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Magnetic levitation (Maglev) systems are widely employed in the industry especially 

in mechatronics systems for precise positioning and suspension. They are inherently 

unstable having nonlinear models with uncertain parameters and exposed to external 

disturbances. Therefore, high-performance robust control designs are recommended for 

these systems. An Adaptive Variable Structure Controller based on barrier function 

(AVSCbf) is designed for the first time in this work to control the displacement of the ball 

position of a disturbed Maglev system. This approach does not require prior knowledge of 

the disturbance upper bounds in the design procedure. The state space region defined by 

the barrier function is designed to be attractive and invariant. This feature is essential to 

reject disturbances and handle parametric uncertainties. The adaptive law is activated 

when the state trajectory is initiated outside the invariant set defined by the barrier 

function. The gain of the VSC is adapted according to an adaptation law, which considers 

the system input constraints. The control input is constrained to be a bounded positive 

quantity. The adaptive VSC is only applied during the reaching phase. Once the state 

reaches the invariant set, the barrier-function-based VSC is applied to confine the state 

inside it. The resulting overall controller is a chattering-free VSC since the barrier-function 

based VSC is continuous. The steady-state error is limited to a minimal value by only 

specifying the barrier function parameter. Numerical simulations are conducted to show 

the efficiency of the new approach. Three types of VSC controllers for the Maglev system 

are compared. AVSCbf is compared to the performance of adaptive only VSC without the 

barrier function (AVSC) and both are designed in this work. AVSCbf is also compared to 

the classical VSC performance from previous work in the literature. The results of the 

comparison showed the efficiency of the proposed controller. 
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1. INTRODUCTION

The Magnetic levitation (Maglev) system is a well-known 

solution for motion control systems such as in Maglev trains 

and in the high-precision manufacturing facilities. They are 

frictionless electromechanical devices providing energy losses 

elimination that is widely employed in the industry such as 

magnetic levitation trains, wind tunnels and high-precision 

positioning platforms. However, controlling these systems is 

challenging due to their off-control instability and inherent 

nonlinearity. Moreover, Maglev system models have 

parameter uncertainty and maybe exposed to external 

disturbances. 

Many control algorithms have been designed in the 

literature for this system. A comparative study was conducted 

in Yaseen and Abd [1] by designing Linear Quadratic 

Regulator (LQR), a PID controller and a lead compensator. 

The results showed that LQR provided higher stability and 

better performance. Among effective, robust control 

approaches that are successfully employed in this system’s 

literature is the Variable Structure Control theory (VSC) and 

especially Sliding Mode Control (SMC). Zhang et al. [2] used 

the exact feedback linearization method to realize exact 

linearization and decoupling, and SMC based on disturbance 

observer is designed to compensate for uncertainties and 

disturbances. Numerical and experimental results showed the 

effectiveness of the controller with and without an observer. A 

nonlinear disturbance observer and an extended state observer 

for a nonlinear active magnetic bearing system are designed 

by Giap and Huang [3] to compensate for disturbance and 

parameter uncertainty, respectively. A fuzzy SMC was 

designed based on the estimation results of the observers. 

Fuzzy logic was used to find the boundary layer of the sliding 

mode controller.  
Adaptive SMC (ASMC) is designed and applied by Al-

Samarraie et al. [4] for an uncertain Maglev model to stabilize 

a steel ball at the desired position. A sliding mode 

differentiator was employed to estimate the ball velocity. The 

robust controller effectiveness was verified experimentally. 

On the other hand, adaptive terminal SMC based on the 

disturbance compensation technique is proposed by Wang et 

al. [5]. The discontinuous gain is adapted to avoid high gain 

and thus reduce chattering. Fuzzy-PI adaptive sliding control 

(Fuzzy-ASMC) is designed by Mourad and Youcef [6] for the 

Maglev system. Fuzzy-PI is designed to replace the 

discontinuous term to alleviate the chattering of SMC. Al-

Samarraie [7] designed a positive continuous VSC with a 

predetermined steady-state error to sustain the steel ball of a 

Maglev in the presence of an external disturbance and 

parameter uncertainty. The control signal is the squared value 

of the electric current, which is considered in the design as a 

positive input constraint. The attraction area was also 
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determined for the control system, and the numerical results 

confirmed the system's robustness in different simulation 

scenarios. Adaptive robust nonlinear SMC for the vertical 

position of the Maglev system is proposed by Alain [8]. The 

bound of uncertainty was assumed to be known. 

