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This paper deals with a new non-cooperative distributed controller for linear large-scale 
systems based on designing multiple local Model Predictive Control (MPC) algorithms 
using Laguerre functions to enhance the global performance of the overall closed-loop 
system. In this distributed control scheme, that does not require a coordinator, local MPC 
algorithms might transmit and receive information from other sub-controllers by means of 
the communication network to perform their control decisions independently on each 
other. Thanks to the exchanged information, the sub-controllers have in this way the ability 
to work together in a collaborative manner towards achieving a good overall system 
performance. To decrease drastically the computational load in the small-size optimization 
problem with a short prediction horizon, discrete-time Laguerre functions are used to 
tightly approximate the optimal control sequence. For evaluating the proposed distribution 
control framework, a simulation example is proposed to show the effectiveness of the 
proposed scheme and its applicability for large-scale interconnected systems. The obtained 
simulation results are provided to demonstrate clearly that the proposed Non-Cooperative 
Distributed MPC (NC-DMPC) outperforms Decentralized MPC (De-MPC) and achieves 
performance comparable to centralized MPC with a reduced computing time. The system 
performance of the proposed distributed model predictive control is given. 
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1. INTRODUCTION

In the last few decades there has been an increasing 
importance in the formulation of control strategies for the class 
of large-scale and spatially distributed systems, which consist 
of finite number of (interconnected or independent) 
subsystems and possibly located at different sites. An 
archetype of large-scale systems are transportation systems 
such as power networks, water distribution networks or traffic 
[1, 2], chemical process networks [3-5] and power flow 
systems [6]. These systems, generally called large-scale 
interconnected systems, are composed of many subsystems, in 
such a way that a subsystem is significantly interacting with 
other subsystems through their control inputs and/or states. 
Indeed, due to the growing requirements in terms of global 
performance of the whole closed-loop system, the design of 
high performance controllers is often a nontrivial task. 
Therefore, several control strategies have been considered for 
these wide-plant systems to fulfil certain desired global 
performance.  

Ideally, a centralized MPC control structure, as illustrated 
in Figure 1(a), can be able to provide a high global 
performance of the whole closed-loop system. Intuitively, a 
classical MPC strategy assumes that all available information 
regarding all the sub-systems are centralized. Indeed, MPC 
technique relies on a global dynamical model of the system to 
be controlled, whereby all �V�X�E�V�\�V�W�H�P�V�¶�� �L�Q�W�H�U�D�F�W�L�R�Q�V�� �D�U�H��
considered within the system, and it should be available for 

control design. Moreover, all measurements of the whole 
system must be collected and gathered in a single controller 
(one location) to estimate all the states and compute all the 
sequences of future optimal control values to achieve a better 
performance. Unfortunately, when the number of input 
variables and states in the whole system becomes large, this 
centralized control scheme suffers from potential problems 
associated with heavy computational load of the centralized-
single optimization problem. In addition, except the high risk 
of failure due to their centralized nature, using a single 
centralized agent can result in a high need of resources for 
computation and memory, which may further increase when 
the length of prediction horizon increases. Moreover, the 
amount of required resources also grows with the increasing 
of the system complexity. Accordingly, it demands exchange 
of vast amounts of information and use of high computing 
power. These drawbacks inherent to this control structure 
make the classical MPC approach often viewed by most 
engineers as inappropriate and impractical for control of large-
scale interconnected systems. For this reason, it has 
progressively given way to non-centralized control strategies, 
including a decentralized (cf. Figure 1(b)) and distributed (cf. 
Figure 1(c)) control structures, for their notable decrease in 
system dimensionality using several local MPC controllers [7-
11].  

In the case of either decentralized or distributed MPC 
approach, the key idea is to divide the global optimization 
problem into many independent optimization sub-problems 
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also called local optimization problems. In other words, the 
global system model with large-size order is decomposed into 
several inter-acting subsystems with a small-size orders, 
where a local controller, also known as agent (cf. Figures 1(b) 
and 1(c)) is associated to each subsystem. Here, each 
independent controller is assigned to solve its own local 
optimization problem with local performance indices, relevant 
information and proper constraints. It should be stressed that 
there are some advantages of these control strategies, 
especially the benefit of being adaptable to the system 
structure, with less computational burden and no large 
amounts of information demands [12-16]. The important 
distinction between decentralized and distributed MPC 
architectures consists in the amount and type of information 
exchange by means of the communication network. In 
decentralized MPC strategy, the communication network is 
not used, then no shared information among the sub-
controllers is possible, the sole type of information exchange 
is only between each subsystem and its sub-controller, i.e., 
local output measurements and control inputs. It is noteworthy 
that the design of decentralized control follows either an 
entirely decoupled system [17], or ignores the inter-subsystem 
interactions due to the weakly interacting dynamics [18] or 
models the interaction effects as unknown disturbances to be 
rejected, compensated using a robust MPC formulation [19]. 
Unfortunately, in the case where strong interactions would 
exist between the subsystems, the decentralization of the 
control leads generally to a poor performance of large-scale 
systems since no information about these interactions has been 
exchanged by means of the information network and taken into 
account by the agents in their control decisions. In contrast, the 
central idea of distributed control approach depends on the 
ability of exchanging some information between sub-
controllers. For this architecture, each local controller obtains 
measurements from its subsystem and information from other 
sub-controllers. However, the type of the information 
exchange between agents, realized via inter-agents 
communication network, is the external control inputs and/or 
states from other subsystems. In addition, with shared 
information between the sub-controllers, the objective is to 
make them able to perform a certain degree of collaboration 
with each other with the aim of achieving the best global 
system performance.  

Nowadays, the progress in communication network 
technologies and real-time distributed algorithms have 
allowed control methodologies to employ their potentials to 
handle more complex large-scale systems for dramatically 
enhancing the control performance. For this reason, the 
improvement of the global control performance of the closed-
loop plant-wide systems using network information exchange 
has been recently a field of active research. In order to fulfil 
the overall objective for the whole system, communication 
between the agents over a communication network is needed. 
Thanks to the digital network, the required communication can 
be achieved via a shared information among the agents. From 
a control viewpoint, it is well known that MPC is able to 
handle hard constraints, multivariable-linear, nonlinear, 
uncertain or stochastic process [20, 21]. Moreover, this 
technique profits hugely from both advances in computational 
resources as well as advances in communication technology. 
Usually, in the context of distributed MPC design, different 
distributed MPC schemes have been proposed in the literature. 
Indeed, it allows for independent local controllers able to 
communicate and collaborate with other controllers to achieve 

improved stability, robustness and global closed-loop 
performance in a distributed way.  

From the literature review, various distributed MPC designs 
have been proposed in a number of works [9, 12, 22-24]. A 
study analysis of the control performance of distributed MPC 
has been discussed by Vaccarini et al. [23]. Adopting a 
distributed solution, the global computational burden can be 
reduced without significant deteriorations of the control 
performance and the fault tolerant issues can be addressed [22]. 
The authors propose a feasible-cooperation DMPC scheme, 
where the local MPC problem was resolved considering the 
effect of the local control actions on the performance of the 
remaining subsystems [25, 26]. The proposed distributed MPC 
can be classified into two approaches for collaboration 
between local controllers, namely a cooperation and non-
cooperation MPC algorithms [24]. In cooperation-based 
DMPC algorithms, each local controller minimizes a global 
performance index [27]. However, when each local controller 
minimizes only a local performance index, it is called a non-
cooperative-based DMPC algorithm [12, 28-30]. The control 
objective, in both approaches, is to enhance stability as well as 
optimality and makes the distributed control design very close 
to the centralized one in terms of control performance. The 
correlation between the complexity of non-centralized, i.e., 
decentralized and distributed, MPC schemes and their closed-
loop performance have been analyzed [9]. The results 
conclude that, when the dynamical interaction effects between 
subsystems are weak, for the case of large-scale 
interconnected systems, a fully decentralized strategy can 
offer an acceptable control performance. In the other case, the 
distributed MPC scheme can improve the global performance 
of the whole closed-loop system, only if its communication 
implementation is feasible in practice. For the case of 
uncertain systems, a robust distributed MPC approach was 
proposed for a class of linear systems subject to structured 
time-varying uncertainties [31]. Moreover, for polytopic 
uncertain large-scale systems, a novel robust distributed model 
predictive control method has been presented by Shalmani et 
al. [32]. Viewing strong dynamic coupling effects as bounded 
disturbances between subsystems, the proposed algorithm can 
ensure some degree of stability robustness with respect to 
these disturbances. Since the works [7, 30], distributed MPC 
has become a field of active research, for detailed overviews 
on the current state of the art on this topic we refer to the papers 
[4, 33-36] and the references therein.  

In this paper, we deal with unconstrained distributed MPC 
of large-scale interconnected systems to fulfill a global 
performance thanks to the use of a non-cooperative strategy 
between agents communicating through a digital network. The 
main contribution of the paper is an innovative solution for a 
distributed MPC framework relying on Laguerre functions 
with two key advantages consisting firstly of significantly 
reducing the computational load in the local receding 
optimization problems and secondly of allowing a small 
prediction horizon to closely approximate the predicted 
control trajectory. The rest of the paper is structured as follows. 
Mathematical models of large-scale systems are presented in 
section 2. In section 3, we state our problem to be resolved. 
Section 4 presents the proposed non-cooperation optimization-
based distributed MPC (NC-DMPC). Section 5 summarizes 
some of the main properties of Laguerre functions to be used 
in section 6 to establish the algorithm used in the design of the 
proposed NC-DMPC scheme. An algorithm for non-
cooperative distributed MPC is developed in section 7. A 

556



 

numerical simulation example is presented in section 8 to 
illustrate the effectiveness of the proposed NC-DMPC 
algorithm with Laguerre functions incorporated. Finally, to 
sum up, some concluding remarks are drawn in section 9.  
 
 
2. MATHEMATICAL MODELING OF LARGE -SCALE 
SYSTEMS 
 

Let a discrete-time linear and time-invariant global system 
be given by  
 

𝒮 = {
x(𝑘+1) = 𝐴x(𝑘) + 𝐵u(𝑘)
y(𝑘) = 𝐶x(𝑘)

 (1) 

 
where, x(𝑘) ∈ ℜ𝑛𝑥 is the state of the system, u(𝑘) ∈ ℜ𝑛𝑢 is its 
input and y(𝑘) ∈ ℜ𝑛𝑦 is its output with 𝑘 > 0 an integer index 
denoting discrete time. The whole system matrices are 𝐴 ∈
ℜ𝑛𝑥×𝑛𝑥 , 𝐵 ∈ ℜ𝑛𝑥×𝑛𝑢  and 𝐶 ∈ ℜ𝑛𝑦×𝑛𝑥 . Consider the 
decoupled subplants or decentralized models derived from (1), 
 

𝒮𝑖𝑖 = {
x(𝑘+1)
{𝑖}

= 𝐴𝑖𝑖x(𝑘)
{𝑖}
+ 𝐵𝑖𝑖u(𝑘)

{𝑖}

y(𝑘)
{𝑖}

= 𝐶𝑖𝑖x(𝑘)
{𝑖}
    𝑖 = 1, ℕ

 (2) 

 
where, vectors x(𝑘)

{𝑖}  ∈ ℜ𝑛𝑥𝑖 , u(𝑘)
{𝑖}  ∈ ℜ𝑛𝑢𝑖  are the local states 

and inputs, respectively, of the 𝑖𝑡ℎ  subsystem, while y(𝑘)
{𝑖}  ∈ 

ℜ𝑛𝑦𝑖  is its local output. The dimensions of these local vectors 
are such that  
 

𝑛𝑥 =∑

ℕ

𝑖=1

𝑛𝑥𝑖 , 𝑛𝑢 =∑

ℕ

𝑖=1

𝑛𝑢𝑖 , 𝑛𝑦 =∑

ℕ

𝑖=1

𝑛𝑦𝑖 

 
and the global state vector can be written as x =
col𝑖∈{1,…,ℕ}(x

{𝑖}) , ( 𝜉 = col𝑖∈ {1,…,ℕ}(ξ
{𝑖}) : vector consisting of 

stacked subvectors 𝜉{𝑖}),  the global input as u =
col𝑖∈{1,…,ℕ}(u

{𝑖}) , the global output as y = col𝑖∈{1,…,ℕ}(y
{𝑖}) . 

