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This paper deals with a newon-cooperative distributed controller for linear laigeale
systems based on designing multiple local Model Predictive Control (MPC) algor
using Laguerre functions to enhance the global performance of the overall-icloge
system. In this distrided control scheme, that does not require a coordinator, local
algorithms might transmit and receive information from othercarrollers by means o
the communication network to perform their control decisions independently on
other. Thanks tthe exchanged information, the sadntrollers have in this way the abilit
to work together in a collaborative manner towards achieving a good overall s

strategy optimization problem . ' ! . e
ayop P performance. To decrease drastically the computational load in thessneadiptimization

problem with a short prediction horizon, discréime Laguerre functions are used

tightly approximate the optimal control sequence. For evaluating the proposed d@stri
control framework, asimuation example igproposed to show the effectiveness of -
proposed scheme and its applicability for lasgale interconnected systems. The obtai
simulation results are provided to demonstrate clearly that the proposedddperative
Distributed MPC (NGDMPC) outperforms Decentralized MPC @MPC) and achieve
performance comparable to centralized MPC with a reduced computing time. The ¢
performance of the proposed distributed model predictive control is.given

1. INTRODUCTION control design. Moreover, all measurements of the whole
system must be collected and gathered in a single controller
In the last few decades there has been an increasingone location) to estimate all the states and faten all the
importance in the formulation of control strategies for the class sequences of future optimal control values to achieve a better
of largescale and spatially distributed systems, which consist performance. Unfortunately, when the number of input
of finite number of (interconnected or independent) variables and states in the whole system becomes large, this
subsystems and possibly located at different sites. An centralized control scheme suffers from potential problems
archetype of largscale systems are transportation systems associted with heavy computational load of the centralized
such as power networks, watlistribution networks or traffic ~ single optimization problem. In addition, except the high risk
[1, 2], chemical process networks-$3 and power flow of failure due to their centralized nature, using a single
systems [6]. These systems, generally called {aogde centralized agent can result in a high need of resources for
interconnected systems, are composed of many subsystems, inomputation and memy, which may further increase when
such a way that a subsystem is significantlyraxténg with the length of prediction horizon increases. Moreover, the
other subsystems through their control inputs and/or states.amount of required resources also grows with the increasing
Indeed, due to the growing requirements in terms of global of the system complexity. Accordingly, it demands exchange
performance of the whole closéabp system, the design of of vast amounts of information and use @§th computing
high performance controllers is often a nontrivial task. power. These drawbacks inherent to this control structure
Therefae, several control strategies have been considered formake the classical MPC approach often viewed by most
these wideplant systems to fulfil certain desired global engineers as inappropriate and impractical for control oflarge
performance. scale interconnected systems. For this reason, it has
Ideally, a centralized MPC control structure, as illustrated progressivelygiven way to norcentralized control strategies,
in Figure 1(a), can be able to provide a high global including a decentralized (cf. Figudgb)) and distributed (cf.
performance othe whole closedoop system. Intuitively, a  Figure 1(c)) control structures, for their notable decrease in
classical MPC strategy assumes that all available informationsystem dimensionality using several local MPC controllers [7
regarding all the subystems are centralized. Indeed, MPC 11].
technique relies on a global dynamical model of the system to In the caseof either decentralized or distributed MPC
be controlled, whereby allVXEV\VWHPVY L QW Hdpidawhl tReQkey iBed ks to divide the global optimization
considered within the system, and it should be available for problem into many independent optimization gubblems
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also called local optimization problems. In other words, the improved stability, robustness and global cloksab
global system model with larggzeorder is decomposed into  performance in a distributed way.

several inteacting subsystems with a smalke orders, From the literature review, various distributed MPC designs
where a local controller, also known as agent (cf. Figures 1(b) have beerproposedn a number of works [9, 12, 2Z24]. A

and 1(c)) is associated to each subsystem. Here, eaclstudy analysis of the control performance of distributed MPC
independent controller is assigned to solve its oweallo has been discusdeby Vaccarini et al. [23]. Adopting a
optimization problem with local performance indices, relevant distributed solution, the global computational burden can be
information and proper constraints. It should be stressed thatreduced without significant deteriorations of the control
there are some advantages of these control strategiesperformance and the fault tolerant issues caadoeesse{P?2].
especially the benefit of being adaptable to the system The authors propose feasiblecooperation DMPC scheme,
structure, with less computational burden and no large where the local MPC problem was resolved considering the
amounts of information demand42-16]. The important effect of the local control actions on the performance of the
distinction between decentralized and distributed MPC remaining subsystenig5, 26] The proposed distributed MPC
architectures consists in the amount and type of information can be classified into two approaches for collaboration
exchange by means of the communication netwdrk. between local controllersnamely a cooperation and ron
decentralized MPC strategy, the communication network is cooperation MPC algorithmg24]. In cooperatiorbased

not used, then no shared information among the- sub DMPC algorithms, each local controller minimizes a global
controllers is possible, the sole type of information exchange performance index [27]. However, when each local controller
is only between each subsystem and its-carddroller, i.e., minimizes only a local performance index, it is cdlie non

local output measureamts and control inputs. It is noteworthy cooperativebased DMPC algorithm [12, ZB0]. The control

that the design of decentralized control follows either an objective, in both approaches, is to enhance stability as well as
entirely decoupled system [17], or ignores the Hstdvsystem optimality and makes the distributed control design very close
interactions due to the weakly interacting dynamics [18] or to the centralized one in terms of control performante
models the interaction effects anknown disturbances to be correlation between the complexity of nroentralized, i.e.,
rejected, compensated using a robust MPC formulation [19]. decentralized and distributed, MPC schemes and their elosed
Unfortunately, in the case where strong interactions would loop performance have been analyzfd. The results
exist between the subsystems, the decentralization of theconclude that, when the dynamical interaction effects between
control leads generally to a poor performance ofdacale subsystems are weakfor the case fo largescale
systems since no information about these interactions has beeimterconnected systems, a fully decentralized strategy can
exchanged by means of the information network and taken intooffer an acceptable control performance. In the other case, the
account by the agents in their control decisions. In contrast, thedistributed MPC schrae can improve the global performance
central idea of distributed control approach dependshen of the whole closedbop system, only if itcommunication
ability of exchanging some information between -sub implementation is feasible in practice. For the case of
controllers. For this architecture, each local controller obtains uncertain systems, a robust distributed MPC approach was
measurements from its subsystand information from other proposed for a class of linear systems subject to structured
subcontrollers. However, the type of the information timewvarying uncertainties [31]. Moreover, for polytopic
exchange between agen realized via inteagents uncertaindrgescale systems, a novel robust distributed model
communication network, is the external control inputs and/or predictive control method has been presgie Shalmaniet
states from other subsystems. In addition, with shared al.[32]. Viewing strong dynamic coupling effects as bounded
information between the stdontrollers, the objective is to  disturbances between subsystems, the proposed algorithm can

make them able to perform a certain degree dibotation ensure some degree sfability robustnessvith respect to

with each other with the aim of achieving the best global these disturbanceSince the work [7, 3], distributed MPC

system performance. has becoma field of active research, for detailed overviews
Nowadays, the progress in communicatioretwork on the current state of the art on this topic we reférd@apers

technologies and reéime distributed algorithms have [4, 3336] and thaeferences therein.