Most previous studies either estimated the perturbation or 

used the knowledge of its upper bounds in the design. 

Recently, a new VSC design strategy has been proposed by 

Obeid et al. [9] for a class of disturbed systems without the 

need for the upper bounds of the perturbations/uncertainties. 

The significant advantage of this approach is that there is no 

overestimation of the control gain; therefore, chattering is 

prevented. The chattering problem in VSC was solved in the 

literature by replacing the discontinuous term of the control 

law by adding a smoothing approximation, like adding a 

boundary layer. Muntashir et al. [10] for instance. Moreover, 

the steady-state error can be bounded by only selecting the 

barrier function parameter. This approach was successfully 

employed in several applications [11-17]. 

In this work, a positive adaptive-barrier-strategy-based 

VSC is designed for the first time to control the displacement 

of a disturbed Maglev system. The system model is nonlinear, 

unstable, uncertain and exposed to unknown disturbances. Its 

performance is compared to two other controllers to show the 

efficiency of the new robust adaptive control strategy. 

AVSCbf is compared to adaptive only VSC (AVSC) without 

the barrier function. It is also compared to the performance of 

the classical VSC designed earlier in Al-Samarraie [7]. The 

latter's design procedure was based on the knowledge of the 

upper bounds of the perturbations. AVSCbf has the following 

main features over the other robust controllers: 

(1) It does not require the upper bounds of the unknown 

perturbation (disturbance/uncertainties) in the design, 

reducing the design complexity. 

(2) Only the barrier function parameter is to be selected 

which identifies the invariant neighborhood of the switching 

manifold. The smaller this parameter is, the smaller the steady-

state error of the controlled variable. 
(3) The proposed VSC is continuous, and chattering is 

prevented since the barrier function is differentiable. 
(4) The gain of this strategy is not overestimated and is used 

to steer the trajectory to a predefined neighborhood of zero. 
This paper is organized as follows: The next section 

describes the Maglev system dynamics and state variables. 

Section 3 provides some necessary definitions. Section 4 

presents the design of the adaptive VSC. AVSCbf is designed 

in Section 5. The simulation results in two different scenarios 

are illustrated in Section 6 that compares VSC, AVSC and 

AVSCbf. Finally, Section 7 presents the conclusion of this 

work. 

 

 

2. MATHEMATICAL MODEL OF MAGNETIC 

LEVITATION 

 

The Maglev system consists of a magnetic suspension 

system whose objective is to vertically control the steel ball 

position by controlling the electromagnet current as illustrated 

in Figure 1. The coil current and the position of the steel ball 

are the main variables that describe the system model 

equations as follows: 

 

�̈� = 𝑔 − 𝜙(𝑥)𝑖2 + 𝑑(𝑡) (1) 

 

where, 

 

𝜙(𝑥) =
𝑄

2𝑀(𝑋∞ + 𝑥)
2
 (2) 

 

where, x[m] is the ball position, 𝑔[𝑚/𝑠2]  is the gravity 

acceleration, i(t)[A] is the coil current and M[kg] is the steel 

ball mass. Q and X∞ are positive constants determined by the 

the coil, magnetic core and steel ball characteristics. 

d(t)[m/s2]represents the unknown external disturbance. Notice 

that the attractive force of the ball is proportional to the square 

of the electric current Fem=ϕ(x)i2 i.e., the system has a 

unidirectional control input u=i2. 

 

 
 

Figure 1. Schematic diagram of maglev system 

 

Maglev system model in Eq. (1) will be represented in terms 

of the error variable (e1=x-xd) in state space as follows: 

 

�̇�1 = 𝑒2 (3) 

 

�̇�2 = 𝑔 − 𝜙(𝑥)𝑢 + 𝑑(𝑡) − �̈�𝑑 (4) 

 

 

3. PRELIMINARIES 

 

Definition 1 [9]: Given a constant ϵ>0, a barrier function is 

defined as an even continuous function 𝑓: 𝑧 ∈] − 𝜖, 𝜖[→
𝑔(𝑧) ∈ [𝑏,∞[ strictly increasing on [0, ϵ]. 

⚫ 𝑙𝑖𝑚|𝑧|→𝜖𝑔(𝑧) = ∞+ 

⚫ g(z) has a unique minimum at zero and g(0)=b≥0. 
Here, there are two different classes of BFs: 

(1) Positive-definite BF (PBF): 𝑔𝑝(𝑧) =
𝜖𝐹

𝜖−|𝑧|
, 𝑔𝑝(0) = 𝐹. 