�1�R�W�H���W�K�D�W���W�K�H���L�Q�W�H�U�F�R�Q�Q�H�F�W�H�G���V�\�V�W�H�P�¶�V���H�O�H�P�H�Q�W�V���D�U�H���J�H�Q�H�U�D�O�O�\��
strongly coupled. Consequently, the decentralized control 
design leads to poor performance requirements or even 
instability because it has not the potential to take into account 
these interactions between the subsystems. 

Throughout this manuscript, we suppose that the global 
system 𝒮 in (1) is composed of ℕ subsystems 𝒮𝑖. Therefore, 
any subsystem 𝒮𝑖 can be interacting with the other subsystems 
𝒮𝑗, 𝑗 ≠ 𝑖 through linear interconnections. Therefore, the local 

dynamics of any subsystem 𝒮𝑖, 𝑖 = 1, ℕ , is described as 
follows:  
 

𝒮𝑖

=

{
  
 

  
 
x(𝑘+1)
{𝑖}

= 𝐴𝑖𝑖x(𝑘)
{𝑖}
+ 𝐵𝑖𝑖u(𝑘)

{𝑖}
+∑

ℕ

𝑗=1

[𝐴𝑖𝑗x(𝑘)
{𝑗}
+ 𝐵𝑖𝑗u(𝑘)

{𝑗}
]

y(𝑘)
{𝑖}

= 𝐶𝑖𝑖x(𝑘)
{𝑖}
+∑

ℕ

𝑗=1

𝐶𝑖𝑗x(𝑘)
{𝑗}
    𝑖 = 1,ℕ, 𝑗 ≠ 𝑖

 
(3) 

 
The interaction vectors are built upon state and input 

interactions produced on the subsystem 𝒮𝑖  by the other 

 

 

subsystems 𝒮𝑗, 𝑗 ≠ 𝑖 are described as follows: 

 

v(𝑘)
{𝑖}

=∑

ℕ

𝑗=1

[𝐴𝑖𝑗x(𝑘)
{𝑗}
+ 𝐵𝑖𝑗u(𝑘)

{𝑗}
]

w(𝑘)
{𝑖}

=∑

ℕ

𝑗=1

𝐶𝑖𝑗x(𝑘)
{𝑗}

 (4) 

 
According to this representation, the matrices 𝐴𝑖𝑗, 𝐵𝑖𝑗 and 

𝐶𝑖𝑗, for 𝑖 ≠ 𝑗, define the dynamic coupling terms between the 
subsystems. 

In general, not all the subsystems might have an influence 
on each other. To account for the influences between the 
subsystems, let us introduce the following definition  
 
Definition 1 A subsystem 𝒮𝑗  interacts dynamically with the 
subsystem 𝒮𝑖 if and only if, at least, one of the matrices 𝐴𝑖𝑗, 
𝐵𝑖𝑗 , 𝐶𝑖𝑗  is non null, i.e., if and only if the states 𝑥{𝑗} and/or 
inputs 𝑢{𝑗} of 𝒮𝑗 affect the dynamics of 𝒮𝑖.  
 

 
(a) Centralized control 

 
(b) Decentralized control 

 
(c) Distributed control 

 
Figure 1. A schematic illustration of the principal control 

system architectures 
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The distributed control architecture dealed with throughout 
the paper has the generic structure given in Figure 1(c). This 
architecture consists of several local controllers, each 
dedicated to a subsystem of the overall plant, which can 
exchange information over a digital communication network. 
This architecture favors a non-cooperation based control 
strategy for large-scale interconnected systems (3)-(4) that 
aims to emulate the performance achievable with a centralized 
control scheme of Figure 1(a).  

In a typical DMPC framework, ℕ subproblems are resolved, 
each one assigned to different sub-controllers 𝒞𝑖 , 𝑖 = 1, ℕ ,
instead of a single centralized problem. 

The following procedure achieved by the set of independent 
local controllers 𝒞𝑖 , at each time instant 𝑘 , is given by: 1)
acquire both local output measurements on 𝒮𝑖 and the received
estimate of the interactions between 𝒮𝑖  and the other
subsystems 𝒮𝑗 , 𝑗 = 1, ℕ , 𝑗 ≠ 𝑖 , transmitted through the
communication network, to predicate the local state variable 
over the prediction horizon, 2) resolve the local optimization 
problem, 3) calculate the first control sample and apply it as a 
control input, 4) share both local optimal control sequence and 
future state prediction information with the other controllers 
through the communication network. 

3. CONTROL PROBLEM FORMULATION

From (3) and (4), the l-step ahead state and output 
predictions at time instant k over a horizon of length Np can be 
deduced easily, and are given as:  

x̂(𝑘+𝑙|𝑘)
{𝑖}

= 𝐴𝑖𝑖
𝑙 x̂(𝑘|𝑘)

{𝑖}
+∑

𝑙

𝑠=1

[𝐴𝑖𝑖
𝑠−1𝐵𝑖𝑖u(𝑘+𝑙−𝑠|𝑘)

{𝑖}

+ 𝐴𝑖𝑖
𝑠−1v̂(𝑘+𝑙−𝑠|𝑘−1)

{𝑖}
] 

(5a) 

�̂�
(𝑘 + 𝑙|𝑘)
{𝑖}

= 𝐶𝑖𝑖�̂�(𝑘 + 𝑙|𝑘)
{𝑖}

+ �̂�
(𝑘 + 𝑙 − 𝑠|𝑘 − 1)
{𝑖}

(5b) 

for  𝑙 = 1, 𝑁𝑝

where, x̂(𝑘+𝑙|𝑘)
{𝑖} ( ŷ(𝑘+𝑙|𝑘)

{𝑖}
)  is the predicted state (output) 

variable at time instant 𝑘 + 𝑙 having current plant information 
x̂(𝑘|𝑘)
{𝑖} (ŷ(𝑘|𝑘)

{𝑖}
) at the current time instant k. 

Suppose that the whole system 𝒮, as illustrated in Figure 
1(c), is composed of ℕ  interacting subsystems 𝒮𝑖 , the 
unconstrained DMPC problem with 𝑁𝑝 and 𝑁𝑢 , respectively, 
the prediction and control horizons, 𝑁𝑝 ≥ 𝑁𝑢, lies in finding 
ℕ separate sub-controllers 𝒞𝑖 so that every 𝒞𝑖 solves, at each 
sampling instant k, an optimization problem with the following 
local quadratic performance index 𝐽𝑖, which penalizes output 
tracking errors and incremental controls Δu{𝑖} [37].

{

𝐽𝑖 =∑

𝑁𝑝

𝑙=1

∥ ŷ(𝑘+𝑙|𝑘)
{𝑖}

− y(𝑘+𝑙|𝑘)
{𝑖}𝑠𝑝

∥𝑄𝑖
2 +∑

𝑁𝑢

𝑙=1

∥ Δu(𝑘+𝑙−1|𝑘)
{𝑖}

∥𝑅𝑖
2

s. t. the local dynamics model (5)

(6) 

where, − ∥ 𝜆 ∥Ψ
2  = 𝜆𝑇Ψ𝜆, for a vector 𝜆 ∈ ℜ𝑛  and a matrix

Ψ ∈ ℜ𝑛×𝑛.
− y(𝑘+𝑙|𝑘)

{𝑖}𝑠𝑝  denotes the predicted values of the desired output at 
the future sampling instant 𝑡 + 𝑙 known at time instant k. 

− Δu(𝑘+𝑙−1|𝑘)
{𝑖}  represents the future control increments (or 

control variations) signal at time instant k. 
− 𝑄𝑖 = 𝑄𝑖

𝑇 ≥ 0 and 𝑅𝑖 = 𝑅𝑖
𝑇 > 0 are real symmetric positive

semi-definite and positive definite weight matrices,
respectively.
− 𝑁𝑝 and 𝑁𝑢 ∈ 𝐍∗ are, respectively, the predictive and control
horizons, used as tuning parameters.

Remark 1 
i) The optimization problem is a quadratic programming

problem and thus convex, thanks to the linearity of model (5), 
and the quadratic performance index Ji with Ri and Qi 
respectively positive definite and semi-definite matrices. 

ii) The design parameters of the optimization problem are
the weighting matrices Qi, Ri and the horizons Np and Nu. 
These parameters might be tuned for achieving the desired 
closed-loop performance and the stability of the system under 
the unconstrained DMPC. 

4. NON-COOPERATION  BASED DISTRIBUTED MPC
PROBLEM

In DMPC formulation, the whole-size optimization problem 
is replaced by ℕ  small sub-problems working together 
towards achieving the best performance of the centralized 
control system. To obtain an explicit solution of the work on 
the nominal distributed optimization problem presented by 
Vaccarini et al. [12, 13], each sub-controller 𝒞𝑖 is composed of
three parts: an optimizer, a state predictor and an interaction 
predictor (see Figure 3). The workflow of each sub-controller 
will be described later in algorithmic form in section 7.  

For the sake of simplicity, the availability of the local states 
x̂(𝑘)
{𝑖}  through measurements is assumed. Furthermore, denoting 

Npi and Nui the prediction and control horizons for the 𝑖𝑡ℎ sub-
controller 𝒞𝑖, the subsequent assumptions are adopted in the
sequel: 

Assumptions 1 
a. the prediction and control horizons are equal, i.e., 𝑁𝑝 =

𝑁𝑝𝑖 = 𝑁𝑝𝑗 and 𝑁𝑢 = 𝑁𝑢𝑖 = 𝑁𝑢𝑗, ∀𝑗, 𝑖 =  1, ℕ, 𝑖 ≠ 𝑗;

b. the sub-controllers 𝒞𝑖 , for 𝑖 =  1, ℕ, act in a synchronous
way; 

c. the information is transmitted (and received) by the local
sub-controllers only once within each sampling time interval 
(non-iterative algorithm);  

d. the digital network introduces one step communication
delay; 

e. the information exchange is not loosed during the
transmission; 

f. all the pairs (𝐴𝑖𝑖 , 𝐵𝑖𝑖) are stabilizable.
At each time instant 𝑘 , neither x(𝑘)

{𝑗} nor u(𝑘)
{𝑗}  for 𝑗 ≠ 𝑖  are 

available by the agent 𝒞𝑖 ; only their predictions, previously
sent by the agents 𝒞𝑗, are known. In fact, due to the unit delay
introduced by the communication network (cf. Assumption 1-
(d) above), the information of the other subsystems is available
only after one sampling time interval. Therefore, the
interaction predictions v̂(𝑘+𝑙−𝑠|𝑘)

{𝑖} and ŵ(𝑘+𝑙−𝑠|𝑘)
{𝑖}  are 

unavailable at current time 𝑘 for the subsystem 𝒮𝑖. Then, theirs
values are available after one sampling time interval with 
respect to the instant they are broadcasted in. For this reason, 
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the predictions v̂(𝑘+𝑙−𝑠|𝑘−1)
{𝑖}  and ŵ(𝑘+𝑙−𝑠|𝑘−1)

{𝑖}  will be used 

instead of v̂(𝑘+𝑙−𝑠|𝑘)
{𝑖}  and ŵ(𝑘+𝑙−𝑠|𝑘)

{𝑖}  in the subsequent problem 
definition. 

For mathematical notation simplicity, the following 
notations are used in this paper: 
 

• diag𝛼[Λ]= block-diag{Λ  Λ …   Λ⏟      
𝛼 𝑡𝑖𝑚𝑒𝑠

};  

• 0𝛼×𝛽(𝐼𝛼×𝛽) is the null (identity) matrix in ℜ𝛼×𝛽;  
• 0𝛼(𝐼𝛼) is the null (identity) matrix in ℜ𝛼×𝛼; 
• 0 is the null matrix or vector with appropriate dimensions.  

 
4.1 State predictor 
 

The l-step ahead predicted state variable of the 𝑖𝑡ℎ 
subsystem, at each time instant k, is given by:  
 

x̂(𝑘+𝑙|𝑘)
{𝑖}

= 𝐴𝑖𝑖
𝑙 x̂(𝑘|𝑘)

{𝑖}
+∑

𝑙

𝑠=1

[𝐴𝑖𝑖
𝑠−1𝐵𝑖𝑖u(𝑘+𝑙−𝑠|𝑘)

{𝑖}

+ 𝐴𝑖𝑖
𝑠−1v̂(𝑘+𝑙−𝑠|𝑘−1)

{𝑖}
] 

(7) 

 
where, v̂(𝑘+𝑙−𝑠|𝑘−1)

{𝑖}  denotes the prediction of v(𝑘+𝑙−𝑠)
{𝑖}  

computed at the past time instant 𝑘 − 1. 
 