allowed control methodologies to employ their potentials to  In this paperwe deal with unconstrained distributed MPC
hardle more complex largscale systems for dramatically of largescale interconnected systems to fulfill a global
enhancing the control performance. For this reason, theperformance thanks to the use of a ftooperative strategy
improvement of the global control performance of the closed between agents communicating through a digiealvork.The
loop plantwide systems using network infoation exchange  main contribution of the paper is an innovative solution for a
has been recently feeld of active research. In order to fulfil  distributed MPC framework relying on Laguerre functions
the overall objective for the whole system, communication with two key advantages consisting firstly of significantly
between the agents over a communication network is neededreducing the computational load in the local receding
Thanks to the digital network, the required communication can optimizaton problems and secondly of allowing a small
be achieved via a shared infortioa among the agents. From  prediction horizon to closely approximate the predicted
a control viewpoint, it is welknown that MPC is able to  control trajectory The rest ofthe paper is structured aslttss.

hardle hard constraints, multivariabli@ear, nonlinear, Mathematical models of larggcale systems are presented in
uncertain or stochastic process [20, 21]. Moreover, this section 2. In section 3, w&ate our problem to beesolved.
technique profits hugely from both advances in commnat Section 4 presents the proposed-gonperation optimization

resources as well as advances in communication technologybased distributed MPC (NDMPC). Section 5 summarizes
Usually, in the context of distributed MPC design, different some of the main properties of Laguerre functions to be used
distributed MPC schemes have been proposed in the literaturein section 6 to establish the algorithm ugethe design of the
Indeed, it allows for independent local controllers able to proposed NE&MPC scheme. An algorithm for nen
communi@te and collaborate with other controllers to achieve cooperative distributed MPC is developed in section 7. A
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numerical simulation example is presented in section 8 to subsystems S;,j # i are described as follows:
illustrate the effectiveness of the proposed -DKIPC

algorithm with Laguere functions incorporated. Finally, to N
sum up, some concluding remarks are drawn in section 9. g{}) = Z [A;;x g{}) +Bju Hc})]
“4)
2. MATHEMATICAL MODELING OF LARGE -SCALE wi Z c. x5
SYSTEMS Wao U de)
be given by Cyj, fori = j, define the dynamic Coupllng terms between the
_ subsystems.
= {X("“) : Axo + Bugy (1) In general, not all the subsystems might have an influence
Yoo =X on each other. To account for the influences between the

i o subsystems, let us introduce the following definition
where x,) € R"* is the state of the system,, € R™ is its

input andy,, € R™ is its output withk > 0 an integer index
denoting discrete time. The whole system matricesAage subsystens, if and aly if, at least, one of the matrices;,

RxXx B e R gnd € € Rw*™ . Consider the . . . . i}
decoupled subplants or decentralized models derived from (1), Byj, Ciyis non null, i.e., if and only if the state§/) and/or
inputsul} of §; affect the dynamics .

Definition 1 A subsystens; interacts dynamically with the

{l} {i}
Xerny) = AuX( + Buu(y)
Sll - {,_} C {l} 3 1 N (2)
= X l = )
MO w0 1 Control system
where vectorsx'? € %™, u'). € ®™u are the local states

(k) (k)
and inputs, respectively, of th& subsystem, whﬂg(‘} €

R™: is its local outputThe dimensions of these local vectors
are such that

N
My = Z Moep T = Z My My = Z My, .
(a) Centralized control

i=1 i=1 i=1

Controlled system

and the global state vector can be written sas
COlie{l,...,N}(X{i}) , (§=coliey, ny(ED) . vector consisting of
stacked subvectors ¢{), the dobal input as u= |..A A |A
colieqr,..ny(u?), the global output ag = colie(y, ny(¥™).
1RWH WKDW WKH LQWHUFRQQHFWHG V\V
strongly coupled. Consequently, tlecentralized control
design leads to poor performance requirements or even
instability because it has not the potential to take into account
these interactions between the subsystems.

Throughout this manuscript, we suppose that the global
systemS in (1) is composed oN subsystems;. Therefore, : (b) Decentralized control
any subsysters; can be interacting with the other subsystems
§8;,j # i through linear interconnections. Therefore, the local

., C. ., Control system

DUH JHQHUDOO\

Controlled system

CommunicationNetwork

: — . . gContro[ system
dynamics of any subsystes},i = 1,N, is described as i
follows:
Si
( {i} {i} {3
|X(k+1) A”X(k) * B”u(k) * Z [Au (k) * B”u(k)] Contro[[et{{)’stem
_ { A3)
lygj) C”Xg(}) + Z C” g(}) [ = _N ] - = =» State measurement——3y- Control ation <€ Dynamic coupling Information network
(c) Distributed control

~ The interaction vectors are built upon state and input Figure 1. A schematic illustration of the principal control
interactions produced on the subsystem §; by the other system architectures



The distributed control architecture dealed with throughout
the paper has the generic structure giwvekigurel1(c). This
architecture consists of several local controllers,

exchange information over a digital communication network.
This architecture favors a namwoperation based control
strategy for largescale interconnected systems -(8) that
aims to emulate the performance achievable with a centralize
control scheme dfigurel(a).

In a typical DMPC frameworky subproblems are resolved,

each one assigned to different sedntrollersC;, i = 1,N,
instead of a single centralized problem.

The following procedure achieved by the set of independent

local controllersC;, at each time instarit, is given by:1)
acquire both local output measurementspand the received
estimate of the interactions betweeh and the other

subsystemsS; , j=1,N, j#i, transmitted through the

each
dedicated to a subsystem of the overall plant, which can

—Aug{}H_llk) represents the future control increments (or

control variations) signal at time instdat

—Q; = Qf = 0andR; = RT > 0 are real symmetric positive
semidefinite and positive definite weight matrices,
respectively.

— N, andN,, € N* are, respectively, the predictive and control

dhorizons, used as tuning parameters.

Remark 1

i) The optimization problem is guadratic programming
problem and thus convex, thanks to the linearity of model (5)
and the quadratic performance inddx with R and Q
respectively positive definite and sedgfinite matrices.

i) The design parameter$ the optimization problem are
the weighting matrice®;, R and the horizonN, and N..
These parameters might be tuned for achieving the desired
closedloop performance and the stability of the system under

communication network, to predicate the local state variable the unconstrained DMPC.

over the prediction horizor2) resolve the local optimization
problem,3) calculate the first control sample and apply it as a
control input4) share both local optimal control sequence and
future state prediction information with the other controllers
through the communication network.

3. CONTROL PROBLEM FORMULATION
From (3) and (4), thd-step ahead state and output

predictions at time instaktover a horizon of lengtN, can be
deduced easily, and are given as:

1

o{i} _ al ol} -1 {1}

Rty = AiiX ey + Z [A% Bii U151k (5a)

i
—1al
+Aj; 1V(k+l—s|k—1)]

{0} _ ol (i}
Yk + 1y = Cife + 1y Y Pk + 1 - sk — 1) (Sb)

for I =1,N,

where ’A‘8<}+z|k) (?Sc}ﬂlk)) is the predicted state (output)
variable at time instari + [ havingcurrent plahinformation
ﬁgc}l - (3783',()) at the current time instakt

Supposethat the whole systems, as illustratedn Figure
1(c), is composedof N interacting subsystemss; , the
unconstrained DMPC problem wiff}, andN,, , respectively,
the predictionand control horizons N,, = N,,, lies in finding
N separatesub-controller®; sothat everyC; solves,at each
sampling instark, an optimization problem with the following
local quadratic performance indé¢x which penalizes output
tracking errors and incremental contrals® [37].