(2) Positive Semi-definite BF (PSBF): 𝑔𝑝𝑠(𝑧) =
|𝑧|

𝜖−|𝑧|
, 𝑔𝑝𝑠(0) = 0. 

Definition 2 The notation []+ is used to represent the 

following positive Function: 

 

[𝐹]+ = {
1 𝐹 > 0
0 𝐹 ≥ 0

 (5) 

 

 

4. ADAPTIVE VSC DESIGN 

 

The preferred robustness of VSC is faced with two problems: 

the high-amplitude chattering of the discontinuous control and 

the large gain of the control action. One solution to these 

problems is to employ an adaptation law to maintain the VSC 

gain at a minimum sufficient value. The idea is to reduce or 

even eliminate chattering and produce minimum control effort 
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to preserve the sliding manifold's global or semi-global 

attractiveness.  

In this section, an adaptive positive VSC is designed so that 

the discontinuous gain is adapted according to the current 

control constraints of the Maglev system. Adaptive sliding 

mode controllers have been developed in Ref. [18] based on 

two different algorithms for bounded uncertainties and 

perturbations that are unknown. The first adaptive law 

evaluates the unknown uncertainties/perturbation using the 

concept of equivalent control that employs a low-pass filter. 

The second adaptive algorithm does not estimate the bounds 

of perturbations/uncertainties and establishes a real sliding 

mode. In this work, the second approach is used as it requires 

a smaller amount of tuning parameters [19]. 

The sliding manifold for the system Eq. (3) and (4) is 

designed as follows: 

 

𝑠 = 𝑒2 + 𝜆𝑒1 (6) 

 

where, λ is a positive parameter defining the slope of s, 

according to sliding mode control theory, whenever the sliding 

manifold is reached s=0, asymptotic stability for the error 

dynamics is established in (7): e→0 as t→∞.  

The adaptive VSC law u=ua is designed as follows 

considering the maximum allowable control for the Maglev 

system umax: 

 

𝑢 = {
𝑢𝑎 𝑢 ≤ 𝑢𝑚𝑎𝑥
𝑢𝑚𝑎𝑥 𝑢 > 𝑢𝑚𝑎𝑥

 (7a) 

 

𝑢𝑎 =
𝐾(𝑡)

𝜙𝑜(𝑥)
[𝑠𝑖𝑔𝑛(𝑠)]+ (7b) 

 

where, ϕo(x) is the nominal value of ϕ(x) in Eq. (4). K(t) is the 

adaptive discontinuous gain is designed as follows [20]: 

 

𝐾(𝑡) = {

𝜇(𝑡) 0 < 𝜇(𝑡) < 𝑢𝑚𝑎𝑥
𝑢𝑚𝑎𝑥 𝜇(𝑡) ≥ 𝑢𝑚𝑎𝑥

0.25𝑢𝑚𝑎𝑥 𝜇(𝑡) < 0
 (8) 

 

�̇�(𝑡) = 𝜌|𝑠|[𝑠𝑖𝑔𝑛(𝑠)]+𝑠𝑖𝑔𝑛(|𝑠| − 𝜖) (9) 

 

where, ρ,ϵ>0. The adaptive gain, in this case, does not require 

the disturbance bound that was used earlier to design the 

controller in ref. [7]. Thus, it overcomes the design complexity 

and the prior knowledge of the disturbance/uncertainties 

bounds.  

Define δ(t, x) as a function that contains all the unknown 

perturbations including the disturbance d(t) and any 

parametric uncertainties in (4): 

 

𝛿(𝑡, 𝑥) = 𝑔 − 𝛥𝜙(𝑥)𝑢 + 𝑑(𝑡) − �̈�𝑑 + 𝜆𝑒2 (10) 

 

where, Δϕ(x)=ϕ(x)-ϕo(x) is uncertainty in ϕ(x). The 

perturbation function δ(t, x) is assumed unknown but bounded 

as follows: 

 

|𝛿| ≤ 𝛿𝑚𝑎𝑥 (11) 

 

where, δmax is the unknown positive bound. Considering the 

dynamics of the sliding manifold by differentiating Eq. (6): 

 

�̇� = −𝑢 + 𝛿(𝑡, 𝑥) (12) 

 