4.2 Interaction prediction  
 

The interaction predictions of the 𝑖𝑡ℎ  subsystem, at each 
time instant k, are expressed as follows : 
 
�̂�(𝑘,𝑁𝑝|𝑘−1)
{𝑖}

= �̃�𝑖X̂(𝑘,𝑁𝑝|𝑘−1) + �̃�𝑖Γ̃𝑖U(𝑘−1,𝑁𝑢|𝑘−1)

�̂�(𝑘,𝑁𝑝|𝑘−1)
{𝑖}

= �̃�𝑖X̂(𝑘,𝑁𝑝|𝑘−1)
 (8) 

 
Now, let us assume that: 
 

𝐾𝑖
= [diag𝑝(𝐾𝑖1)… diag𝑝(𝐾𝑖𝑖−1) 0  diag𝑝(𝐾𝑖𝑖+1)… diag𝑝(𝐾𝑖ℕ)] 
 
with 𝐾𝑖 ∈ {�̃�𝑖 , �̃�𝑖 , �̃�𝑖} 
 
4.3 Optimal control sequence of each independent sub-
controller 𝑪𝒊 

 

At each sampling time instant k, when a set of the estimation 
vectors X̂{𝑗}  and U{𝑗}  are received from the other sub-
controllers 𝒞𝑗 , 𝑗 = 1, ℕ , 𝑗 ≠ 𝑖  through the communication 
network (cf. Assumption 1-(d) above), the interaction 
predictor of each independent 𝒞𝑖  uses these information to 
estimate the interaction predictions. Then, these predictions 
are gathered with the local state value x(𝑘)

{𝑖}  and all these 
information to be used by the optimizer in order to find a 
solution of the local optimization problem. Once the sequence 
of future control values ΔU∗{𝑖} = {Δu(𝑘|𝑘)

∗{𝑖}
, … , Δu(𝑘+𝑁𝑢−1|𝑘)

∗{𝑖}
} is 

computed by solving the finite-horizon optimal control 
problem (6), only the first sample of the computed optimal 
control sequence is retained and u(𝑘|𝑘)

∗{𝑖}
= Δu(𝑘|𝑘)

∗{𝑖}
+ u(𝑘−1)

∗{𝑖}  is 
injected as the control action to the subsystem 𝒮𝑖 , while 
neglecting the rest of the elements constituting the computed 
optimal sequence. At the same time, by means (7), the state 

predictor estimates the future state variable. Then, the optimal 
control sequence together with the state predictions over the 
prediction horizon 𝑁𝑝  are broadcasted to the other sub-
controllers 𝒞𝑗 , 𝑗 ≠ 𝑖, through the communication network. At 
the next time instant, 𝑘 + 1, the overall procedure is repeated, 
for each local controller, according to the so-called receding 
horizon principle. 

Usually, the horizons Np and Nu are two important tuning 
parameters of the MPC control design. However, the 
computational burden in MPC is directly depending upon 
theme. Among the MPC formulations, the well known one is 
the classical scheme [38-40]. In this technique, for the 
possibility of high rapid sampling frequency, complex plant 
dynamics and/or high requirement on the global system 
performance, satisfactory approximation of the control 
increment Δu(𝑘)

{𝑖}  could involve a vast number of parameters 
(especially Nu), resulting in poorly numerically conditioned 
solutions with a weighty computational burden [41]. 
Otherwise, a more suitable approach is to use Laguerre 
functions [42, 43] in the design of MPC. 
 
 
5. PARAMETERIZ ATION OF THE CONTROL 
SIGNAL TRA JECTORY  
 

A method of designing an MPC using orthonormal 
functions was proposed with the main advantage of reducing 
the number of tuning parameters used for the description of the 
control signal trajectory. This makes fewer computations com- 
pared to the traditional MPC approach [44-46]. The change in 
the control trajectory was achieved through the adjustment of 
the scaling factor incorporated in the orthonormal function.  

In traditional MPC approach, at each time instant k, the state 
variable vector x(𝑘)  provides the current plant information 
obtained through measurements. In the case of a single input 
system, the optimal control sequence is then defined as follows  

 
ΔU(𝑘,𝑁𝑢|𝑘)

∗ = [Δu(𝑘|𝑘)
∗ , … , Δu(𝑘+𝑁𝑢−2|𝑘)

∗ , Δu(𝑘+𝑁𝑢−1|𝑘)
∗ ]𝑇 

 

The control horizon 𝑁𝑢 indicates the number of parameters 
used to capture the optimal control sequence. Having x(𝑘), the 
future state variables are predicted for Np future samples, Np 
being the prediction horizon, it represents also the length of 
the optimization window. The future predicted state variables 
are then defined by :  
 

X̂(𝑘+1,𝑁𝑝|𝑘) = [x̂(𝑘+1|𝑘)
𝑇 , … , x̂(𝑘+𝑁𝑢|𝑘)

𝑇 , … , x̂(𝑘+𝑁𝑝|𝑘)
𝑇 ]𝑇 

 
According to the receding horizon strategy, the MPC 

technique takes only the first element of the computed optimal 
control sequence and apply it. Additionally, in the next sample 
time period, the new measurements are used to formulate the 
state vector for the computation of the new optimal control 
sequence. 

Laguerre functions can be used to approximate the 
incremental terms contained in Δ𝑈 . The Z-transfer 
representation of the ℓ𝑡ℎ Laguerre function is given by:  

 

Γ𝑚(𝑧) = √1 − 𝑝
2
(𝑧−1 − 𝑝)𝑚−1

(1 − 𝑝𝑧−1)𝑚
, 𝑝 ∈ [0 1[  

 for 𝑚 = 1,𝒩 

(9) 
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where, 𝒩 is the number of terms used in capturing the control 
signal and 𝑝 is the pole location of the discrete-time Laguerre 
network, it is also called the scaling factor. The free parameter 
𝑝  is needed to be tuned by the designer to guarantee the 
stability of the network. It is worth to emphasize that the 
choice of the parameter p is very important to ensure the 
convergence rate of the Laguerre functions. Laguerre 
functions become a set of pulse operators when 𝑝 = 0, which 
makes their using for MPC design equivalent to conventional 
MPC [43].  

From (9), the structure of the discrete-time Laguerre 
network is illustrated in Figure 2.  
 

 
 

Figure 2. Illustration through a bloc-diagram representation 
of a discrete Laguerre network 

 
The set of discrete Laguerre functions is defined for some 

0 ≤ 𝑝 < 1, by taking the inverse Z-transform of Eq. (9), that 
is:  
 

ℓ𝑚(𝑘) = 𝑍
−1{Γ𝑚(𝑧)} 

 
This set of Laguerre functions, at time instant k, can be 

expressed in a vector form as follows :  
 

ℒ(𝑘)  =  [ℓ1(𝑘) ℓ2(𝑘)  … ℓ𝒩(𝑘)]
𝑇 (10) 

 
Finally, based on the relationship (9), the set of discrete 

Laguerre functions can be computed using the following state-
space model:  
 

ℒ(𝑘+1) = 𝒜𝑙ℒ(𝑘) (11) 

 
where, the lower triangular matrix 𝒜𝑙(𝑝, 𝜇)  and the initial 
state ℒ(0) are given by: 
 

𝒜𝑙(𝑝, 𝜇) =

[
 
 
 
 
 
 
𝑝 0 0 0 … 0
𝜇 𝑝 0 0 … 0
−𝑝𝜇 𝜇 𝑝 0 … 0

𝑝2𝜇 −𝑝𝜇 𝜇 𝑝 … 0
⋮ ⋮ ⋮ ⋱ ⋱ ⋮
(−𝑝)𝒩−2𝜇 (−𝑝)𝒩−3𝜇 𝜇 𝑝

]
 
 
 
 
 
 

;

ℒ(0) = √𝜇

[
 
 
 
 
 
1
−𝑝

𝑝2

−𝑝3

⋮
(−𝑝)𝒩−1]

 
 
 
 
 

 

 
with 𝜇 = 1 − 𝑝2 

For instance, in the case of 𝒩 = 5, the matrix 𝒜𝑙 and ℒ(0) 
are given by:  

𝒜𝑙 =

[
 
 
 
 
 
𝑝 0 0 0 0
𝜇 𝑝 0 0 0
−𝑝𝜇 𝜇 𝑝 0 0

𝑝2𝜇 −𝑝𝜇 𝜇 𝑝 0

−𝑝3𝜇 𝑝2𝜇 −𝑝𝜇 𝜇 𝑝
]
 
 
 
 
 

;   ℒ(0) = √𝜇

[
 
 
 
 
1
−𝑝

𝑝2

−𝑝3

𝑝4 ]
 
 
 
 

 

 
Moreover, the Laguerre functions are well known by their 

orthonormality, this property can be expressed by the 
following relationship:  
 

∑

∞

𝑘=0

ℓ𝑓(𝑘)ℓℎ(𝑘) = {
0,  𝑓𝑜𝑟   𝑓 ≠  ℎ 
1,  𝑓𝑜𝑟   𝑓 =  ℎ 

 (12) 

 
The orthonormality will be incorporated into the MPC 

scheme. The main idea in Laguerre functions-based MPC is to 
express each element of the future incremental control 
trajectory by a set of Laguerre functions. 

At each time instant k, the future incremental control 
trajectory vector, i.e., ΔU(𝑘,𝑁𝑢|𝑘) is captured by combining a 
set of Laguerre functions, defined in (10), with a set of the 
following Laguerre coefficients 𝜂(𝑘) obtained from the online 
optimization: 
 

𝜂(𝑘) = [𝑐1(𝑘) 𝑐2(𝑘)  … 𝑐𝒩(𝑘) ]
𝑇 (13) 

 
Then, all the components of the incremental control 

trajectory for a single input system, at the future time l, can be 
accurately approximated by a linear combination of Laguerre 
functions as follows 
 

Δu(𝑘+𝑙|𝑘) ≊ ∑

𝒩

𝑚=1

ℓ𝑚(𝑙)𝑐𝑚(𝑘) (14) 

 
Hence, Eq. (14), for 𝑙 = 0, 𝑁𝑢 − 1 , can be rewritten as 

follows  
 

Δu(𝑘+𝑙|𝑘) = ℒ(𝑙)
𝑇 𝜂(𝑘) (15) 

 
According to (15), we can remark on the one hand, that the 

number of terms 𝒩  with the free parameter p are used 
implicitly to capture the optimal control sequence. 

On the other hand, the coefficient vector 𝜂(𝑘) depends only 
on the initial time k.  

For the sake of simplicity, the expression of 𝜂(𝑘) in (13) is 
abbreviated as follows  
 

𝜂 = [𝑐1 𝑐2  … 𝑐𝒩  ]
𝑇 

 
The control increment in (15) shows that the control horizon 

Nu, which is one of the tuning parameters of the classical MPC 
approach, is omitted from the control design. Consequently, 
with the discrete-time Laguerre functions, an alternative 
formulation of the performance index can be performed by 
using the coefficient vector . 

In a matter of fact, the second term of Eq. (6) can be 
rewritten as :  
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∥ Δu(𝑘+𝑙−1|𝑘) ∥𝑅
2=∑

𝑁𝑢

𝑙=1

Δu(𝑘+𝑙−1|𝑘)
𝑇 𝑅Δu(𝑘+𝑙−1|𝑘)

=∑

𝑁𝑝

𝑙=1

Δu(𝑘+𝑙−1|𝑘)
𝑇 𝑅Δu(𝑘+𝑙−1|𝑘) 

(16) 

 
In order to compute all the predictions over the prediction 

horizon Np, all the incremental controls beyond the control 
horizon Nu are supposed to be zero, that is Δ𝑢(𝑘+𝑙−1|𝑘) = 0 for 
𝑁𝑢 < 𝑙 ≤ 𝑁𝑝. 

Substituting (15) into (16) yields:  
 

∥ Δu(𝑘+𝑙−1|𝑘) ∥𝑅
2=∑

𝑁𝑢

𝑙=1

Δu(𝑘+𝑙−1|𝑘)
𝑇 𝑅Δu(𝑘+𝑙−1|𝑘)

=∑

𝑁𝑝

𝑙=1

Δu(𝑘+𝑙−1|𝑘)
𝑇 𝑅Δu(𝑘+𝑙−1|𝑘) 

(17) 

 
where, 𝑅𝐿= block-diag{𝑅  𝑅 …   𝑅}∈ ℜ𝒩×𝒩. 