NZ’ Ny
Jo= B+ Y 0 Au,
=1 =1

k s.t. the local dynamics model (5)

ol {i}sp

2
Y+tr) ~ Y(k+iik) I,

(6)

where — || 1 13 = ATWA, for a vectorl € R™ and a matrix

Y e jR,

{i}sp
T Ye+un)

the future sampling instant+ [ known at time instark.
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4. NON-COOPERATION BASED DISTRIBUTED MPC
PROBLEM

In DMPC formulation, the whotsize optimization problem
is replaced byN small subproblems working together
towards achieving the best performea of the centralized
control system. To obtain an explicit solution of the work on
the nominal distributed ajmnization problem presentely
Vaccariniet al.[12, 13], each suloontrollerC; is composed of
three partsan optimizer, a state precibr and an interaction
predictor (see kgure 3).The workflow of each subontroller
will be described later in algibhmic formin section 7.

For the sake of simplicity, the availability of the local states

)?gc}) through measurementsassimed Furthermore, denoting

Npi andNy; the prediction and control horizons fine " sub
controllerC;, the subsequent assumptions are adopted in the
sequel:

Assumptions 1
a. the prediction and control horizons are equal, Ng.=

Ny, = Np, andN, = Ny, = Ny, Vj,i = 1,N,i #j;

b. the subcontrollersC;, for i = 1,N, act in a synchronous
way;

c. the information is transmitted (and received) by the local
sub-controllers only once within each sampling time interval
(norviterative algorithm);

d. the digital network introduces one step communication
delay;

e. the infamation exchange is not loosed during the
transmission;

f. all the pairq4;;, B;;) are stabilizable.

At each time instank, neitherxg(}) 8(}) forj # i are
available by the ageid;; only their predictions, previously
sent by the agent;, areknown. In fact, due to the unitelay
introduced by the communiéah network (cf. Assumption-1
(d) above), the information of the other subsystems is available

only after one sampling timenterval. Therefore, the
interaction  predictions Qé,‘(}ﬂ_slk) and W&}H_S'k) are

unavailable at current timefor the subsysters;. Then, theirs

noru

denotes the predicted values of the desired output atvalues are available after one sampling time interval with

respect to the instant they ar@adcasted in. For this reason,



the predictions“/&}ﬂ Cofee 1) and Wgc}+l—s|k—1) will be used predictor estimates the future state variable. Then, the optimal
control sequence together with the state predictions over the
prediction horizonN,, are broadcasted to the other sub
definition. _ _ o _ controllersC;, j # i, through the communication network. At
For mathematical notation simplicity, - théollowing the next time instank + 1, the overall procedure is repeated,
notations are used in this paper: for each local controller, according to thecalledreceding
horizon principle
Usually, the horizon$\, and Ny are two important tuning
* Ogseg (Iax) is the null (identity) matrix in R Egﬁmete'rs of the M'PC cont.rol .deS|gn. Howe;ver, the
X o . axa putational burden in MPC is directly depending upon
0“.(1“) is the null. (identity) Matrix in R o . theme. Among the MPC formulations, the well known one is
* 0 is the null matrix or vector with appropriate dimensions. the classical schem§88-40]. In this technique, for the
possibility of high rapid sampling frequency, complex plant
dynamics and/or high requirement on the global system
performance, satisfactory approximation of the control
incrementAugc}) could involve a vast number of parameters
(especiallyNy), resulting in poorly numerically conditioned
solutions with a weighty computational burdernf41].

instead oﬁ?ékﬂ sl andw(,m _s|ky In the subsequent problem

« diag, [A]= block-diag{A A ... A};

a times

4.1 State predictor

The |-step ahead predicted state variable of tHe
subsystem, at each time insténis given by:

A{;{} e = Al A{;c}k +Z A5 131111{;{}1 . Otherwise, a more suitable approach ds use Laguerre
RGED (ki) (eti=slk) (7 functions[42, 43]in the design of MPC.
{L}
+ AT Vies1-sii—1)]

) 5.PARAMETERIZ ATION OF THE CONTROL
where Vle+i-s|k-1) denotes the prediction of/(kH —s) SIGNAL TRA JECTORY
computed at the past time instant 1.
A method of designing an MPC using orthonormal
4.2 Interaction prediction functions was proposed with the main advantage of reducing
the number of tuning parameters used for the description of the
The interaction predictions of th& subsystem, at each  control signatrajectory. This makes fewer computations eom

time instank, are expressed as follows : pared to the traditional MPC approach{4d]. The change in
the control trajectory was achieved through the adjustment of
i - i +BIU the scaling factor incorporated in the orthonormal function.
(k’fv”'k_l) (eNplk=1) (e Nulfe=1) (8) In traditional MPCapprach, at each time instaqtthe state
W({,?Nﬂk_l) = CX (o lk-1) variable vectorx, provides the current plant information
obtained through measurements. In the case of a single input
Now, let us assume that: system, the optimal control sequence is then defined as follows
K AUGeny 1) = [AUGkiys - AU vy —2110) AUty —111) ]

= [diagy (K;1) ... diag, (Kj;—1) 0 diagy,(Kji41) ... diagy, (Kin)] _ o
The control horizomV, indicates the number of parameters
with K; € {C;, B;, 4;} used to capture the optimal control sequence. Hayiggthe
future state variables are predicted Kprfuture samplesiN,

4.3 Optimal control sequence of each independent sub being the prediction horizon, it represents also the length of
controller C; the optimization windowThe future predicted state variables

are then defined by :
At each sampling time instaktwhen a set of the estimation _
vectors XU} and UU} are received from the other sub Xier1,npli) = [’A‘{kﬂlk)'""’A((Tk+Nqu)'""’A‘(Tk+Np|k)]T
controllersC;, j = 1,N, j # i through the communication
network (cf. Assumption 1(d) above) the interaction
predictor of eachindependent; uses these information to

According to the recedindiorizon strategy, the MPC
technique takes only the first element of the computed optimal
estimate the interaction predictions. Then, these predictionsCONtrol sequence and apply it. Additionally, in the next sample

time period, the new measurements are used to formulate the

are gathered with the local state valx{é) and all these state vector for the computation of the neptimal control
information to be used by the optimizer in order to find a sequence.

solution of the local optimization proble@nce the sequence Laguerre functions can be used to approximate the
of future control valueAU*® = {Augid, .., Auil ) }is incremental terms contained AU . The Ztransfer
computed by solving the finiteorizon optimal control ~ representation of th&" Laguerre function is given by:

problem (6), only the first sample of the computed optimal

control sequence is retained alfg[j} =AauB 4+ s -n)"

co q . 1K) (kIk) (k-1) T =+1-— — P E[0]] 9
injected as the control action to the subsystem while —pz7) ©)
neglecting the rest of the elements constituting the computed fOFm =LN

optimal sequenceAt the same time, by mea(s), the state



where IV is the number of terms used in capturing the control
signal and is the pole location of the discretiene Laguerre
network, it is also called the scaling factohe free parameter

p is needed to be tuned by the designer to guarantee the/lt =

stability of the networklt is worth to emphasize that the
choice of the paranter p is very important to ensure the
convergence rate of the Laguerre functiorlsaguerre
functions becoma set of pulse operators when= 0, which

p 0 0 0 0 1
u p 0 0 0 .
—pu U p 0 0 _ 2
vu - p oo fo =k Iip3
-p’u p’u —pu u p p*

Moreover, the Laguerre functions are well known by their

makes their using for MPC design equivalent to conventional orthonormality, this property can be expressed by the

MPC[43].
From (9), the structure of theiscretetime Laguerre
network is illustrated in Figur2.

