 elucidate the relationship between the 

changes in the mass density of the upper layer of the beam with 

the lower natural frequencies of the double beams. When the 

mass density increases from 1,000 kg/m3 to 3,000 kg/m3, the 

lower frequencies decrease about 5% for PP beams, 1% for CC 

beams, 14%, and about 2% for CP beams. The behavior of 

higher natural frequencies is displayed in Figure 9 and Table 

7. In addition, while the mass density increases from 1,000 

kg/m3 to 3,000 kg/m3, the higher frequencies decrease about 

40% for PP beams, 42% for CC beams, 33% for CF beams, 

and about 40% for CP beams. Therefore, the influence of 

changing the values of mass density is comparatively small on 

the low natural frequencies of all types of beams except for CF 

beams, and its comparatively is relatively large on the higher 

natural frequencies of all types of beams and relatively less on 

the CF beams.  Furthermore, there is no difference between the 

changes in the mass density of the upper or lower layer; both 

have the same effect and percentage change of frequencies. 

 
Table 6. Natural frequencies (Hz) vs. modulus elasticity of beam (m) 

 
𝐸2 = 10 𝐺𝑝𝑎. , ℎ1 = ℎ2 = 20 𝑚𝑚, 𝑏1 = 𝑏2 = 40 𝑐𝑚, 

𝐿 = 10 𝑚, 𝜌1 = 𝜌2 = 3000
𝑘𝑔

𝑚3
, 𝐾𝑒 = 100

𝑘𝑁

𝑚2
 

 

E1 (Gpa.) 
Lower Frequency Higher Frequency 

PP CC CF CP PP CC CF CP 

1.0E+10 180.194 408.478 64.193 281.496 201.998 418.555 111.598 295.928 

1.1E+10 183.815 412.358 65.740 285.691 206.716 434.384 112.540 305.153 

1.2E+10 186.013 412.927 67.175 287.016 212.522 452.664 113.519 316.676 

1.3E+10 187.343 413.131 68.508 287.572 218.898 470.555 114.533 328.463 

1.4E+10 188.188 413.234 69.744 287.869 225.491 487.875 115.581 340.061 

1.5E+10 188.758 413.296 70.891 288.051 232.117 504.635 116.661 351.369 

1.6E+10 189.163 413.338 71.955 288.174 238.688 520.872 117.770 362.372 

1.7E+10 189.464 413.368 72.942 288.263 245.163 536.627 118.907 373.077 

1.8E+10 189.696 413.390 73.857 288.330 251.524 551.938 120.069 383.499 

1.9E+10 189.879 413.408 74.707 288.382 257.763 566.839 121.254 393.657 

2.0E+10 190.027 413.422 75.496 288.424 263.879 581.360 122.459 403.566 

2.1E+10 190.149 413.433 76.228 288.458 269.875 595.530 123.681 413.243 

2.2E+10 190.252 413.442 76.908 288.487 275.755 609.371 124.920 422.703 

2.3E+10 190.339 413.451 77.541 288.511 281.522 622.906 126.172 431.958 

2.4E+10 190.414 413.457 78.130 288.532 287.181 636.154 127.435 441.021 

2.5E+10 190.480 413.463 78.678 288.550 292.737 649.132 128.708 449.904 

2.6E+10 190.537 413.469 79.190 288.566 298.195 661.856 129.989 458.615 

2.7E+10 190.588 413.473 79.667 288.580 303.558 674.341 131.276 467.166 

2.8E+10 190.633 413.477 80.113 288.592 308.832 686.599 132.568 475.564 

2.9E+10 190.673 413.481 80.530 288.603 314.021 698.642 133.863 483.817 

3.0E+10 190.710 413.484 80.920 288.613 319.127 710.481 135.161 491.932 
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Table 7. Natural frequencies (Hz) vs. mass density of beam (kg/m3) 

 

𝐸1 = 𝐸2 = 10 𝐺𝑝𝑎. , ℎ1 = ℎ2 = 20 𝑚𝑚, 𝑏1 = 𝑏2 = 40 𝑐𝑚, 

𝐿 = 10 𝑚, 𝜌2 = 3000
𝑘𝑔

𝑚3
, 𝐾𝑒 = 100

𝑘𝑁

𝑚2
 

 