This weighting matrix is used as a tuning parameter for the 
desired closed-loop response and Np is chosen sufficiently 
large to satisfy the orthonormal property, that is: 
 

∑

𝑁𝑝

𝑘=0

ℓ𝑓(𝑘)ℓℎ(𝑘) = {
0, for  𝑓 ≠ ℎ

1, for  𝑓 = ℎ
 (18) 

 
Then, the set of coefficients  in (13) is obtained from the 

online optimization. With this design framework, contrary to 
the classical MPC approach, the control horizon Nu is not 
needed. Note that the number of variables involved in the 
control vector according to (17) is just 𝒩 rather than Nu used 
in the original performance index. Typically, 𝒩  is smaller 
than Nu (𝒩 < 𝑁𝑢)  which may reduce the computational 
burden. Indeed, a larger control horizon Nu can lead to higher 
computational burden and memory storage. As it can be seen, 
the parameters in discrete MPC using Laguerre functions, 
namely p and 𝒩 , are used to capture the projected control 
signal and the prediction horizon Np. The value of the Laguerre 
pole location p is included between 0 and 1 ( i.e., 𝑝 ∈ [0,1[) 
whereas the number of terms 𝒩  is selected to satisfy the 
impulse response. In this paper, a Laguerre functions-based 
MPC is used in the proposed distributed MPC scheme.  

Remark 2: The stability and the desired closed-loop 
performance of the unconstrained DMPC based on Laguerre 
functions can be designed and tuned by adjusting the 
weighting matrices Qi, Ri, the horizon Np and the design 
parameters 𝑝𝑖, 𝒩𝑖. 
 
 
6. PROPOSED DISTRIBUTED MPC DESIGN USIN G 
LAGUERRE FUNCTIONS   
 
6.1 The modified interaction prediction  
 

Given the measurements until instant h, the future states, 
inputs and interactions vectors from instant 𝑘 to instant 𝑘 +
𝑙 − 1, with 𝑘 ≥ ℎ, are expressed by 
 

D̂(𝑘,𝑙|ℎ)
{𝑖}

=

[
 
 
 
 d̂(𝑘|ℎ)
{𝑖}

d̂(𝑘+1|ℎ)
{𝑖}

⋮

d̂(𝑘+𝑙−1|ℎ)
{𝑖}

]
 
 
 
 

, D̂(𝑘,𝑙|ℎ) =

[
 
 
 
 D̂(𝑘,𝑙|ℎ)

{1}

D̂(𝑘,𝑙|ℎ)
{2}

⋮

D̂(𝑘,𝑙|ℎ)
{ℕ}

]
 
 
 
 

 

 
where, d̂ ∈ {x̂, ŷ, ŵ, v̂} and D̂ ∈ {X̂, Ŷ, �̂�, �̂�}. 

 

U(𝑘,𝑙|ℎ)
{𝑖}

=

[
 
 
 
 u(𝑘|ℎ)
{𝑖}

u(𝑘+1|ℎ)
{𝑖}

⋮

u(𝑘+𝑙−1|ℎ)
{𝑖}

]
 
 
 
 

, U(𝑘,𝑙|ℎ) =

[
 
 
 
 U(𝑘,𝑙|ℎ)

{1}

U(𝑘,𝑙|ℎ)
{2}

⋮

U(𝑘,𝑙|ℎ)
{ℕ}

]
 
 
 
 

 

 
Furthermore, let us assume that:  

 
�̃�𝑖 = [𝑃𝑖1  … 𝑃𝑖𝑖−1 0  𝑃𝑖𝑖+1  … 𝑃𝑖ℕ] 

 
where, �̃�𝑖 ∈ {�̃�𝑖 , �̃�𝑖 , �̃�𝑖}.  

For 𝑖 = 1, ℕ , the 𝑙 -step ahead predictions of the local 
interaction vectors, at time instant k, can be described as 
follows :  
 

v̂(𝑘+𝑙|𝑘)
{𝑖}

= ∑

ℕ

𝑗=1(𝑗≠𝑖)

[𝐴𝑖𝑗 x̂(𝑘+𝑙|𝑘)
{𝑗}

+ 𝐵𝑖𝑗u(𝑘+𝑙|𝑘)
{𝑗}

]

ŵ(𝑘+𝑙|𝑘)
{𝑖}

= ∑

ℕ

𝑗=1(𝑗≠𝑖)

𝐶𝑖𝑗x̂(𝑘+𝑙|𝑘)
{𝑗}

 (19) 

 
Using the previous definitions, the compact form of the 

interaction prediction vectors can be expressed as follows  
 
�̂�(𝑘,𝑁𝑝|𝑘−1)
{𝑖}

= �̃�𝑖X̂(𝑘,𝑁𝑝|𝑘−1) + �̃�𝑖U(𝑘,𝑁𝑝|𝑘−1)

�̂�(𝑘,𝑁𝑝|𝑘−1)
{𝑖}

= �̃�𝑖X̂(𝑘,𝑁𝑝|𝑘−1)
 (20) 

 
Referring to Assumption 1-(d), the information of the other 

subsystems is available only after one sampling time interval. 
In this case, U(𝑘,𝑁𝑝|𝑘−1)

{𝑖}  and U(𝑘,𝑁𝑝|𝑘−1)  can be expressed in 

terms of U(𝑘−1,𝑁𝑝|𝑘−1)
{𝑖}  and U(𝑘−1,𝑁𝑝|𝑘−1)  respectively as 

follows: 
 

U(𝑘,𝑁𝑝|𝑘−1)
{𝑖}

= Γ̂𝑖U(𝑘−1,𝑁𝑝|𝑘−1)
{𝑖}

 (21a) 

 
U(𝑘,𝑁𝑝|𝑘−1) = Γ̂U(𝑘−1,𝑁𝑝|𝑘−1) (21b) 

 
where,  
 

Γ̂𝑖 = [0𝑁𝑝𝑛𝑢𝑖×𝑛𝑢𝑖

|                    𝐼(𝑁𝑝−1)𝑛𝑢𝑖

|0𝑛𝑢𝑖×(𝑁𝑝−2)𝑛𝑢𝑖
𝐼𝑛𝑢𝑖

] 

 
Γ̂ = 𝑑𝑖𝑎𝑔{Γ̂1, Γ̂2, … , Γ̂ℕ} 

 
By substituting (21a) into (20), the interaction prediction 

vectors can be rewritten as follows: 
 
�̂�(𝑘,𝑁𝑝|𝑘−1)
{𝑖}

= �̃�𝑖X̂(𝑘,𝑁𝑝|𝑘−1) + �̃�𝑖Γ̂𝑖U(𝑘−1,𝑁𝑝|𝑘−1)

�̂�(𝑘,𝑁𝑝|𝑘−1)
{𝑖}

= �̃�𝑖X̂(𝑘,𝑁𝑝|𝑘−1)
 (22) 
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Note that the state predictions and the control actions 
contained in expression (22) are calculated at time instant  
𝑘 − 1 and transmitted through the digital network. 
 
6.2 The modified state predictor  
 

The state variable of the i th subsystem, at sampling instant l, 
can be predicted as follows:  
 

x̂(𝑘+𝑙|𝑘)
{𝑖}

= 𝐴𝑖𝑖
𝑙 x̂(𝑘|𝑘)

{𝑖}
+∑

𝑙

𝑠=1

𝐴𝑖𝑖
𝑠−1[𝐵𝑖𝑖u(𝑘+𝑙−𝑠|𝑘)

{𝑖}

+ 𝐴𝑖𝑖
𝑠−1v̂(𝑘+𝑙−𝑠|𝑘−1)

{𝑖}
] 

(23) 

 
Let us now define, for 𝑙 = 1, 𝑁𝑝  

 

u(𝑘+𝑙−𝑠|𝑘)
{𝑖}

= u(𝑘−1)
{𝑖}

+∑

𝑙

𝑛=𝑠

Δu(𝑘−𝑠−1|𝑘)
{𝑖}

 for 𝑠 = 1, 𝑙 (24) 

 

By means (23) and (24), the states x̂(𝑘+𝑙|𝑘)
{𝑖}  become 

 

x̂(𝑘+𝑙|𝑘)
{𝑖}

= 𝐴𝑖𝑖
𝑙 x̂(𝑘|𝑘)

{𝑖}
+∑

𝑙

𝑠=1

𝐴𝑖𝑖
𝑠−1𝐵𝑖𝑖u(𝑘−1)

{𝑖}

+∑

𝑙

𝑠=1

(∑

𝑙

𝑛=𝑠

𝐴𝑖𝑖
𝑙−𝑛𝐵𝑖𝑖)Δu(𝑘+𝑠−1|𝑘)

{𝑖}

+∑

𝑙

𝑠=1

𝐴𝑖𝑖
𝑠−1v̂(𝑘+𝑙−𝑠|𝑘−1)

{𝑖}
 

(25) 

 

According to the expression (15), the incremental control 
trajectory along the prediction horizon at time instant 𝑘 can be 
calculated as Δu(𝑘+𝑠−1|𝑘)

{𝑖}
= ℒ𝑖(𝑠−1)

𝑇 𝜂𝑖 in Laguerre formulation. 
Then, the 𝑙-step ahead states can be predicted by 

 

x̂(𝑘+𝑙|𝑘)
{𝑖}

= 𝐴𝑖𝑖
𝑙 x̂(𝑘|𝑘)

{𝑖}
+∑

𝑙

𝑠=1

𝐴𝑖𝑖
𝑠−1𝐵𝑖𝑖u(𝑘−1)

{𝑖}

+∑

𝑙

𝑠=1

(∑

𝑙

𝑛=𝑠

𝐴𝑖𝑖
𝑙−𝑛𝐵𝑖𝑖)ℒ𝑖(𝑠−1)

𝑇 𝜂𝑖

+∑

𝑙

𝑠=1

𝐴𝑖𝑖
𝑠−1v̂(𝑘+𝑙−𝑠|𝑘−1)

{𝑖}
 

(26) 

 
where, the predicted control is rewritten as 
 

∑

𝑙

𝑠=1

𝐴𝑖𝑖
𝑠−1𝐵𝑖𝑖u(𝑘 + 𝑙 − 𝑠|𝑘)

{𝑖}
=∑

𝑙

𝑠=1

𝐴𝑖𝑖
𝑠−1𝐵𝑖𝑖u(𝑘−1)

{𝑖}  

+∑

𝑙

𝑠=1

(∑

𝑙

𝑛=𝑠

𝐴𝑖𝑖
𝑙−𝑛𝐵𝑖𝑖)ℒ𝑖(𝑠−1)

𝑇 𝜂𝑖 

 
and the predicted output variable writes 
 

ŷ(𝑘+𝑙|𝑘)
{𝑖}

= 𝐶𝑖𝑖𝐴𝑖𝑖
𝑙 x̂(𝑘|𝑘)

{𝑖}
+ 𝐶𝑖𝑖∑

𝑙

𝑠=1

𝐴𝑖𝑖
𝑠−1𝐵𝑖𝑖u(𝑘−1)

{𝑖}

+ 𝐶𝑖𝑖∑

𝑙

𝑠=1

(∑

𝑙

𝑛=𝑠

𝐴𝑖𝑖
𝑙−𝑛𝐵𝑖𝑖)ℒ𝑖(𝑠−1)

𝑇 𝜂𝑖 

(27) 

+𝐶𝑖𝑖∑

𝑙

𝑠=1

𝐴𝑖𝑖
𝑠−1v̂(𝑘+𝑙−𝑠|𝑘−1)

{𝑖}
+ ŵ(𝑘+𝑙|𝑘−1)

{𝑖}
 

 
The previous expressions of the predicted future state and 

output variables, show that the control signal u(𝑘)
{𝑖}  is not 

needed and it can be replaced by the coefficient vector 𝜂𝑖 . 
However, the main idea is finding the coefficient vector 𝜂𝑖 that 
minimizes the performance index (31). In order to estimate the 
prediction, the following convolution sum 
 

𝒞𝑠𝑖(𝑙) =∑

𝑙

𝑠=1

(∑

𝑙

𝑛=𝑠

𝐴𝑖𝑖
𝑙−𝑛𝐵𝑖𝑖)ℒ𝑖(𝑠−1)

𝑇  (28) 

 
requires to be evolved. For further details see [47]. 