1 o @ | -1 a(2) 1 Iw(z)
171)2 = ipl - — ad - -
1—pz 1 1—pz 1-pz

Figure 2. lllustration through a blodiagram representation
of a discrete Laguerre network

following relationship:

<) 0’
Z Lriotnu = {1,
k=0

The orthonormality will be incorporated into the MPC
schemeThe main idea in Laguerre functichased MPC is to
express each element of the future incremental control
trajectory by a set of Laguerre functions.

At each time instank, the future incrementacontrol

(12)

The set of discrete Laguerre functions is defined for some trajectory vector, i.eAU gy, k) iS captured by combining a

0 < p < 1, by taking the inerse Ztransform ofEq. (9), that
is:

Loy = Z Tz}

This set of Laguerre functions, at time inst&ntcan be

expressed in a vector form as follows :
Laoy = [Pr L2 -+ Ewvaol” (10)

Finally, based on the relationship)(3he set of discrete
Laguerre functions can be computed using the following-state
space model:

Lger1y = ALy (11)

where the lower triangular matrix4,;(p, #) and the initial
stateLy) are given by:

p 0 0 0 0
u p 0 O 0
—pu U p 0 0
Ao, ) =|p*u —pu [T R O
)" ?u (=p)Pu uop
1
—p
pZ
Loy =Jul” 4
P
"
with y = 1 — p?

For instance, in the case df = 5, the matrixA,; and.
are given by:
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set of Lguerre functions, defined in @), with a set of the
following Laguerre coefficientg,, obtained from the online

optimization:
Nao = [C10) C20) -+ vy I’ (13)
Then, all the components of the incremental control
trajectory for a single input system, at the future tingan be

accurately approximated by a linear combination of Laguerre
functions as follows

N
Augegey = Z Con)Cmo) (14)
m=1

Hence, Eq. (14), forl = 0,N, — 1, can be rewritten as

follows
Mgy = LN (15)

According to (1%, we can remark on the one hand, that the
number of termsNV with the free parametep are used
implicitly to capture the optimal control sequence.

On the other hand, the coefficient vectgy, depends only
on the initial timek.

For the sake of simplicity, the expressiomgf, in (13) is
abbreviated as follows

n=1[cic . cp |7

The control increment i(L5) shows that the control horizon
Ny, which is one of the tuning parameters of the classical MPC
approach, is omitted from the control desi@mnsequently,
with the discretdime Laguerre functions, an alternative
formulation of the performance index can be performed by
using the coefficient vectoy.

In a matter 6 fact, the second term of E{6) can be
rewritten as :



Ny

I AUGesi-1) I1F= Z AU 110 RAU G 1- 1110
=1

Ny (16)
= z A1 1— 100 RAU 41— 1)1)
=1

In order to compute all the predictions over the prediction
horizon N,, all the incremental controls beyond the control
horizonN, are supposed to be zero, thakigy ;1) = 0 for
Ny, <L<N,.

Substituting 15) into (16 yields:

Ny
I AUGegi—1jiy IR= Z AUGes 110 RAU 41— 1110
Nyt (17)
= Z AU(e 11— 10 RAU 41— 1110)
=1

wherg R, = blockdiag{R R ... R}€ RV,

This weighting matrix is used as a tuning parameter for the
desiredclosedloop response andN, is chosen sufficiently
large to satisfy therthonormal property, that is:

Np
Z raothm ={
k=0

Then, the set of coefficientgin (13) is obtained from the
online optimization. With this design framework, contrary to
the classical MPC approach, the control horizgnis not
needed. Note that the number of variables involved in the
control vectoraccording to (1yis justV rather tharN, used
in the original performance index. Typicallyy is smaller
than Ny, (W < N,) which may reduce the computational
burden. Indeed, a larger control horizdincan lead to higher

0,
1’

for f#h

for f=nh (18)

A{i} /{1
deiny Dty
ri {3 /{2}
Dgc}”h) — |dtks1imy Dieuiny = Dt
~ (i) N
d(k+l—1|h) D(k,llh)

Ui Ui
Uty = ?(;‘“'h) Ueny = fjgc,}llh)
ugc}+l—1|h) Uéllj}”h)
Furthermore, let us assume that:
Bi= [Py « Py_y 0 Pyyy o Pyl

where P; € {4, B;, C;}.
Fori=1,N, thel-step ahead predictions of the local

interaction vectors, at time instakt can be described as
follows :

N
~{i} _ U} {3
Viery = [AiiX(k+l|k) + Biju(k+l|k)]

J=1(#0)

N (19)

~{i} oU}
Wit CijX vy

J=1(#0)

Using the previous definitions, the compact form of the
interaction prediction vectors can be expressed as follows

(i}

Vienpie-1 = Ak enpli-1) T BiUgonyje-1) 0)
i _ A
Wienyik-1) = CiXenyik-1)

computational bu_rdeq and memory storage. As it can be Seen, Referring toAssumption 1(d), the information of the other
the parameters in discrete MPC using Laguerre functions, g hsystems is available only after one sampling time interval.

namelyp andV', are used to capture the projected control
signal and the prediction horizdl. The value of the Laguer
pole locationp is included betweefi and1 ( i.e.,p € [0,1])
whereas the number of term§ is selected to satisfy the
impulse response. In this paper, a Laguerre functiased
MPC is used in the proposed distributed MPC scheme.
Remark 2. The stability and the desired closkedp

In this caseUEf(}’Nplk_l) andU v, k1) can be expressed in

terms of U and U(k—l,Np|k—1) respectively as

performance of the unconstrained DMPC based on Laguerre

functions can be designed and tuned by adjusting the

weighting matricesQ;, R, the horizonN, and the design
parameterg;, JV;.

6. PROPOSED DISTRIBUTED MPC DESIGN USING
LAGUERRE FUNCTIONS
6.1 The modified interaction prediction

Given the measurements until instdmtthe future states,

inputs and interactions vectors from instanb instantk +
[ —1, with k > h, are expressed by
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(k=1,Nplk—1)
follows:
{i} _ £
Uty lie-1) = TiUGe— 1w 1) (21a)
Uteylk-1) = TUge-1,0, k1) (21b)
where
f = | I(Np_l)nui
i = [On,ny xny,
pMu XMy |Onuix(Np—2)nui Inui

f = dlag{fl, fz, ey FN}

By substituting (21a) into (20), the interaction prediction
vectors can be rewritten as follows:

(i) o .
Vienpie-1y = AiXenpli-1) + BiliU 1,5, k-1 )
= (i} o

Wienyik-1) = CiX ey k-1)



Note that the state predictions and tbentrol acions
contained in expression (Rare calculated at time instant
k — 1 and transmitted through the digital network.