The adaptive law in (7) and (8) is used to steer s to reach the 

neighborhood of switching manifold Ω={x:|s|≤ϵ}in finite time 

[6, 13, 15]. The adaptive gain of AVSC increases until 

reaching the set Ω then it decreases gradually to some value 

that permits compensating for the disturbance. However, as 

shown in simulation results, when the disturbance grows, the 

state leaves Ω [6, 15]. The gain increases to compensate for 

the disturbance to reach the surface again. In other words, Ω is 

not invariant with AVSC since the state can leave it many 

times whenever a sudden disturbance change occurs, which is 

the main drawback of AVSC that degrades its performance 

since the steady-state error cannot be bounded to a predefined 

value. For this reason, AVSCbf is designed next. The adaptive 

law in (7) and (8) is used to steer the s to reach Ω in finite time 

[9]. Then, the adaptive law switches to the BF that can confine 

s in the predefined set Ω. This set is invariant as given by the 

barrier function defined earlier. The steady- state error, in this 

case, is small and bounded and depends on the choice of 𝜖 that 

defines the size of Ω. 

 

 

5. ADAPTIVE BARRIER-FUNCTION-BASED VSC 

DESIGN 

 

The PSBF is used in this work. AVSCbf is designed as 

follows so that the barrier function-based VSC is activated 

whenever the barrier region is reached i.e. 

 

𝑢 =

{
 
 

 
 

𝑢𝑎 |𝑠| > 0.5𝜖
  

𝜆𝑓
|𝑠|

𝜖 − |𝑠|

[𝑠𝑖𝑔𝑛(𝑠)]+
𝜙𝑜(𝑥)

|𝑠| ≤ 0.5𝜖
}  𝑢 ≤ 𝑢𝑚𝑎𝑥

   
𝑢𝑚𝑎𝑥  𝑢 > 𝑢𝑚𝑎𝑥

 (13) 

 

where, λf>1 is a gain to further reduce the steady-state error 

inside the invariant set as will be shown later. The AVSC (ua) 

in Eq. (13) is active once only to drive the state trajectory to 

the positively invariant set Ω which is done in some finite time 

tbf [8]. Once the trajectory enters Ω, then AVSCbf is on to 

maintain it inside, i.e. 𝑥(𝑡) ∈ 𝛺∀𝑡 ≥ 𝑡𝑏𝑓. 

Remark 1: The discontinuous gain in classical VSC requires 

the knowledge of the bounds of the perturbation/uncertainties, 

while in the proposed approach the bounds are not needed. The 

only variable to be selected is a suitable value for 𝜖 to achieve 

the desired accuracy. 

Remark 2: The proposed VSC in Eq. (13) is continuous in 

Ω. The chattering will be eliminated (or at least attenuated for 

small ϵ). Moreover, the steady-state error as a function of ϵ and 

is smaller for smaller ϵ. 

Remark 3: Choosing the parameter λf>1 is helpful in further 

attenuating the perturbations and strengthening the 

attractiveness of the set Ω by showing ss<0 as follows; using 

Eq. (12): 

 

𝑠�̇� = 𝑠(−𝑢 + 𝛿(𝑡, 𝑥)) (14) 

 

Inside Ω, the BF control law of Eq. (13) is active in this case. 

Thus, employing it in Eq. (14).and taking the upper bounds 

yields: 

 

𝑠�̇� ≤ |𝑠|(|𝛿(𝑡, 𝑥)| − 𝜆𝑓
|𝑠|+

|𝜖 − |𝑠||
) (15) 
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where, s is near 𝜖, 𝜆𝑓
|𝑠|+

|𝜖−|𝑠||
> |𝛿(𝑡, 𝑥)|, thus ss<0 and the set 

Ω is attractive and the state remain in it. 

In the next section, AVSCbf will be compared to AVSC in 

Eq. (7) and Eq. (8). The latter is discontinuous and suffers 

from chattering. The undesired chattering of AVSC will be 

eliminated or attenuated to have a good comparison, which is 

achieved by replacing the sign function in its control law with 

the following Function [7]: 

 

𝑞(𝑠) = {

𝑠

𝜂
0 < 𝑠 ≤ 𝜂

  
[𝑠𝑖𝑔𝑛(𝑠)]+ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (16) 

 

so, that Eq. (7b) becomes 

 

𝑢𝑎 =
𝐾(𝑡)

𝜙𝑜(𝑥)
𝑞(𝑠) (17) 

 

where, η>0 is a design parameter that defines the boundary 

layer around the surface s for this controller. The chattering 

will be reduced by using Function (16). 