Consequently, the expression (28) evaluated along the 
prediction horizon leads to  
 

{
 

 
𝒞𝑠𝑖(𝑙) = 𝒞𝑠𝑖(𝑙−1) +∑

𝑙

𝑛=1

𝐴𝑖𝑖
ℎ−1𝒞𝑠𝑖(1)(𝒜𝑙𝑖

𝑙−𝑛)𝑇

with 𝒞𝑠𝑖(1) = 𝐵𝑖𝑖ℒ𝑖(0)
𝑇  for 𝑙 = 1,𝑁𝑝

 (29) 

 
where, the matrix 𝒜𝑙𝑖 ∈  ℜ

𝒩𝑖×𝒩𝑖 is depending on the scaling 
factor 𝑝𝑖 and 𝜇𝑖, defined in (11).  
 
Compact form representation:  

 
The compact prediction of (26) has the following form  

 
X̂(𝑘+1,𝑁𝑝|𝑘)
{𝑖}

 

= �̅�𝑖x̂(𝑘|𝑘)
{𝑖}

+𝑀𝑖u(𝑘−1)
{𝑖}

+ 𝑁𝑖𝜂𝑖 + 𝑆�̅��̂�(𝑘,𝑁𝑝|𝑘−1)
{𝑖}

 
(30) 

 
where,  

 

𝑆�̅�
(𝑁𝑝×𝑁𝑝 𝑏𝑙𝑜𝑐𝑘𝑠)

= [

𝐴𝑖𝑖
0 … 0𝑛𝑥𝑖
⋮ ⋱ ⋮

𝐴
𝑖𝑖

𝑁𝑝−1 … 𝐴𝑖𝑖
0

] , �̅�𝑖 = 𝑆�̅� [
𝐴𝑖𝑖
0𝑁𝑝𝑛𝑥𝑖×𝑛𝑥𝑖

] 

 

𝑀𝑖 = 𝑆�̅� [

𝐵𝑖𝑖
𝐵𝑖𝑖
⋮
𝐵𝑖𝑖

] , 𝑁𝑖 =

[
 
 
 
 
 
 
𝒞𝑠𝑖(1)

𝐴𝑖𝑖𝒞𝑠𝑖(1) + 𝒞𝑠𝑖(1)(𝒜𝑙𝑖
1 )𝑇

𝐴𝑖𝑖𝒞𝑠𝑖(2) + 𝒞𝑠𝑖(1)(𝒜𝑙𝑖
2 )𝑇

⋮

𝐴𝑖𝑖𝒞𝑠𝑖(𝑁𝑝−1)+𝒞𝑠𝑖(1)(𝒜𝑙𝑖

𝑁𝑝−1)𝑇

]
 
 
 
 
 
 

 

 

6.3 The modified optimizer  
 

The local performance index in (6) can be rewritten using 
the coefficient vector 𝜂𝑖 as follows: 
 

𝐽𝑖 =∑

𝑁𝑝

𝑙=1

∥ ŷ(𝑘+𝑙|𝑘)
{𝑖}

− y(𝑘+𝑙|𝑘)
{𝑖}𝑠𝑝

∥𝑄𝑖
2 + 𝜂𝑖

𝑇𝑅𝐿𝑖𝜂𝑖 
(31) 

 
The modified performance index shows that the control 

horizon Nu, one of the tuning parameters of MPC for the 
desired closed-loop response, is omitted.  
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Now, the objective is to find, at each time instant, the 
coefficient vector 𝜂𝑖  that minimizes 𝐽𝑖 . By substituting (27) 
into the performance index (31), we obtain 
 

𝐽𝑖

= 𝜂𝑖
𝑇(∑

𝑁𝑝

𝑙=1

Ω𝑖(𝑙)𝑄𝑖Ω𝑖(𝑙)
𝑇
+ 𝑅𝐿𝑖)𝜂𝑖

+ 2𝜂𝑖
𝑇(∑

𝑁𝑝

𝑙=1

Ω𝑖(𝑙)𝑄𝑖Θ𝑖(𝑙)x(𝑙)
{𝑖}
)

+ 2𝜂𝑖
𝑇(∑

𝑁𝑝

𝑙=1

Ω𝑖(𝑙)𝑄𝑖Ψ𝑖(𝑙)u(𝑘−1)
{𝑖}

) + 2𝜂𝑖
𝑇(∑

𝑁𝑝

𝑙=1

Ω𝑖(𝑙)𝑄𝑖Φ𝑖(𝑙))  

+ 2𝜂𝑖
𝑇 (∑

𝑁𝑝

𝑙=1

Ω𝑖(𝑙)𝑄𝑖ŵ(𝑘 + 𝑙 − 𝑠|𝑘 − 1)
{𝑖}

)

− 2𝜂𝑖
𝑇(∑

𝑁𝑝

𝑙=1

Ω𝑖(𝑙)𝑄𝑖y(𝑘+𝑙|𝑘)
{𝑖}𝑠𝑝

) 

(32) 

 
To find the minimum of (32), without constraints, the first 

partial differentiation of the performance index can be used, 
leading to: 

 

𝜕𝐽𝑖
𝜕𝜂𝑖

= 2(∑

𝑁𝑝

𝑙=1

Ω𝑖(𝑙)𝑄𝑖Ω𝑖(𝑙)
𝑇
+ 𝑅𝐿𝑖)𝜂𝑖

+ 2(−∑

𝑁𝑝

𝑙=1

Ω𝑖(𝑙)𝑄𝑖y(𝑘+𝑙|𝑘)
{𝑖}𝑠𝑝

+∑

𝑁𝑝

𝑙=1

Ω𝑖(𝑙)𝑄𝑖Θ𝑖(𝑙)x(𝑙)
{𝑖}

+∑

𝑁𝑝

𝑙=1

Ω𝑖(𝑙)𝑄𝑖Ψ𝑖(𝑙)u(𝑘−1)
{𝑖}

+∑

𝑁𝑝

𝑙=1

Ω𝑖(𝑙)𝑄𝑖Φ𝑖(𝑙)

+∑

𝑁𝑝

𝑙=1

Ω𝑖(𝑙)𝑄𝑖ŵ(𝑘+𝑙−𝑠|𝑘−1)
{𝑖}

) 

(33) 

 
The necessary and sufficient optimality conditions of the 

minimum of 𝐽𝑖 are obtained for:  
 

𝜕𝐽𝑖
𝜕𝜂𝑖

= 0 

 
whereby the optimal parameter vector is computed as follows:  
 

�̂�𝑖 = 𝜂𝑖
𝑜𝑝𝑡

= (∑

𝑁𝑝

𝑙=1

Ω𝑖(𝑙)𝑄𝑖Ω𝑖(𝑙)
𝑇

+ 𝑅𝐿𝑖)
−1 × (∑

𝑁𝑝

𝑙=1

Ω𝑖(𝑙)𝑄𝑖(y(𝑘+𝑙|𝑘)
{𝑖}𝑠𝑝

− Θ𝑖(𝑙)x̂(𝑘|𝑘)
{𝑖}

− Ψ𝑖(𝑙)u(𝑘−1)
{𝑖}

−Φ𝑖(𝑙)

− ŵ(𝑘+𝑙−𝑠|𝑘−1)
{𝑖}

)) 

(34) 

 
with the assumption that the inversion of the Hessian matrix  
 

 

(∑

𝑁𝑝

𝑙=1

Ω𝑖(𝑙)𝑄𝑖Ω𝑖(𝑙)
𝑇
+ 𝑅𝐿𝑖)

−1
 exists. 

 
where,  

Θ𝑖(𝑙) = 𝐶𝑖𝑖𝐴𝑖𝑖
𝑙   ,        Ψ𝑖(𝑙) = 𝐶𝑖𝑖∑

𝑙

𝑠=1

𝐴𝑖𝑖
𝑠−1𝐵𝑖𝑖

Ω𝑖(𝑙)
𝑇

= 𝐶𝑖𝑖Ω𝑖(𝑙)
𝑇   ,      Φ𝑖(𝑙) = 𝐶𝑖𝑖∑

𝑙

𝑠=1

𝐴𝑖𝑖
𝑠−1v̂(𝑘+𝑙−𝑠|𝑘−1)

{𝑖}

 

 
Compact form representation: 

In order to write the compact form of the solution of the 
optimization problem (31), the following notations are 
adopted:  

 

Y
(𝑘, 𝑙|ℎ)
{𝑖}𝑠𝑝

=

[
 
 
 
 
 y(𝑘|ℎ)
{𝑖}𝑠𝑝

y
(𝑘 + 1|ℎ)
{𝑖}𝑠𝑝

⋮

y
(𝑘 + 𝑙 − 1|ℎ)
{𝑖}𝑠𝑝

]
 
 
 
 
 

, 

𝑁𝑖 =

[
 
 
 
 
 
 
𝐶𝑖𝑖𝒞𝑠𝑖(1)

𝐶𝑖𝑖[𝐴𝑖𝑖𝒞𝑠𝑖(1) + 𝒞𝑠𝑖(1)(𝒜𝑙𝑖
1 )𝑇]

𝐶𝑖𝑖[𝐴𝑖𝑖𝒞𝑠𝑖(2) + 𝒞𝑠𝑖(1)(𝒜𝑙𝑖
2 )𝑇]

⋮

𝐶𝑖𝑖[𝐴𝑖𝑖𝒞𝑠𝑖(𝑁𝑝−1) + 𝒞𝑠𝑖(1)(𝒜𝑙𝑖

𝑁𝑝−1)𝑇]

]
 
 
 
 
 
 

 

𝑆𝑖
(𝑁𝑝×𝑁𝑝 𝑏𝑙𝑜𝑐𝑘𝑠)

= [

𝐶𝑖𝑖𝐴𝑖𝑖
0 … 0𝑛𝑥𝑖

⋮ ⋱ ⋮

𝐶𝑖𝑖𝐴𝑖𝑖
𝑁𝑝−1 … 𝐶𝑖𝑖𝐴𝑖𝑖

0

] ,𝑀𝑖 = 𝑆𝑖 [

𝐵𝑖𝑖
𝐵𝑖𝑖
⋮
𝐵𝑖𝑖

], 

𝐿𝑖 = [

(𝐶𝑖𝑖𝐴𝑖𝑖
1 )𝑇

⋮

(𝐶𝑖𝑖𝐴𝑖𝑖
𝑁𝑝)𝑇

], 

𝑇𝑖 =

[
 
 
 
 
 
 
0𝑛𝑦𝑖
⋮

0𝑛𝑦𝑖

|                    𝐼(𝑁𝑝−1)𝑛𝑦𝑖

0𝑛𝑦𝑖
| 0𝑛𝑦𝑖

⋯ 0𝑛𝑦𝑖
I𝑛𝑦𝑖

]
 
 
 
 
 
 

 

 
Now, by means of these notations, it would be easy to write 

the compact form of the predicted output as follows:  
 

Ŷ(𝑘+1,𝑁𝑝|𝑘)
{𝑖}

= 𝐿𝑖x̂(𝑘|𝑘)
{𝑖}

+𝑀𝑖u(𝑘−1)
{𝑖}

+ 𝑁𝑖𝜂𝑖

+ 𝑆𝑖�̂�(𝑘,𝑁𝑝|𝑘−1)
{𝑖}

+ 𝑇𝑖�̂�(𝑘,𝑁𝑝|𝑘−1)
{𝑖}

 
(35) 

 
Consequently, the compact local performance index has the 

following form  
 

𝐽𝑖 =∥ Ŷ(𝑘+1,𝑁𝑝|𝑘)
{𝑖}

− Y(𝑘+1,𝑁𝑝|𝑘)
{𝑖}𝑠𝑝

∥
𝑄𝑖

2 + 𝜂𝑖
𝑇𝑅𝐿𝑖𝜂𝑖 (36) 

 
𝐽𝑖 = [Ŷ(𝑘+1,𝑁𝑝|𝑘)

{𝑖}
− Y(𝑘+1,𝑁𝑝|𝑘)

{𝑖}𝑠𝑝
]𝑇𝑄𝑖[Ŷ(𝑘+1,𝑁𝑝|𝑘)

{𝑖}

− Y(𝑘+1,𝑁𝑝|𝑘)
{𝑖}𝑠𝑝

] + 𝜂𝑖
𝑇𝑅𝐿𝑖𝜂𝑖 

(37) 
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By substituting (35) into (37), the performance index can be 
equivalently rewritten as:  
 

𝐽𝑖 = 𝜂𝑖
𝑇𝐻𝑖𝜂𝑖 − 𝐺𝑖

𝑇𝜂𝑖 (38) 

 
where, the Hessian matrix 𝐻𝑖 has the following form:  
 

𝐻𝑖 = 𝑁𝑖
𝑇𝑄𝑖𝑁𝑖 + 𝑅𝐿𝑖 (39a) 

 
and 
 

𝐺𝑖 = 2𝑁𝑖
𝑇𝑄𝑖[Y(𝑘+1,𝑁𝑝|𝑘)

{𝑖}𝑠𝑝
− 𝐿𝑖x̂(𝑘|𝑘)

{𝑖}
−𝑀𝑖u(𝑘−1)

{𝑖}

−𝑁𝑖𝜂𝑖(𝑘) − 𝑆𝑖�̂�(𝑘,𝑁𝑝|𝑘−1)
{𝑖}

− 𝑇𝑖�̂�(𝑘,𝑁𝑝|𝑘−1)
{𝑖}

] 

(39b) 

 
with 𝑄𝑖 = diag𝑁𝑝[𝑄𝑖]. 