6.2 The modified state pedictor

The state variablef thei subsystem, at sampling instant
can be predicted as follows:

l
{3 — Al ol} -1 {1}
Riertiy = AiX e T z A3 [Biiu(k+l_5|k) (23)
T
—1atil
+ Aji 1V(k+l—s|k—1)]
Let us now define, fok = 1, N,
l
{i} — i {1} —
Ugesi—siey = Uge—1y T Z Au(k—s—1|k) fors=1,1 (24)
n=s
By means (23) and (24), the staiégﬂlk) become
l
oli} — Al ofi} - {i}
k+llk) = Aiix(k|k) + Z A 1Biiu(k_1)
s=1
l l
O ATBOMY, @9

—15{i}
Ajj Vik+i-slk-1)

s=1

According to the expression (15), the incremental control
trajectory along the prediction horizon at time instanan be

calculated adut’ L s_1yn; in Laguerre formulation.

(k+s—1]k) —
Then, the-step ahead states can be predicted by
l
~{i} Ao} - {i}
Rieruiy = AiiX ey + Z AfT'Buug,_y)
s=1

I
+ Z (z A B LTy (26)

s=1 n=s
1
-15{1}
+ z AV ert—slie—-1)
s=1

wherg the predicted control is rewritten as

l 1

- {i} - i
Z Aji 1Biiu(lk +l—slk) = Z AT Byugy,

s=1 s=1

o
+Z (Z A5 Bi) Ls_1yni

s=1 n=s
and the predicted output variable writes

!
PSU; - {i}
Foer11i0) +Cy ) AYT'Buyg

— 1 ot}
= CiiA X (k—1)

X (i)

s=1
L
+Cy Z (Z A" B Ll -1y

s=1 n=s

27)
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~ {0

—15{i}
AT + Wierik-1)

+Cii (k+1-s|k—1)

s=1

The previous expressions of the predicted future state and
output variables, show that the control sign%j) is not

needed and it can be replaced by the coefficient vegtor
However, the main idea is finding the coefficient veetothat
minimizes the performance index §3In order to estimate the
prediction, the following convolution sum

l l
Csiy = Z (Z AT B LT 1y
n=s

s=1

(28)

requires to be evolved. For further detaiée [47].
Consequently, the expression (28) evaluated along the
prediction horizon leads to

!
Csiy = Csiq-1) + Z AL Coiy (AT
n=1

with  Cgqy = By L]y forl = 1,N,

(29)

where the matrixA,; € RV*Viis depending on the scaling
factorp; andy;, defined in (11).

Compact form representation

The compact prediction of (26) has the following form

20
(k+1,Np k) 30
=LY+ Ml + Ny +S00 30
= LiX(kix) iY(k-1) iMi 2tV k-1)
where
4 . 0y »
S; = b L =S [0; x ]
(Nyp XNy blocks) Np—-1 pTx; XN,
[ 200 4 _Aiip A?l t t
[Csic1)
B;;] AiiCyicry + Coigry (Ap)"
M, =S .Bii N, = AiiCiczy + Coigny (AT
B.. ’ Ny-1
i AiiCsiqny-1)+ Csicry (A, )’

6.3 The modified gptimizer

The local performance index in (6) can be rewritten using
the coefficient vecton; as follows:

Np
Ji = Z I
=1

The modified performance index shows that the control
horizon Ny, one of the tuning parameters of MPC for the
desired closetbop response, is omitted.

ol {i}sp

Ye+yr) — Y+un G

G, + i Rumi



Now, the objective is to find, at each time instant, the Ny _ r
coefficient vectom; that minimizes;. By substituting (27) (Z Qi Qi iy +RL1.)_1 exists.
into the performance index (31), we obtain =1

i where
Np L
—= —T oY _ ! W -1
= TIiT(Z Qi) QiQyy + R i Oy =Cudy, Yipy=0Cy Aj By
=1 s=1
Np l
+2070) QunQi®iyxD) Quy =Calyy, By =Cy Y AT
i il iy = Cullyyy i = L it Vik+i-slk-1)
l;pl N, s=1
217y Q0B u 217 Q0. (32) -
+2n; ( imQi%iyuge_1)) +2m; inQi®iw) Compact form representation
1=1 =1 In order to write the compact form of the solution of the
r N W optimization problem (31), the following notations are
+2m; Z L@V 41— sk — 1) adopted:
=1
Np B ‘ y{i}SP
- ZTIL'T(Z Qi(l)QiY&}iﬂk)) (k|h)
=1 ) {i}sp
Y({;c}sﬂh) =[Yk+1n) |
To find the minimum of (32), without constraints, the first ' P
partial differentiation of the performance index can be used, yé’,isf’}_ =1}k
leading to: CiCaicry
y N, Cii[AiiCsic1y + Csiry (A"
i — —T
6_r;L- = Z(Z Qi Q:iiy + R )M N, = Cii[AiiCsi2) + Csiry(AF)"]
¢ =1 :
Np Np—1
— : Cii[AiiCsin.—1) + Csiciy (AP )T
+2(_ Qi(l)QiYggj.ﬂk) u[ ii~si(Np—1) sl(l)( li ) ]
=1 |
p CuAf; v Oy g”
— — : i .
+ Z Qi(z)Qi@i(z)Xg S; =|: ORI M =S
e (33) WpxMp blocks) e, AP ™0 €AY B,
+ Z ﬁi(l)ini(l)ug(}_l) (CuAR)"
z;1 L = : N ’
4 — — (CiiAiip)T
+ z Qi Qi®Piqy 0, }
1=1 Vi
> : Ion —1ym
0 ~{3 PNy
+ Z Qi) QW i y1-giie-1y) 0,
=1 Ti — !
o imali - 0 0, O"yi I"yi
The necessary and sufficient optimality conditions of the i Vi
minimum ofJ; are obtained for:
aJ; . . :
i =0 Now, by means of these notations, it would be easy to write
on; the compact form of the predicted output as follows:
whereby the optimal parameter vector is computed as follows: oli} D! (i)
Y(k+1,Np|k) = LiX ey + Miug,_qy + Nim; (35)
N, i} (i}
. P r + Siv(k,NpUc—l) + Tiw(k,NpU(—l)
N = Uip = (z Qi(z)QiQi(z)
1=1 Consequently, the compact local performance index has the

Np

B ‘ following form
+R,) % (Z Qi(z)Qi(Y&}iZk) (34)
=1

7 _n ofi} {i}sp 2 T
— w T= g _ Ji =0 ¥oera e ~ Yoerunpii g, + 16 Rugi (36)
= 0iyR iy — Vi Ue-1) — Piqy
_ o 7 o_ ol {i}sp A ol
Wkt 1-s)k-1))) Ji= [Y(k+1,Np|k) - Y(k+1,Np|k)]TQi[Y(k+1,Np|k)
with the assumption that the inversion of Hiessianmatrix (et LNpli) T T LT
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By substituting (35) into (37), the performance index can be in advance reference samples (causal), the algorithm of the

equivalently rewritten as:

Ji =niHm; = G{m; (38)
where the Hessianmatrix H; has the following form:
H; = NTQ,N; + R, (39a)
and
Gy = ZNiTEi [Y({li}:f,zvmk) - Liigc}m) - Miugc}—n
= Ntligy = S ek (39b)
- Tiw({l?Nﬂk—l)]

with Q; = diagy, [Q:].