ρ1 (kg/m3) 
Lower Frequency Higher Frequency 

PP CC CF CP PP CC CF CP 

1000.0 189.558 413.363 74.737 288.263 332.586 716.391 166.025 500.532 

1100.0 189.464 413.354 74.271 288.234 317.265 683.068 159.290 477.285 

1200.0 189.361 413.343 73.795 288.203 303.924 654.005 153.494 457.016 

1300.0 189.246 413.331 73.307 288.168 292.177 628.366 148.453 439.140 

1400.0 189.119 413.317 72.809 288.129 281.739 605.528 144.032 423.223 

1500.0 188.976 413.302 72.302 288.084 272.392 585.017 140.124 408.935 

1600.0 188.815 413.285 71.786 288.034 263.967 566.465 136.650 396.019 

1700.0 188.633 413.264 71.262 287.976 256.332 549.578 133.544 384.273 

1800.0 188.426 413.241 70.731 287.909 249.385 534.124 130.755 373.533 

1900.0 188.187 413.213 70.195 287.829 243.041 519.913 128.240 363.671 

2000.0 187.911 413.180 69.654 287.735 237.235 506.789 125.964 354.578 

2100.0 187.590 413.140 69.109 287.621 231.914 494.624 123.898 346.170 

2200.0 187.213 413.090 68.561 287.481 227.039 483.311 122.016 338.376 

2300.0 186.766 413.025 68.012 287.305 222.579 472.761 120.298 331.141 

2400.0 186.235 412.940 67.462 287.078 218.514 462.902 118.725 324.426 

2500.0 185.600 412.823 66.912 286.775 214.832 453.679 117.282 318.207 

2600.0 184.839 412.651 66.363 286.356 211.527 445.054 115.956 312.483 

2700.0 183.932 412.378 65.816 285.755 208.596 437.024 114.734 307.287 

2800.0 182.860 411.888 65.272 284.858 206.038 429.658 113.607 302.700 

2900.0 181.613 410.862 64.730 283.496 203.845 423.241 112.564 298.865 

3000.0 180.194 408.478 64.193 281.496 201.998 418.555 111.598 295.928 

 
 

Figure 9. Higher natural frequencies vs. mass density of 

upper beam 

 

 

4. CONCLUSIONS 

 

An excellent agreement was found between the numerical 

results obtained from the current proposed mathematical 

model and the results of a number of previous literatures. The 

increase in the stiffness of the elastic connected layer leads to 

an increase in the values of the high frequencies of those 

beams and does not affect the values of their lower natural 

frequencies. The greatest influence of changing the thickness 

of one of the upper or lower beams, or the thickness of one of 

them to the other, is for CF beams and the least effect is for CP 

beams. In general, the effect of thickness is small on the 

frequencies compared to the rest of the factors studied in this 

research. The length of the beam affects the higher and lower 

frequencies in high and close proportions for almost all types 

of beams, and the least influence is only on the higher 

frequencies of CF beams. The effect of the change of the 

modulus elasticity is relatively small on the lower natural 

frequencies of all types of beams except for CF beams, and its 

effect is comparatively large on the higher natural frequencies 

of the most types of beams and relatively less on the CF beams. 

The same influence was observed for the variation of the 

modulus of elasticity of the lower or upper beam on the natural 

frequencies of the beams in the same ratios. 

The effect of changing the values of mass density is 

comparatively small on the low natural frequencies of all types 

of beams except for CF beams, and its influence is relatively 

large on the higher natural frequencies of all types of beams 

and comparatively less on the CF beams.  In addition, there is 

no difference between the changes in the mass density of the 

upper or lower layer; both have the same effect and percentage 

change of frequencies. 
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NOMENCLATURE 

 

A1 Cross-sectional area of upper beam 

A2 Cross-sectional area of lower beam 

E1 Modulus of elasticity of upper beam 

E2 Modulus of elasticity of lower beam 

I1 Second moment of area of upper beam 

I2 Second moment of area of upper beam 

K Modulus of elasticity of elastic layer 

L Length of the beams 

𝑊1 Transverse deflection of upper beam 

𝑊1 Transverse deflection of lower beam 

 

Greek symbols 

 

𝜌1 Mass density of upper beam 

𝜌2 Mass density of lower beam 

𝜔1𝑛 
Lower (synchronous) natural frequency for ith 

mode of the two beams 

𝜔2𝑛 
Higher (asynchronous) natural frequency for ith 

mode of the two beams 

Ω1 Dimensionless natural frequency for ith mode 
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