By minimizing the local performance index (38), in the 
absence of constraints, under the assumption that Hessian 
matrix is invertible, the optimal parameter vector can be 
computed as follows: 
 

�̂�𝑖(𝑡) =
1

2
𝐻𝑖
−1𝐺 (40a) 

 
�̂�𝑖(𝑡) = 𝐾𝑖[Y(𝑘+1,𝑁𝑝|𝑘)

{𝑖}𝑠𝑝
− 𝐿𝑖x̂(𝑘|𝑘)

{𝑖}
−𝑀𝑖u(𝑘−1)

{𝑖}

− 𝑆𝑖�̂�(𝑘,𝑁𝑝|𝑘−1)
{𝑖}  

−𝑇𝑖�̂�(𝑘,𝑁𝑝|𝑘−1)
{𝑖}

] 

(40b) 

 
where, 
 

𝐾𝑖 = [𝑁𝑖
𝑇𝑄𝑖𝑁𝑖 + 𝑅𝐿𝑖]

−1𝑁𝑖
𝑇𝑄𝑖 

 
Once the optimal parameter vector �̂�𝑖  is computed, the 

incremental control Δu(𝑘)
{𝑖}  at time instant k is obtained and 

expressed as follows: 
 

Δu(𝑘)
{𝑖}
=

[
 
 
 
 
 ℒ𝑖(0)
1 𝑇

0 … 0

0 ℒ𝑖(0)
2 𝑇

… 0

⋮ ⋮ ⋱ ⋮

0 0 … ℒ
𝑖(0)

𝑛𝑢𝑖
𝑇

]
 
 
 
 
 

�̂�𝑖(𝑘) (41) 

 
Consequently, following to the receding horizon principle, 

the control signal u(𝑘)
{𝑖}
= u(𝑘−1)

{𝑖}
+ Δu(𝑘)

{𝑖}  generated by the sub-
controller 𝒞𝑖 is applied to the physical subsystem 𝒮𝑖. 
 
 
7. ALGORITHM FOR NON -COOPERATIVE DMPC  

 
A non-iterative algorithm for Non-Cooperative Distributed 

MPC (NC-DMPC) with one-step delay communication is 
developed to seek the local control decision for each 
subsystem at each sampling time. Each subsystem resolves its 
own local optimization problem. 

The desired future set-point signal y(𝑘+𝑙|𝑘)
{𝑖}𝑠𝑝  for the 𝑖𝑡ℎsub-

controller 𝒞𝑖 is generated by a local reference generator. It is 
assumed to be either known in advance future reference 
samples (anticipative action, also called preview) or unknown 

in advance reference samples (causal), the algorithm of the 
novel distributed MPC is outlined in the following:  
 

NC-DMPC algorithm for a subsystem i 
1. Set initial parameter values; 
2. Receive, from the other sub-controllers 𝒞𝑗 through the 

communication network, the estimation �̂�(𝑘,𝑁𝑝|𝑘−1)
{𝑗}  and 

𝑈(𝑘,𝑁𝑝|𝑘−1)
{𝑗} , 𝑗 = 1, ℕ; 

3. Combine with the local state sequences �̂�(𝑘,𝑁𝑝|𝑘−1)
{𝑖}  and 

the local control inputs 𝑈(𝑘,𝑁𝑝|𝑘−1)
{𝑖}  to construct 

�̂�(𝑘,𝑁𝑝|𝑘−1) and 𝑈(𝑘,𝑁𝑝|𝑘−1) and compute the estimation 
of the corresponding interaction prediction vectors 
according to (22); 

4. Get the local state measurement x̂(𝑘)
{𝑖}  from the 

subsystem sensors or a designed observer and the 
sequence of set-point signal 𝑌(𝑘+1,𝑁𝑝|𝑘)

{𝑖}𝑠𝑝 ; 

5. Calculate 𝑈(𝑘,𝑁𝑝|𝑘)
∗{𝑖}  and transmit it through the 

communication network to the sub-controllers 𝒞𝑗, 𝑗 =

 1, ℕ; 
6. Calculate the control signal u(𝑘|𝑘)

∗{𝑖}
= 𝛥u(𝑘|𝑘)

∗{𝑖}
+ u(𝑘−1)

∗{𝑖}  
and apply it as a control input to the real subsystem 𝒮𝑖, 
cf. (40) and (41); 

7. Calculate the estimation of the future state sequence of 
𝒮𝑖  over the prediction 𝑁𝑝 and transmit it through the 

communication network to sub-controllers 𝒞𝑗, 𝑗 = 1, ℕ, 
cf. (30); 

8. Increment the sampling time index, i.e.,  
𝑘 ← 𝑘 +  1, when a new state vector x̂(𝑘|𝑘) is available, 
a new optimization problem is solved; and repeat the 
algorithm from step (2). 
 

A block diagram illustrating the internal structure of the 
DMPC controller is depicted in Figure 3. 
 

 
 

Figure 3. A Schematic illustration of the internal structure of 
the i th MPC sub-controller 𝒞𝑖 

 
7.1 Closed-loop stability analysis 
 

In this section, the nominal closed-loop system under the 
proposed state-feedback NC-DMPC control is presented and 
its global stability condition is given. This condition can be 
deduced through the analysis of the whole closed-loop 
�V�\�V�W�H�P�¶�V�� �G�\�Q�D�P�L�F�� �P�D�W�U�L�[���� �+�H�U�H���� �W�K�H�� �W�H�U�P�� �Q�R�P�L�Q�D�O�� �V�\�V�W�H�P��
refers to the case without any external disturbances affecting 
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the process, whose dynamics is perfectly represented by the 
process model. 

Let us now define the global matrices as follows: 
 
ℋ̃ = [ℋ̃1

𝑇 , … , ℋ̃ℕ
𝑇]𝑇 , where  ℋ̃ ∈ {�̃�, �̃�, �̃�}

Γ𝑖
′

(𝑁𝑝 𝑏𝑙𝑜𝑐𝑘𝑠)
= [

𝐼𝑛𝑢𝑖
⋮
𝐼𝑛𝑢𝑖

] , Γ𝑖 = [𝐼𝑛𝑢𝑖
0𝑛𝑢𝑖×(𝑁𝑝−1)𝑛𝑢𝑖

]
 

 
∧= 𝑑𝑖𝑎𝑔{∧1, … ,∧ℕ}, where  ∧∈ {Γ′, Γ, Γ̂} 

 

ΔU(𝑘,𝑁𝑝|𝑘)
{𝑖}

=

[
 
 
 
 
 
 Δu(𝑘|𝑘)

{𝑖}

Δu(𝑘+1|𝑘)
{𝑖}

Δu(𝑘+2|𝑘)
{𝑖}

⋮

Δu(𝑘+𝑁𝑝−1|𝑘)
{𝑖}

]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
ℒ𝑖(0)
𝑇

ℒ𝑖(0)
𝑇 (𝒜𝑙𝑖

1 )𝑇

ℒ𝑖(0)
𝑇 (𝒜𝑙𝑖

2 )𝑇

⋮

ℒ𝑖(0)
𝑇 (𝒜

𝑙𝑖

𝑁𝑝−1)𝑇

]
 
 
 
 
 
 

𝜂𝑖(𝑘) = 𝑍𝑖𝜂𝑖(𝑘) 

𝑍𝑖 =

[
 
 
 
 
 
 
ℒ𝑖(0)
𝑇

ℒ𝑖(0)
𝑇 (𝒜𝑙𝑖

1 )𝑇

ℒ𝑖(0)
𝑇 (𝒜𝑙𝑖

2 )𝑇

⋮

ℒ𝑖(0)
𝑇 (𝒜

𝑙𝑖

𝑁𝑝−1)𝑇

]
 
 
 
 
 
 

, 𝜂(𝑘) = [𝜂1(𝑘)
𝑇 , … , 𝜂ℕ(𝑘)

𝑇 ]𝑇 

ℚ = 𝑑𝑖𝑎𝑔{ℚ1, … , ℚℕ} 
 

where, ℚ ∈ {�̅�, 𝐿, �̅�,𝑀, 𝑆, 𝑇, 𝐾, 𝑁, 𝑍}. 
 
Theorem 1 (Global stability condition for NC-DMPC scheme) 

The closed-loop system including the open-loop system 𝒮 
and the feedback distributed control solution of the NC-DMPC 
problem, composed by a set of independent sub-controllers 
𝒞𝑖 , 𝑖 = 1, … , ℕ, is asymptotically stable if and only if: 
 

|𝜆𝑗{𝐴𝐺}|

= ||𝜆𝑗 {

[
 
 
 
𝐴   0   𝐵Γ 0
Σ   Π   0 Ϝ
(Γ̅𝑍𝜃𝐴 + Γ̅𝑍𝜙Σ)   Γ̅𝑍𝜙Π   (Γ̅𝑍𝜃𝐵Γ + Γ′Γ + Γ̅𝑍𝜌)   Γ̅𝑍𝜙Ϝ
0   0   𝐼𝑁𝑝.𝑛𝑢 0 ]

 
 
 
} ||

< 1 
 

∀𝑗 ∈ {1,2, … , 𝑁𝐺}, 𝑁𝐺 = 𝑛𝑥 + 𝑁𝑝𝑛𝑥 + 2𝑁𝑝𝑛𝑢 (42) 

 

where, 𝐴𝐺  is the dynamic matrix of the global closed-loop 
system and 𝑁𝐺 is its order.  
  

The reader can refer to Appendix for details about the proof 
of this Theorem. 
 
Corrolary  (Global stability condition for Decentralized MPC 
(De-MPC) scheme) 

 
If the network communication is not used, then no shared 

information among the sub-controllers is possible, the global 
closed-loop system is asymptotically stable if and only if: 
 

|𝜆𝑗{𝐴𝐺}| = |𝜆𝑗 {[
𝐴 𝐵Γ
(Γ̅𝑍𝜃𝐴) (Γ̅𝑍𝜃𝐵Γ + Γ′Γ + Γ̅𝑍𝜌)

]}| < 1 

∀𝑗 ∈ {1,2, … , 𝑁𝐺}, 𝑁𝐺 = 𝑛𝑥 + 𝑁𝑝𝑛𝑢 

(43) 

 
where, 𝐴𝐺  is the dynamic matrix of the global closed-loop 
system and 𝑁𝐺 is its order. 

8. NUMERICAL SIMULATION RESULTS AND 

ANALYSIS 

 

In this section, the proposed NC-DMPC algorithm, 
presented in the previous section, is tested and evaluated 
through a simulation example, related to popular case studies 
in the context of distributed control. This numerical simulation 
has been conducted to assess the efficiency of the proposed 
NC-DMPC algorithm. The proposed example for this 
evaluation is presented in the sequel.  
 
8.1 System description and representation 
 

A benchmark example, often used to assess the 
effectiveness of distributed control algorithms is the quadruple 
tank system, described in [48-50], and illustrated in Figure 4. 
The process consists of four interconnected water tanks and 
two pumps. It is a MIMO system with two manipulated 
variables and four state variables. The goal here is to control 
the water levels ℎ1 and ℎ3 in tanks 1 and 3 using the pumps 
command voltages 𝜈1  and 𝜈2 . Let us define x =
[x1 x2 x3 x4]

𝑇 = [ℎ1 ℎ2 ℎ3 ℎ4]
𝑇  and u = [u1 u2]

𝑇 = [𝜈1 𝜈2]
𝑇 

with ℎ𝑖  and 𝜈𝑗  are the liquid levels and the voltages, 
respectively (cf. Figure 4). 