By minimizing the local performance index (38), in the
absence of constraints, under the assumption Hessian
matrix is invertible, the optimal parameter vector can be
computed as follows:

1
Ni(t) =S H'G (40a)
N _ 7 rulidsp NU; {i}
ni(t) = K; [Y(k+1,Np|k) - LiX(klk) - Miu(k-l)
51}
- Siv(li,Np|k—1) (40b)
{0}
_Tiw(k,NpUc—l)]

where

K; = [NiT@-Ni + R, 17N/ Q,

Once the optimal parameter vectfyris computed, the

incremental controbug(}) at time instant is obtained and

expressed as follows:

Ly 0 . 0
a0 2" 0 .
Bugy = |, SO ik (41)
0 0 Lt

i(0)
Consequently, following to the receding horizon principle,

the control signalhgc}) = ugc}_l) + Augc}) generated by the sub

controllerC; is applied to the physical subsystém

7. ALGORITHM FOR NON -COOPERATIVE DMPC

A nortiterative algorithm for NorCooperative Distributed
MPC (NGDMPC) with onestep delay communication is

developed to seek the local control decision for each

subsystem at each sampling tireach subsystem resolves its
own local optimization problem.

The desired future sgbint signaly!s?

(eriji for theitsub

assumed to be eithétnown in advance future reference
samples (anticipative action, also called previewyriinown
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novel distributed MPC is outlined in the following:

NC-DMPC algorithm for a subsystemi
1. Setinitial parameter values
2. Receive, from the other swbntrollersC; through the

communication network, the estimatiﬁﬁ’},vplk_l) and

U3 . TN
U(k,Np|k—1)’] =1LN;

3. Combine with the local state sequen@é%vplk_l) and

{i}
(k,Np [k—1)

)?(k_,vplk_l) and Ui nplk—1) and compute the estimation
of the corresponding interaction prediction vectors
according to (22)

4. Get the local state measuremeﬁgj) from the
subsystem sensors or a designed observer and the
sequence of sgioint signaIY({,éfinlk);

5. Cadculate U?,ffﬁ,plk) it through the

communication network to the sabntrollersC;, j =
1,N;
; H{iy o *{i}

6. Calculate the control signal ;) = Aug ) + ug 4,
and apply it as a control input to the real subsysi&m
cf. (40) and (4};

7. Calculate the estimation of the future state sequence of
§; over the predictiorV,, and transmit it through the
communication network to suontrollers¢;, j = 1,N,
cf. (30);

8. Increment the sampling time index, i.e.,

k < k + 1, when a new state vect®y ., is available,

a new optimization problem is solved; and repeat the
algorithm from step (2).

the local control inputsU to construct

and transmit

A block diagram illustrating the internal structure of the
DMPC controler is depicted in Figura.

Communication Network

it ) & i
Uleam i1y Al -1 A Holis Tico, e

Stata prodictor

Interaction predictor

Sub-cantroller Ci

Optimizer

e
Yo Aol

3
v

Interconnections

Figure 3. A Schematic illustration of the internal structure of
thei®" MPC subcontrollerc;

7.1Closedloop stability analysis

In this section, the nominal closémbp system under the

proposed stateeedback NEDMPC control is presented and

its globalstability condition is gien. This conditioncan be

deduced through the analysis of the whole cldseg
controllerC; is generated by a local reference generator. Itis VA\VWHP IV G\QDPLF PDWUL]

+HUH
refers to the case without any external disturbances affecting

W K



the process, whose dynamics erfectly represented by the
process model.
Let us now define the global matrices as follows:

H = [HT,..,HL]T,  where H € {4,B,(}
I,
l—‘i, =1 = [Inuionuix(Np—l)nui]
(Np blocks) Inul-
A= diag{A,, ..,\y},  where A€ {I",T,T}
{i} ol
Au(klk) LL(O)
Au L(O)("q
@ (e+11k) A2y
AUGenyiy = Augjﬁlk) = 1(0) ! Mige) = ZiMie)
Np 1
Au{t} L(O)(CA
(e Np=116)
L0y
L(O)(‘ﬂ )T
A T
Z;= ‘(0)( ) Mo = Mgy o Mige]”
Np—1
L(O)(‘ﬂ " )T
Q = diag{@lﬁ ---:QN}

where, Q € {L,L,M,M,S,T,K,N,Z}.

Theorem 1(Global stability condition for NADMPC scheme)
The closedoop system including the opéop systens

and the feedback distributed control solution of theN@PC

problem, composed by a set of independentcsultrollers

C; i =1,..., N, is asymptotically stable if and only if:
|4{Ag}

A 0 BT 0
) 1 0 F

=41 | (Tzo4 + TZ¢r) Tz¢n (TZOBT +T'T+TZp) TZpF
0 0 Inym, 0

<1

vj € {1,2,...,Ng}, Ng = n, + Nyn, + 2Nyn, (42)

where A; is the dynamic matrix of the global closkdp
system and/; is its order.

The reader can refer fgppendixfor details about the proof
of this Theorem.

Corrolary (Global stability condition for Decentralized MPC
(De-MPC) scheme)

If the network communication is not used, then no shared
information among theul-controllers is possible, the global
closedloop system is asymptotically stable if and only if:

J[<1

— A BT

12,{4a}l = "11‘{ (Tz64) (TZ6BT +T'T +Zp)
“43)

vj € {1,2,..,Ng}, N =n, + Nyny,

where A, is the dynamic matrix of the global closkbp

system and\;; is its order.
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8. NUMERICAL SIMULATION RESULTS AND
ANALYSIS

In this section, the proposed NIMPC algorithm,
presented in the previous section, is tested and evaluated
through asimulation example, related to popular case studies
in the context of distributed cawl. Thisnumerical simulation
hasbeen conducted to assess the efficiency of the proposed
NC-DMPC algorithm. The proposed example for this
evaluaton ispresented in theequel.

8.1 System description and representation

A benchmark example, often used to assess the
effectiveness of distributed control algorithms is the quadruple
tank system, described [48-50], and illustrated in Figure 4.
The procesgonsists offour interconnected water tanks and
two pumps. It is a MIMO system with two manipulated
variables and four state variables. The goal here is to control
the water level&, andh; in tanks1 and3 using the pumps
command voltagesv; and v, . Let us definex=
[X1 Xz X3 X4]" = [hy hy hs hy]" andu = [u; wp]" = [vy v,]"
with h; and v; are the liquid levels and the voltages,
respectively (cf. Figure 4).

Using mass balances and Bernoulli’s law, we obtain

() == 20k (O + 5 V20RO + 5

. k

ha(t) = 2gh2(t>+(5¢ ,

; as a 2 Y2k ¢
ho(t) = =5 V20hs(D) + ¢ V2gha (D) + ==,

. 1—-vy)k

h(© == SR @ + 2,

where, S; :cross-section of Tank i; a;:cross-section of the
outlet hole of Tank i; h;(t): water level of Tank i; g:
acceleration of gravity.