 

 

6. SIMULATION RESULTS AND DISCUSSION 

 

The performance of the proposed approach is tested by 

numerical simulations using the Scilab simulation platform. 

The nominal parameters of the Maglev system are as given in 

[5, 12] and presented in Table 1. The controllers’ parameters 

are in Table 2. The VSC designed earlier in [7] will be applied 

here to compare it to AVSC and AVSCbf performances 

designed for the first time in this work. The classical VSC is 

designed in a detailed procedure depending on the 

disturbance's upper bound and Maglev system parameters 

uncertainties. The final VSC control law is as follows [7]: 

 

𝑢 = {

𝐻[𝐻]+[𝑠𝑖𝑔𝑛(𝑠)]+
𝜙𝑜(𝑥)(1 − 𝛼)

𝑢 ≤ 𝑢𝑚𝑎𝑥
  

𝑢𝑚𝑎𝑥 𝑢 > 𝑢𝑚𝑎𝑥

 (18) 

 

where, 𝐻 = 𝑔𝑜 − �̈�𝑑 + 𝜆𝑒2 + 𝑑
+ + 𝑘𝑜,  𝛿𝑚𝑎𝑥 = 𝛼𝜙𝑜(𝑥)𝑢 +

𝑑+and 𝑘𝑜, 𝛼, 𝑑
+ > 0.  

As derived in [7], VSC gain H is obtained through a detailed, 

precise design procedure considering the perturbation's upper 

bounds. Moreover, this classical VSC is discontinuous and 

hence causes the undesired chattering phenomenon. Therefore, 

the designer had to approximate the discontinuous sign 

function using the saturation function in Eq. (16) to avoid 

chattering. Even though the sliding manifold, in this case, is 

no more attractive, it can be shown that the steady-state error 

will be limited positively invariant 𝛺𝑐 = {𝑥: 0 < (𝑥 − 𝑥𝑑) <
𝜂

𝜆
}. 

The simulations are conducted in two scenarios where the 

results of three controllers VSC, AVSC and AVSCbf, are 

compared. 

 

6.1 Scenario I 

 

The desired ball position is fixed here at xd=0.01m, �̇�𝑑 =
0𝑚/𝑠 . The system is exposed to an unknown external 

acceleration d(t)=2sin(4πt)m/s2. The initial condition is taken 

as 𝑥(0) = 0.008𝑚, �̇�(0) = 0.01𝑚/𝑠   which is considered 

one of the worst-case scenarios because s(0)<0 and thus all 

three controllers are temporarily off. The state trajectory is 

initiated below the sliding manifold, i.e. s(0)<0 as shown in 

Figures 2 and 3. This scenario is designed so that the ball is 

initiated vertically above the desired position and depends on 

the gravity force first to hit xd=0.01 which means that the three 

controllers are temporarily off, as shown in Figures 4 and 5. 

Despite that, the surface is attractive for each controller in this 

region. 

 

Table 1. Maglev system parameters 

 
Parameter Q[H.m] M[kg] X∞[m] g[m/s2] 

Nominal Values 0.00145 0.5 0.0085 9.81 
Real (Unknown) 

Values 
0.00165 0.55 0.008 9.81 

 

Table 2. Control parameters 

 
Parameter Value 

umax 25 
λ 25 
ϵ 0.002 

η 0.001 

μ(0) umax 

ρ 8000 

λf 40 

 

 
 

Figure 2. Switching surface s(t) of Scenario I: dotted line for 

VSC, dashed line for AVSC and solid line for AVSCbf 

 

 
 

Figure 3. State trajectory in phase plane of Scenario I: dotted 

line for VSC, dashed line for AVSC and solid line for 

AVSCbf 
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Figure 4. Ball position of Scenario I: dotted line for VSC, 

dashed line for AVSC and solid line for AVSCbf. Dash-dot 

line for desired position 

 

 
 

Figure 5. Control current i(t) of Scenario I: dotted line for 

VSC, dashed line for AVSC and solid line for AVSCbf 

 

In this scenario, the steady-state error of the ball 

displacement using AVSCbf was less than that of AVSC, and 

a better disturbance rejection is yielded, as shown in Figure 4. 