Using mass balances and Bernoulli’s law, we obtain  
 

ℎ̇1(𝑡) = −
𝑎1
𝑆1
√2𝑔ℎ1(𝑡) +

𝑎4
𝑆4
√2𝑔ℎ4(𝑡) +

𝛾1𝑘1
𝑆1

𝜈1

ℎ̇2(𝑡) = −
𝑎2
𝑆2
√2𝑔ℎ2(𝑡) +

(1 − 𝛾1)𝑘1
𝑆2

𝜈1

ℎ̇3(𝑡) = −
𝑎3
𝑆3
√2𝑔ℎ3(𝑡) +

𝑎2
𝑆2
√2𝑔ℎ2(𝑡) +

𝛾2𝑘2
𝑆3

𝜈2

ℎ̇4(𝑡) = −
𝑎4
𝑆4
√2𝑔ℎ4(𝑡) +

(1 − 𝛾2)𝑘2
𝑆4

𝜈2

 (44) 

 

where, 𝑆𝑖 :cross-section of Tank 𝑖 ; 𝑎𝑖 :cross-section of the 

outlet hole of Tank 𝑖 ; ℎ𝑖(𝑡) : water level of Tank 𝑖 ; 𝑔 : 

acceleration of gravity. 
The voltage applied to Pump 𝑖 is 𝜈𝑖  and the corresponding 

flow is 𝑘𝑖𝜈𝑖 . The parameters 𝛾1, 𝛾2 ∈ [0  1]  are determined 

from how the valves are set prior to an experiment. The flow 

to tank 1 is 𝛾1𝑘1𝜈1 and the flow to tank 2 is (1 − 𝛾1)𝑘1𝜈1 and 

similarly for tanks 3 and 4. The measured level signals are 

𝑘𝑐ℎ1 and 𝑘𝑐ℎ3. According to [49], the values of the parameters 

considered in the following simulations are: 

 

𝑆1 = 𝑆4 = 28 [𝑐𝑚
2] , 𝑆2 = 𝑆3 = 32 [𝑐𝑚

2] , 𝑎1 = 𝑎4 =
0.071 [𝑐𝑚2] , 𝑎2 = 𝑎3 = 0.057 [𝑐𝑚

2] , 𝑔 = 981 [𝑐𝑚/𝑠2] , 

𝑘𝑐 = 1 [𝑉/𝑐𝑚]. 
 

The chosen operating points correspond to the following 

parameter values: (ℎ1
0, ℎ3

0) = (12.4,12.7) [𝑐𝑚], (ℎ2
0, ℎ4

0) =
(1.4,1.8) [𝑐𝑚] , (𝜈1, 𝜈2) = (3,3) [𝑉] , (𝑘1, 𝑘2) =
(3.35,3.33) [𝑐𝑚3/𝑉𝑠],(𝛾1, 𝛾2) = (0.7,0.6). 

The linearization of system (44) and its zero-order-hold 

discretization with sampling time 𝑇𝑠  = 0.5 𝑠 , leads to the 

discrete-time state-space representation of the form (1), with 
𝑛𝑥 = 4 and 𝑛𝑢 = 𝑛𝑦 = 2. The obtained model matrices are 
given by the following: 
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𝐴 = [

0.9921 0 0 0.0206
0 0.9835 0 0
0 0.0165 0.9945 0
0 0 0 0.9793

], 

 

𝐵 = [

0.0417 2.47 × 10−3

0.0156 0
1.30 × 10−3 0.0311
0 0.0235

] , 𝐶 = [
1 0 0 0
0 0 1 0

] 

 

 
 

Figure 4. A schematic representation of the quadruple tank 
benchmark 

 
In order to apply the proposed NC-DMPC control scheme, 

the whole system has been partitioned into two interconnected 
subsystems. The first one is composed of tank 1 and tank 2 and 
the second one is composed of tank 3 and tank 4. Therefore, 
the states and inputs are accordingly partitioned as follows:  
 

x{1} = [ℎ1   ℎ2]
𝑇and u{1} = [𝜈1]; 

x{2} = [ℎ3   ℎ4]
𝑇and u{2} = [𝜈2] 

 

Subsystem 1: 
 

According to the form (3), we set the subsystem 𝒮1 with 
matrices {𝐴11, 𝐵11, 𝐶11, 𝐴12, 𝐵12}, where,  
 
 𝐴11 = [

0.9921 0
0 0.9835

] , 𝐵11 = [
0.0417
0.0156

] , 𝐶11 = [1 0] 

 

𝐴12 = [
0 0.0206
0 0

],    𝐵12 = [
2.47 × 10−2

0
] 

 

Subsystem 2: 
 

Also, according to the form (3), we set the subsystem 𝒮2 
with matrices {𝐴22, 𝐵22, 𝐶22, 𝐴21, 𝐵21}, where, 

 

 𝐴22 = [
0.9945 0
0 0.9793

] , 𝐵22 = [
0.0311
0.0235

] , 𝐶22 = [1 0] 

 

𝐴21 = [
0 0.0165
0 0

],    𝐵21 = [
1.30 × 10−3

0
] 

 

The interactions between the subsystems 𝒮1  and 𝒮2  are 
considered through the state and control input variables which 
will allow to test the effectiveness of the proposed DMPC 
structure in presence of both interactions. The proposed 
algorithm, described in section 7, was used to implement the 
two sub-controllers, where the control objective was to keep 
the levels of tank 1 and tank 3 at the reference values, 
expressed by their respective set-point signals, defined as 
follows 
 
�‡��For tank 1 (level 1): 

 
(a) from 0 s to 50 s, the set-point is 0.2 m;  
(b) from 51 s to 150 s, the set-point is 0.6 m;  
 

�‡��For tank 3 (level 3): 
 
(a) from 0 s to 20 s, the set-point is 0 m;  
(b) from 21 s to 80 s, the set-point is 0.4 m;  
(c) from 81 s to 150 s, the set-point is 0.1 m. 

 

 
Figure 5. Evolution versus time of the output responses of Tank 1 and Tank 3, obtained with classical C-MPC and the proposed 

NC-DMPC for the quadruple tank system 
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Figure 6. Evolution versus time of the manipulated variables (control inputs); 𝜈1 and 𝜈2; generated by classical C-MPC and the 
proposed NC-DMPC schemes for the control of the quadruple tank system 

 
Figure 7. Evolution versus time of the output responses of Tank 1 and Tank 3, obtained with decentralized MPC and the 

proposed NC-DMPC for the quadruple tank system 

 
 

Figure 8. Evolution versus time of the manipulated variables (control inputs); 𝜈1 and 𝜈2; generated by decentralized MPC and the 
proposed NC-DMPC schemes for the control of the quadruple tank system 
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Table 1. Summary of the control design parameters of the different MPC controllers 
 

Controllers Nu Np Q R 𝓝 p Ts Ns 
Classical-MPC (C-MPC) 5 10 1 × 𝐼2 0.02 × 𝐼2 - - 0.5 300 

NC-DMPC & De-MPC: 𝒞1 - 10 1 × 𝐼2 0.02 × 𝐼2 𝒩1 = 3 𝑝1=0.5 0.5 300 
NC-DMPC & De-MPC: 𝒞2 - 10 1 × 𝐼2 0.02 × 𝐼2 𝒩2 = 3 𝑝2=0.5 0.5 300 

 
Note that the design parameters Np, Ri, Qi, pi and 𝒩𝑖, for 

i=1,2 needed for the distributed optimization problem, have 
been manually (i.e., heuristically) tuned to obtain the best 
performance. To this end, several tests were performed to 
determine the most suitable values for the proposed case. 
Besides, the optimal values can be found using a multi-
objective optimization procedure or one of the metaheuristic 
methods (such as swarm optimization technique), but this is 
out of the scope of this study. Usually, a trade-off between the 
two terms of the performance index should be ensured, 
depending on each particular circumstance (response rapidity 
or lower energy). 

In order to make a fair comparison, the closed-loop 
performance of the proposed controller are compared with a 
Laguerre functions-based Decentralized MPC (DeMPC), 
where the network communication is omitted (Figure 1(b)), 
and a classical centralized MPC (C-MPC). The simulation 
parameter settings are summarized in Table 1. 
where, Nu denotes the control horizon, it is selected by 
considering a good trade-off between tracking performance 
and the amount of the control effort; Np is the prediction 
horizon, it is assumed sufficiently large, to ensure the closed-
loop stability. Q and R are two constant matrices serving as 
weights of the tracking errors and control actions, respectively; 
pi is the scaling factor, it is a tuning parameter for the closed-
loop response speed; 𝒩𝑖 is the number of Laguerre functions 
representing the degrees of freedom in describing the control 
trajectory; Ts is the sampling time; Ns is the total number of 
samples of the whole simulation. 

For this example, the obtained simulation results are 
depicted in Figures 5, 6, 7 and 8, including the system outputs 
and the generated control signals. The obtained simulation 
results, demonstrate that the proposed distributed control 
structure has a good control performance, since the quadruple 
tank system under the proposed DMPC strategy has the ability 
to track the set-point signals; with smooth control signals. 
Although, the control signals in this control strategy are 
obtained separately, the performance is still satisfactory due to 
the cooperative manner of the sub-controllers by using the 
local information and the information shared by the other 
agents via the communication network. 

Furthermore, as depicted in Figures 5 and 6, the C-MPC has 
a similar performance as the proposed NC-DMPC, and both 
outperform the DeMPC strategy, as shown in Figures 7 and 8. 
This conclusion is not only valid for this four tank plant, but 
also for other plants, since the DeMPC strategies does not take 
the interactions into account, which leads to some degradation 
in performance. It is noteworthy to mention that the main 
drawback of decentralized MPC is that local MPC controllers 
would fail to fully compensate for the process interactions 
beyond the confines of the local subsystems. Such limitation 
can degrade the controller performance and possibly, leads to 
stability problems of the overall system. 

The computational burden of the control schemes depends 
greatly on the number of inequality constraints and the number 
of control variables [51]. From this point of view, in the 
unconstrained centralized MPC, the optimization problem 

increases significantly with the total number u{𝑖}  of system 
inputs as well as the length of the control horizon Nu, since a 
large value of the control horizon implies more control 
variables to be computed. In the proposed NC-DMPC strategy, 
the local control actions are parameterized by Laguerre 
functions. The total number of Laguerre functions, namely 𝒩, 
used in capturing the future control trajectory vector is 
generally less than Nu. Thereby, each sub-controller needs 
smaller control variables to be computed, compared to the 
classical centralized control scheme. 

Incidentally, by decomposing the problem into smaller 
subproblems and solving them in parallel, we can handle a 
much larger number of units. Furthermore, compared to the 
classical centralized algorithms, decomposition methods 
require less memory storage, and are mainly much faster. To 
sum up, the computational burden of the distributed 
implementation is much less than the centralized structure, 
especially for large-scale systems including a large number of 
subsystems. 
 
8.2 Performance analysis discussion 
 

The performance analysis of the control strategies can be 
described in terms of output tracking errors and control efforts. 
Therefore, a more accurate way to obtain a criterion reflecting 
the performance and differences between the different MPC 
controllers is to evaluate the following unified performance 
index, 

 

𝐽𝑖(𝑘) =∑

𝑁𝑠

𝑘=1

∥ ŷ(𝑘)
{𝑖}
− y(𝑘)

{𝑖}𝑠𝑝
∥𝑄𝑖
2 +∑

𝑁𝑠

𝑘=1

∥ Δu(𝑘)
{𝑖}
∥𝑅𝑖
2

=∑

𝑁𝑠

𝑘=1

𝐽𝑒𝑖(𝑘) +∑

𝑁𝑠

𝑘=1

𝐽𝑢𝑖(𝑘) for 𝑖 = 1,2.