The voltage applied to Pump i is v; and the corresponding
flow is k;v;. The parameters y,,y, € [0 1] are determined
from how the valves are set prior to an experiment. The flow
to tank 1 is y; k;v; and the flow to tank 2 is (1 — y;)k,Vv; and
similarly for tanks 3 and 4. The measured level signals are
k. hq and k_ h;. According to [49], the values of the parameters
considered in the following simulations are:

S, =8,=28[cm?] , S,=25;=32[cm?] a, =a, =
0.071 [cm?], a, = az = 0.057 [cm?], g =981 [cm/s?],
k.=1[V/cm].

The chosen operating points correspond to the following
parameter values: (hY,h9) = (12.4,12.7) [cm], (h3,hY) =
(1418)[em] ,  (vp,v2)) =B3)[V] ,  (kpky) =
(3.35,3.33) [cm3/Vs],(y1,72) = (0.7,0.6).

The linearization of system (44) and its zero-order-hold
discretization with sampling time Ty = 0.5 s, leads to the
discrete-time state-space representation of the form (1), with
n, = 4 andn, = n, = 2. The obtained model matriceare
given by the following:



0.9921 0 0 0.0206

A= 0 0.9835 0 0 ,

0 0.0165 0.9945 0

0 0 0 0.9793
0.0417 2.47 x 1073

B = 0.0156 0 C=[1 0 0 O
1.30 x 1073 0.0311 ’ 0 01 0
0 0.0235
qf|-¢ \rQZ

Tank4 Tank 2

l—|qr3 %l 'Tz
E

-

Pump 2

Figure 4. A schematic representation of the quadruple tank
benchmark

In order to apply the proposed NGMPC control scheme,

the whole system has been partitioned into two interconnected

subsystemslhe first one is composed of tablkand tank and
the second one is composed of té&énd tank4. Therefore,
the states and inputs are accordingly partitioned as follows:

xW = [hy hy]"and u™ = [v,];
x =[h; hy]Tand ut? = [v,]

Subsystem:1

According to the form (3), we set the subsystgnwith
matrices{A,,, By1, C11,A12, B1;}, where

=57 Gonssl B =[orsel-ca =t 0
A 2[8 8.0206]‘ 3122[8.47x10—2]

Subsystem:2

Also, according to the form (3), we set the subsysfem
with matrices{A4,,, B,,, C,2, 4,1, B21}, where

Ay = 8'9945 8_9793]‘ Byz = [88%;]'6‘22 =0 ol
A, = [8 8.0165], B, = [(1).30 x 10—3]

The interactions between the subsysteéipnsand s, are
considered through the state and control input variables which
will allow to test the effectiveness of the proposed DMPC
structure in presence of both interactions. The proposed
algorithm, described in section 7, was used to implement the
two subcontollers, where the control objective was to keep
the levels of tank 1 and tank 3 at the reference values,
expressed by their respective -peint signals, defined as
follows

iFor tank 1 (level 1)

(a)from 0 s to 50 s, the spbintis 0.2 m
(b) from 51 s to 150 s, the sgbintis 0.6 m

iFor tank 3 (level 3)
(a)from 0 s to 20 s, the spbintis 0 m

(b) from 21 s to 80 s, the spbintis 0.4 m
(c) from 81 s to 150 s, the spbintis 0.1 m

m— Qutput signal "y
= = =0Qutput signal "y’
= = Set-point "y

100 150

Time [sec]

0.6 T T
— Qutput signa o2
= = =Q0utput signal "y"|
Fo. N ‘== Set-point "y .
k
[
1 E
1
-0.2 L L
0 50 100 150

Time [sec]

Figure 5. Evolution versus time of the output responses of Thakd Tank3, obtained with classical-®1PC and the proposed
NC-DMPC for the quadruple tank system
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3 T T - EE
—— Control signal "u
‘= = Control signal "ul"{"
1
100 150
Time [sec]
3 T T - EE
Control signal "u.
b i= = Control signal "ulq"
1k s
f
0 T Lo
2} u
-3 1 1
0 50 100 150

Time [sec]

Figure 6. Evolution versus time of the manipulated variables (control inputgndv,; generated by classicatl@PC and the
proposed NEDMPC schemes for the control of the quadruple tank system

0.8 T T
» - e B
0.6 I,'f' "m-m\‘-"f
1 i
04} 1! E
.':.‘ 4 = = =Qutput signal "y
0.2 =t * == Output signal "y
f = = Set-point "y
0 1 1
0 50 100 150
Time [sec]
0.6 T T ;
= = =Qutput signal "y¥"
04 + = . == Qutput signal "yPe J
'r |\ 2
v I‘ -=:=-Set-point "yi"
02}t ! H E
] )
U] b
1§
[1] S ———. .
-0.2 L L
“o 50 100 150

Time [sec]

Figure 7. Evolution versus time of the output responses of Thakd Tank3, obtained with decentralized MPC and the
proposed NEDMPC for the quadruple tank system

== Control signal "u,

— Control signal !

100 150
Time [sec)
3 T T
2r == Control signal "« ]
1 — Control signal " uf ©" =
0
1k * ' 4
ok 4
-3 1 1
0 30 00 150

Time |sec)

Figure 8. Evolution versus time of the manipulated variables (control inputgndv,; generated by decentralized MPC and the
proposed NEDMPC schemes for the control of tlggadruple tank system
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Table 1L Summary of the control design parameters of the different MPC controllers

Controllers Nu Np Q R N p Ts N
ClassicalMPC (GMPC) 5 10 1xI, 0.02xI, - - 0.5 300
NC-DMPC & DeMPC:¢; - 10 1x1I, 002xI, NMN=3 p=05 0.5 300
NC-DMPC & DeMPC:C, - 10 1x1I, 002xI, N,=3 p,=05 0.5 300

Note that the design parametdts R, Qi, pi and);, for
i=1,2 needed for the distributed optimization problem, have
been manually (i.e.heuristically) tuned to obtain the best

increases significantly with the total numhef of system
inputs as well as the length of the control horidnsince a
large value of the control horizon impé more control

performance. To this end, several tests were performed tovariables to be computed. In the proposedIN@PC strategy,
determine the most suitable values for the proposed casethe local control actions are parameterized by Laguerre

Besides, the optimal values can be found using a multi
objective optimization procedure or one oé ttnetaheuristic

functions. The total number of Laguerre functions, namély
used in capturing the future control trajectory vector is

methods (such as swarm optimization technique), but this isgeneally less thanN,. Thereby, each subontroller needs

out of the scope of this study. Usually, a tradiebetween the

two terms of the performance index should be ensured,

depending on each particular circumstaesponse rapidity
or lower energy).
In order to make a fair comparison, the clossap

smaller control variables to be computed, compared to the
classical centralized control scheme.

Incidentally, by decomposing the problem into smaller
subproblems and solving them in parallel, we bandle a
much larger number of units. Furthermore, compared to the

performance of the proposed controller are compared with aclassical centralized algorithms, decomposition methods

Laguerre functiondbased Decentralized MPC (DeMPC),
where the network commigation is omitted (Figure 1(l)
and a classicalentralized MPC (eMPC). The simulation
parameter settings are summarized in Table 1.
where N, denotes the control horizon, it is selected by
considering a good trad#f between tracking performance
and the amount of the control effoif, is the prediction
horizon, it is assumed sufficiently large, to ensure the closed
loop stability.Q andR are two constant matrices serving as
weights of the tracking errors and control a8, respectively;
pi is the scaling factor, it is a tuning parameter for the closed
loop response speed; is the number of Laguerre functions
representing thelegrees of freedom in describing the control
trajectory; Ts is the sampling timel\® is the total number of
samples of the whole simulation.