The disturbance influences AVSC performance, and the 

trajectory leaves Ω as it is not an invariant set for AVSC case 

as explained earlier. Thus, the steady-state error increases 

accordingly. On the other hand, AVSCbf and VSC maintain 

robust behavior, as illustrated in Figures 2, 3 and 4. For 

AVSCbf, the state remains inside the invariant set Ω, while 

VSC maintains it inside the invariant set Ωc. The size of each 

invariant set depends mainly on the choice of their parameters: 

ϵ and η/λ respectively. AVSCbf and VSC performances are 

similar, bearing in mind that the latter was carefully designed, 

taking the perturbation bound into account. Moreover, 

AVSCbf does not produce chattering in the invariant 

neighborhood of s. Thus, no low pass filtering nor continuous 

approximation is needed. 

 

6.2 Scenario II 

 

In this case study, the desired ball position is variable 

xd=0.01+0.007sin(2πt). The unknown disturbance considered 

in this case has a sudden amplitude change as follows: 𝑑(𝑡) =
2𝑠𝑖𝑛(4𝜋𝑡) for 0≤t<0.5Tf and d(t)=12+2sin(4πt) for 0.5 Tf≤t≤Tf, 

Tf =1.5sec. is the simulation time. The initial condition is taken 

as in scenario I. The VSC and AVSC controlled systems 

behaviors compared to AVSCbf are shown in Figure 6. The 

ball tracks the desired path until the sudden increase of the 

disturbance where the ball drifts away temporarily under 

AVSC at t≥0.5Tf while the VSC and AVSCbf responses are 

not influenced, and the disturbance is totally rejected. Notice 

that the velocity of the ball suddenly ripples aggressively 

during the disturbance change with AVSC, as illustrated in 

Figure 7. This effect appears in the switching function s(t) 

where in the case of AVSCbf and classical VSC, it does not 

leave the predefined neighborhood around zero of Ω and Ωc 

respectively. Conversely, as shown in Figure 8, the size of the 

neighborhood of zero into which s(t) converges by AVSC 

changes following the disturbance amplitude. The current 

control action 𝑖 = √𝑢 of each controller is presented in Figure 

9. 

 

 
 

Figure 6. Ball position of scenario II: dotted line for VSC, 

dashed line for AVSC and solid line for AVSCbf. Dash-dot 

line for desired position 
 

 
 

Figure 7. Ball velocity of Scenario II: dotted line for VSC, 

dashed line for AVSC and solid line for AVSCbf. Dash-dot 

line for desired velocity 
 

 
 

Figure 8. Sliding surface s(t) of Scenario II: dotted line for 

VSC, dashed line for AVSC and solid line for AVSCbf 
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Figure 9. Control current i(t) of Scenario II: dotted line for 

VSC, dashed line for AVSC and solid line for AVSCbf 

 

 

7. CONCLUSIONS 

 

This paper proposes a barrier strategy for adapting the gain 

of the VSC law to control the position of a Maglev disturbed 

system for the first time. The barrier strategy (AVSCbf) 

performance is compared to adaptive VSC without the barrier 

strategy (AVSC) designed in this work. AVSCbf and AVSC 

control systems are compared to the classical VSC designed in 

previous work from the literature. Two different simulation 

scenarios were taken where the desired ball position is fixed 

and varied. The unknown disturbance in the second scenario 

changed the amplitude unexpectedly. The upper bound of the 

disturbance is unknown and not required throughout the 

design procedure of AVSCbf. The adaptive gain in AVSCbf 

approach is not overestimated and is used to reach the barrier 

function invariant set. AVSCbf guaranteed the convergence of 

the switching variable and confined it inside the predefined 

neighborhood of zero. As a result, the ball robustly followed 

the desired reference and was not affected by the perturbation. 

On the other hand, this neighbourhood was violated using 

AVSC in response to the disturbance amplitude, which 

temporarily let the ball leave the desired reference. It is shown 

that classical VSC performance is comparable to that of 

AVSCbf with the preferred features of the latter. Both keep the 

state inside their own invariant sets. However, VSC is 

designed carefully depending on the knowledge of 

perturbation bounds, unlike AVSCbf, which does not require 

this information. AVSCbf provides accuracy for the output 

variable by choosing one design parameter. Moreover, the 

latter is continuous, a feature not found in AVSC and VSC. 

The proposed control algorithm could be compared to Integral 

SMC based on barrier function as future work. Practical 

implementation of the controlled system is also proposed to 

confirm the simulation results.  
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