 (45) 

 
where, Ns represents the total number of samples of the whole 
simulation, y{𝑖}𝑠𝑝  denotes the set-point (reference) to be 
tracked and y{𝑖}  is the actual simulated output. The MPC 
performance index in (45) is formulated with two performance 
indices, namely the tracking error and the control effort. The 
performance index corresponding to the tracking error 𝐽𝑒𝑖  is 
formulated using the squared difference between the set-point 
y𝑠𝑝 and the predicted plant behavior ŷ. Similar to the tracking 
error term, the performance index for the control effort 𝐽𝑢𝑖 is 
also formulated as in (45). The control effort is determined by 
the squared difference between the present and past control 
actions. 

It is worth to recall that one key concept in centralized 
control is that all the individual performance indices Ji are 
gathered in a single cost function, leading to: 
 

𝐽(𝑘)
𝑐𝑜𝑠𝑡 = ∑

ℕ=2

𝑖=1

𝐽𝑖(𝑘) = ∑

ℕ=2

𝑖=1

(∑

𝑁𝑠

𝑘=1

𝐽𝑒𝑖(𝑘) +∑

𝑁𝑠

𝑘=1

𝐽𝑢𝑖(𝑘)) (46a) 
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= ∑

ℕ=2

𝑖=1

∑

𝑁𝑠

𝑘=1

𝐽𝑒𝑖(𝑘) +∑

ℕ=2

𝑖=1

∑

𝑁𝑠

𝑘=1

𝐽𝑢𝑖(𝑘) (46b) 

 
𝐽(𝑘)
𝑐𝑜𝑠𝑡 = 𝐽𝑒(𝑘) + 𝐽𝑢(𝑘) (46c) 

 
The evaluation results are summarized in Table 2. 

 
Table 2. Comparison of the costs obtained with centralized 

MPC, distributed MPC and decentralized MPC 
 

Controllers 𝑱𝒆 𝑱𝒖 𝑱𝐜𝐨𝐬𝐭 
C-MPC 1.0307 0.3174 1.3481 

The proposed distributed MPC 1.0452 0.3682 1.4133 
De-MPC 1.2005 0.3234 1.5239 

 

Table 2 shows the results obtained through the evaluation 
of the performance index (46) for the three MPC controllers. 
As it can be seen from this table, the same previous conclusion 
holds according to the obtained numerical values. It shows that 
decentralized MPC has the largest value of the global 
performance index 𝐽𝑐𝑜𝑠𝑡 , whereas the proposed distributed 
NC-MPC has a performance close to the centralized scheme. 
Taking into account each term of the performance index, the 
proposed DMPC has almost the same performance compared 
to the C-MPC controller; and both have a better performance 
related to the tracking error, but the De-MPC and C-MPC 
controllers have a slightly smaller control efforts compared to 
the proposed DMPC. Using the proposed NC-DMPC scheme, 
the tank levels track the set-point signals better than with the 
controller De-MPC. This is because the distributed MPC 
controller provides more control effort than decentralized 
MPC scheme. The obtained results of the above table, with 
Figures 7 and 8, corroborate this conclusion. 
 
 
9. CONCLUSION AND FUTURE WORKS  

 
In this paper, a novel distributed MPC approach for large-

scale interconnected systems has been derived, leading to a 
non-cooperation based DMPC (NC-DMPC) algorithm. The 
main feature of the proposed algorithm lies in the use of 
orthonormal functions, viz. Laguerre functions, to parametrize 
the system trajectories, thereby reducing considerably the 
computational burden of the MPC optimization process under 
a one-step communication network delay and reducing 
significantly the set of exchanged information over the 
network. Moreover, the stability of the resulting plant-wide 
closed-loop system was analyzed and the performance of the 
proposed NC-DMPC algorithm was discussed. The approach 
methodology has been demonstrated on an example for a set-
point tracking objective. Through the conducted numerical 
simulations, the obtained results show clearly that the 
proposed NC-DMPC scheme achieves similar performance as 
a centralized model predictive scheme while outperforming 
the decentralized MPC strategy. Future works may 
concentrate on extending the proposed methodology in the 
constrained case. Furthermore, the robustness issues with 
regards to model uncertainties and external disturbances may 
be investigated. 

In this method the following important features can be 
emphasized: 

�‡�� �7�K�H�� �J�O�R�E�D�O�� �R�S�W�L�P�L�]�D�W�L�R�Q�� �S�U�R�E�O�H�P�� �Z�D�V�� �W�U�D�Q�V�I�R�U�P�H�G�� �L�Q�W�R��
many independent local optimization problems, taking into 

account the shared information about the interaction effects of 
the other subsystems in the local MPC decision.  

�‡���$���Q�X�P�E�H�U���R�I���G�Lstributed control algorithms based on the 
DMPC approach has been presented. They are designed for 
large and interconnected systems, described in state-space 
form and decomposable in several non-overlapping 
subsystems.  

�‡���7�K�H���U�H�G�X�F�W�L�R�Q���R�I���W�K�H���F�R�P�P�X�Q�L�F�D�W�L�R�Q��among subsystems.  
�‡�� �$�� �G�H�F�U�H�D�V�H�� �L�Q�� �W�K�H�� �F�R�P�S�X�W�D�W�L�R�Q�D�O�� �E�X�U�G�H�Q�� �D�V�V�R�F�L�D�W�H�G�� �Z�L�W�K��

the solution of the local MPC problem. 
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APPENDIX 
 
Proof of Theorem 1 
 

Merging the process equation, the global prediction 
equation and the global optimal sequence, the closed-loop 
state-space model for the distributed control framework is 
obtained:  
 

x(𝑘+1) = 𝐴x(𝑘) + 𝐵u(𝑘) (A1a) 

 
x(𝑘) = 𝐴x(𝑘−1) + 𝐵u(𝑘−1)

= 𝐴x(𝑘−1) + 𝐵ΓU(𝑘−1,𝑁𝑝|𝑘−1)𝜂(𝑘)

= 𝐾[Y
(𝑘 + 1,𝑁𝑝|𝑘)
𝑠𝑝

− 𝐿x̂(𝑘)

−𝑀u(𝑘−1) − 𝑆�̂�(𝑘, 𝑁𝑝|𝑘 − 1)

−  𝑇�̂�(𝑘,𝑁𝑝|𝑘−1)] 

(A1b) 

 
𝜂(𝑘) = 𝐾[Y(𝑘 + 1,𝑁𝑝|𝑘)

𝑠𝑝
− 𝐿x̂(𝑘)

−𝑀ΓU
(𝑘 − 1,𝑁𝑝|𝑘 − 1)

− 𝑆�̂�(𝑘,𝑁𝑝|𝑘−1) − 𝑇�̂�(𝑘,𝑁𝑝|𝑘−1)
] 

(A1c) 

 
Therefore, the global interaction predictions can be 

expressed as follows:  
 
�̂�(𝑘,𝑁𝑝|𝑘−1) = �̃�X̂(𝑘,𝑁𝑝|𝑘−1) + �̃�Γ̂U(𝑘−1,𝑁𝑝|𝑘−1) (A1d) 

 
�̂�(𝑘,𝑁𝑝|𝑘−1) = �̃��̂�(𝑘,𝑁𝑝|𝑘−1) (A1e) 

 
𝜂(𝑘) = 𝜃x(𝑘) + 𝜙X̂(𝑘,𝑁𝑝|𝑘−1) + 𝜌U(𝑘−1,𝑁𝑝|𝑘−1)

+ 𝐾Y(𝑘+1,𝑁𝑝|𝑘)
𝑠𝑝

 
(A1f) 

 
with  𝜃 = −𝐾𝐿,   𝜌 = −𝐾(𝑀Γ + 𝑆�̃�Γ̂),   

 𝜙 = −𝐾(𝑆�̃� + 𝑇�̃�) 
 

X̂(𝑘+1,𝑁𝑝|𝑘) = �̅�x̂(𝑘) +𝑀u(𝑘−1) + 𝑁𝜂(𝑘)

+ 𝑆̅�̂�(𝑘,𝑁𝑝|𝑘−1) 
(A1g) 

 
X̂(𝑘+1,𝑁𝑝|𝑘) = �̅�x̂(𝑘) +𝑀ΓU(𝑘−1,𝑁𝑝|𝑘−1) + 𝑁𝜂(𝑘)

+ 𝑆̅�̂�(𝑘,𝑁𝑝|𝑘−1) 
(A1h) 

 
X̂(𝑘+1,𝑁𝑝|𝑘) = �̅�x̂(𝑘) + 𝑆

̅�̃�X̂(𝑘,𝑁𝑝|𝑘−1)

+ ΥU(𝑘−1,𝑁𝑝|𝑘−1) +𝑁𝜂(𝑘) 
(A1i) 

 
X̂(𝑘,𝑁𝑝|𝑘−1) = Σx̂(𝑘−1) + ΠX̂(𝑘−1,𝑝|𝑘−2)

+ ϜU(𝑘−2,𝑁𝑝|𝑘−2)

+ 𝑁 𝐾Y(𝑘,𝑁𝑝|𝑘−1)
𝑠𝑝

 

(A1j) 

 
with  Σ = 𝐿 + 𝑁𝜃,   Π = 𝑆�̃� + 𝑁𝜙,   Ϝ = Υ + 𝑁𝜌, 

 
Υ = 𝑀Γ + 𝑆�̃�Γ̂ (A1k) 

 
U(𝑘,𝑁𝑝|𝑘) = Γ′ΓU(𝑘−1,𝑁𝑝|𝑘−1) + Γ̅ΔU(𝑘,𝑁𝑝|𝑘) (A1l) 

 
U(𝑘,𝑁𝑝|𝑘) = Γ′ΓU(𝑘−1,𝑁𝑝|𝑘−1) + Γ̅𝑍𝜂(𝑘) (A1m) 

 
U(𝑘,𝑁𝑝|𝑘) = Γ̅𝑍𝜃x(𝑘) + Γ̅𝑍𝜙X̂(𝑘,𝑁𝑝|𝑘−1) + (Γ′Γ

+ Γ̅𝑍𝜌)U(𝑘−1,𝑁𝑝|𝑘−1)

+ Γ̅𝑍𝐾Y(𝑘+1,𝑁𝑝|𝑘)
𝑠𝑝

 

(A1n) 

 
U(𝑘,𝑁𝑝|𝑘) = [Γ̅𝑍𝜃𝐴 + Γ̅𝑍𝜙Σ]x(𝑘−1)

+ Γ̅𝑍𝜙ΠX̂(𝑘−1,𝑝|𝑘−2) 
(A1o) 
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 +(Γ̅𝑍𝜃𝐵Γ + Γ′Γ + Γ̅𝑍𝜌)U(𝑘−1,𝑁𝑝|𝑘−1) +

Γ̅𝑍𝜙ϜU(𝑘−2,𝑁𝑝|𝑘−2) + 𝛽Y(𝑘,𝑁𝑝|𝑘−1)
𝑠𝑝

 

 
with  𝛽 = Γ̅𝑍(𝜙𝑁 𝐾 + 𝐾 Γ̂) 

 
y(𝑘) = 𝐶x(𝑘) (A1p) 

 
Let us now define the augmented state vector as follows:  

 
X𝐺(𝑘) = [x(𝑘)

𝑇 , X̂(𝑘,𝑁𝑝|𝑘−1)
𝑇 , U(𝑘,𝑁𝑝|𝑘)

𝑇 , U(𝑘−1,𝑁𝑝|𝑘−1)
𝑇 ]𝑇 

 
The state-space model of the whole closed-loop system is 

then given by:  
 

𝑆𝐺 = {
X𝐺(𝑘) = 𝐴𝐺X𝐺(𝑘−1) + 𝐵𝐺Y(𝑘,𝑁𝑝|𝑘−1)

𝑠𝑝

y(𝑘) = 𝐶𝐺X𝐺(𝑘)
 (A1q) 

 
where,  
 

𝐴𝐺 =

[
 
 
 
𝐴   0   𝐵Γ   0
Σ   Π   0   Ϝ
(Γ̅𝑍𝜃𝐴 + Γ̅𝑍𝜙Σ)   Γ̅𝑍𝜙Π   (Γ̅𝑍𝜃𝐵Γ + Γ′Γ + Γ̅𝑍𝜌)   Γ̅𝑍𝜙Ϝ
0   0   𝐼𝑁𝑝.𝑛𝑢   0 ]

 
 
 
, 

  

𝐵𝐺 = [

0
0
𝛽
0

] , 𝐶𝐺 = [𝐼 0 0 0] 

 
Consequently, the stability of the overall system is 

determined by the eigenvalues of the dynamic matrix 𝐴𝐺. 
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