For this example, the obtained simulation results are

require less memory storage, and are mainly much faster. To
sum up, the computational burden of the distributed
implementation is mut less than the centralized structure,
especially for largescale systems including a large number of
subsystems.

8.2 Performance analysis discussion

The performance analysis of the control strategies can be
described in terms of output trackiagors and control efforts.
Therefore, a more accurate way to obtain a criterion reflecting
the performance and differences between the different MPC
controllers is to evaluate the following unified performance
index,

NS
depicted in Figures 5, 6, 7 and 8, including the system tautpu Jigy = Z I
and the generated control signals. The obtained simulation —
results, demonstrate that the proposed distributed control NS NS
structure has a good control performance, since the quadruple _ Z Jo ey + Z i fori = 1,2,
tank system under the proposed DMPC strategy has the ability =] eik) &t uitk)
to track thesetpoint signals; with smooth control signals. - -

Although, the control signals in this control strategy are where N° represents the total number of samples of the whole
obtained separately, the performance is still satisfactory due to

NS
96—y 1B+ D 1 aul) iz,
k=1

(45)

_ : simulation, y(s? denotes the sgtoint (reference) to be

the cooperative manner of the stdntrollers by using the
local information and he information shared by the other
agents via the communication network.

Furthermore, as depicted in Figures 5 and 6, théRT has
a similar performance as the proposed-DKIPC, and both
outperform the DeMPC strategy, as shown in Figures 7 and
This corclusion is not only valid for this four tank plant, but

also for other plants, since the DeMPC strategies does not tak

tracked andy(¥ is the actual simulated outputhe MPC
performance index in (45s formulated with two performance
indices, namely the tracking error and the control effort. The
performance index corresponding the tracking errof,, is

8 formulated using the squared difference between thpaet

y*P and the predicted plant behaviorSimilar to the tracking

&rror term, the performance index for the control effprts

the interactions into account, which leads to some degradation@!so formulated as in (35The control effort is determined by

in performance. It is noteworthy to mention that the main
drawback of deentralized MPC is that local MPC controllers
would fail to fully compensate for the process interactions

the squared difference between the present and past control
actions.
It is worth to recall that one key concept in centralized

beyond the confines of the local subsystems. Such limitation COntrol is that all the individual performance indicksare
can degrade the controller performance and possibly, leads tgJathered in a single cost function, leading to:

stability problems of the @rall system.

The computational burden of the control schemes depends , =
greatly on the number of inequality constraints and the number  JG&* = Z Jigy =
i=1

of control variableg51]. From this point of view, in the
unconstrained centralized MPC, the optimization problem

56¢

N=2 NS NS

Z (Z Jeyy * Z Juiey) (46a)
k=1 k=1

i=1



N=2 NS N=2 NS
= Z Jeya + Z Z Juwoy (46b)

i=1 k=1 i=1 k=1
6@ = Jeay + Jue) (46¢)

Theevaluation results are summarized in Table 2.

Table 2. Comparison of the costs obtained with centralized

account the shared information about the interaction effects of
the other subsystems in the local MPC decision.

T $ QXPE Ktdbured ¢htrol algorithms based on the
DMPC approach has been presented. They are designed for
large and interconnected systems, described in-Spaiee
form and decomposable in several rawerlapping
subsystems.

¥ 7TKH UHGXFWLRQ R aWwda¢isubByBtEMSQ L FD

¥ $ GHFUHDVH LQ WKH FRPSXWDWLR(

MPC, distributed MPC and decentralized MPC

Controllers Je Ju
C-MPC 1.0307 0.3174 1.3481
The proposed distributed MPC 1.0452 0.3682 1.4133
De-MPC 1.2005 0.3234 1.5239

]CDSt

[1]

Table 2 shows the results obtained through the evaluation
of the performance index (#6or the three MPC controllers.
As it can be seen from this table, the same previous conclusion
holds according to the obtained numerical values. It shows thatl2]
decentralized MPC has the largest value of the global
performance indey°’st, whereas theroposed distributed (3]
NC-MPC has a performance close to the centralized scheme.
Taking into account each term of the performance index, the
proposed DMPC has almost the same performance compared
to the GMPC controller; and both have a better performance
related to the tracking error, but the -DB¥C and GMPC [4]
controllers have a slightly smaller control efforts compared to
the proposed DMPC. Using the proposed-DNRIPC scheme,
the tank levels track the spbint signals better than with the
controller DeMPC. This is because the distributed MPC [5]
controller provides more control effort than decentralized
MPC scheme. The obtained results of the above table, with
Figures 7 and 8, corroborate this conclusion.

9. CONCLUSION AND FUTURE WORKS [6]

In this paper, a novel distributed MPC approach for large
scale interconnected systems has been derived, leading to a
nortcooperation based DMPC (NBMPC) algorithm.The
main feature of the proposed algorithm lies in the use of [7]
orthonormal functions, viz.aguerre functions, to parametrize
the system trajectories, thereby reducing considerably the
computational burden of the MPC optimization process under
a onestep communication network delay and reducing [8]
significantly the set of exchanged information owée
network. Moreover, the stability of the resultiptantwide
closedloop system was analyzed and the performance of the
proposed NeEDMPC algorithm was discussed. The approach
methodology hasdendemonstrated on an examjite a set
point tracking obgctive. Through theconducted numerical
simulations the obtained results show clearly that the
proposed NEDMPC scheme achieves similar performance as
a centralized model predictive scheme while outperforming
the decentralized MPC strategy. Futumgorks may
concentrate on extending the proposed methodology in the[10]
constrained case. Furthermore, the robustness issues with
regards to model uncertainties and external disturbances may
be investigated.

In this method the following important features cam b
emphasized:

(9]

[11]

the solution of the local MPC problem.
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. . - + TZRY s 1)
Merging the process equation, thglobal prediction

equation and the global optimal sequence, the clizxgul U — [TZ04 + TZb51x
statespace model for the distributed control framework is ety = | - ¢A] (=) (Alo)
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+(TZOBT +I'T + TZp)U k1 v k1) + o - {Xc(k) = AcXge-1) + BGY(S,E’_Nplk_l)
. =

_ . (Ala)
FZ(I)FU(k_Z'Nplk_Z) + BY(Iszlk—l) Y = CGXG(k)
with B =TZ(@NK +K ) wherg
A 0 BT 0
Yoy = (X (Alp) > i 0 F
Ac =|(TzoA +TZpxr) Tzl (TZOBT+TT+TZp) TZoF|

Let us now define the augmented state vector as follows: [0 0 Inyn, 0

Xe) = [X(Tk),X(Tk,Npm—n, U(Tk,zvp|k), U(Tk—1,Np|k—1)]T g
B;=|,|.C.=[1000]

The statespace model of the whole closkxp system is B
then given by: 0

Consequently, the stability of the overall system is
determined by the eigenvalues of the dynamic maigix
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